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Abstract: Two-dimensional two-fluid classical and momentumless laminar far wakes are investigated
in the boundary layer approximation. The velocity deficit satisfies a linear diffusion equation and
the continuity equation in the upper and lower parts of the wakes. By using the multiplier method,
conservation laws for the system of partial differential equations (PDEs) in the upper and lower parts
of the wake are derived. Lie point symmetries associated with the conserved vectors for the classical
and momentumless wakes are obtained. The conserved quantity for the two-fluid classical wake
is the total drag on the obstacle, which is rederived. A new conserved quantity for the two-fluid
momentumless wake is obtained, which satisfies the condition that the total drag on the obstacle
is zero. Using the conserved quantities, it is shown that the equation of the interface is y = kx

1
2 ,

where k is a constant and x and y are Cartesian coordinates with origin at the trailing edge of the
obstacle. New invariant solutions for the two-fluid classical and momentumless wakes with k = 0
are found. Both solutions depend on the dimensionless parameter χ = (ρ1µ1)/(ρ2µ2) where suffices
1 and 2 refer to the upper and lower parts of the wake. For the special case in which the kinematic
viscosity ratio ν2/ν1 = 1, two further solutions for the two-fluid momentumless wake are derived
with k = ±

√
6.

Keywords: two-fluid classical and momentumless wakes; multiplier method; conservation law;
conserved quantity; associated Lie point symmetry; invariant solution

1. Introduction

There have been recent advances in the application of conservation laws and Lie
symmetry methods to one-fluid jet and far wake flows. The aim of this paper is to apply
these new methods to the two-fluid far wake downstream of a fixed and a self-propelled
slender body aligned with the flow and generate new invariant solutions. Two-phase fluid
flow has many applications in science, engineering, and industry, for example, in oil and
gas flow and in the flow of air on water.

When the body is fixed, the wake is referred to as a classical wake. The wake behind a
self-propelled body is referred to as a momentumless wake. Both wakes are free shear flows
with a region of sharp change along the centre line and are formulated mathematically using
boundary layer theory. For the far wake, terms of second order in smallness are neglected.
Seminal research on the two-fluid classical and momentumless far wakes has been done
by Herczynski, Weidman, and Burde [1], who generalised the coordinate expansion made
by Goldstein [2] to include an expansion of the displacement of the interface between the
two fluids.

A conserved quantity is required to complete the mathematical formulation of prob-
lems of jet and wake flows. The conserved quantity is needed to determine fully the form
of the similarity solution, as well as the boundary of a turbulent jet or wake. These physical
quantities cannot be determined from the boundary conditions which are homogeneous.
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Naz, Mason, and Mahomed [3] showed how the conserved quantities in laminar jet flows
can be derived in a systematic way by first finding the conservation laws for the bound-
ary layer partial differential equation describing the jet. The method was extended to
two-dimensional laminar for wakes by Kokela, Mason, and Hutchinson [4]. A conserved
quantity was obtained by integrating a conservation law across the jet or wake and by
imposing the boundary conditions for that wake or jet. For the classical wake, it gives,
in a systematic way, the drag on the body. For the momentumless wake, the conserved
quantity was derived by Birkhoff and Zorantello [5]. A comparison of the different methods
for deriving conservation laws was given by Naz, Mohamed, and Mason [6]. The most
fundamental is the direct method in which the definition of a conservation law is expanded
for assumed forms of the conserved vector. In this paper, the multiplier method introduced
by Steudel [7] will be used to derive conservation laws.

Kara and Mahomed [8,9] showed how a Lie point symmetry can be associated with a
conserved vector. The components of a conserved vector are the density and flux terms of
a conservation law. The Lie point symmetry associated with a conserved vector is easier to
calculate than the Lie point symmetry of the corresponding partial differential equation
because the order of the derivative in the conserved vector is one less than the order of
the partial differential equation. The prolongation formulae are therefore simpler and
the calculations can be done manually. The associated Lie point symmetry was used to
reduce the partial differential equation to an ordinary differential equation. By the Double
Reduction Theorem of Sjöberg [10], the ordinary differential equation can be integrated at
least one time because the conserved quantity was used to calculate the Lie point symmetry.

The approach of calculating conservation laws and associated Lie point symmetries
has been taken recently to solve jet and far wake problems. In jet flow, the Lie point
symmetry associated with the elementary conserved vector was used in [11] to obtain the
numerical solution of an axisymmetric turbulent free jet using a shooting method with the
conserved quantity as target and in [12,13] to obtain analytical solutions in parametric form
for the two-dimensional free and liquid jets of a power law fluid. In [14], the conservation
laws of a two-dimensional turbulent thermal free jet were calculated by the multiplier
method and the associated Lie point symmetries were used to generate invariant analytical
and numerical solutions. In [15], a two-dimensional turbulent classical far wake was
considered and the Lie point symmetry associated with the elementary conserved vector
was obtained and used to generate analytical solutions. In [16], the two-dimensional
turbulent far wake downstream of a self-propelled body was considered. The conserved
vector was calculated by the direct method, and analytical solutions generated by the
associated Lie point symmetries were obtained.

In this paper, new solutions will be investigated for the two-dimensional two-fluid
classical and momentumless far wakes of a symmetrical slender body aligned with the flow.
Both fluids are incompressible. This problem was first considered by Herczynski et al. [1].
A thorough investigation will be made of the conditions at the interface between the two
fluids. Conservation laws for the system of partial differential equations for each fluid will
be derived using the multiplier method. Conserved quantities for the two-fluid classical
and momentumless far wakes will be derived. The Lie point symmetries associated with
the conserved vectors for each fluid will be obtained in terms of stream functions using the
theory of Kara and Mahomed [8,9]. The general form of the invariant solution for each fluid
generated by the associated Lie point symmetry will be calculated and with the aid of the
interface conditions the invariant solution for the two-fluid classical and momentumless
far wakes will be investigated.

Two-fluid free shear flows generally depend on the dimensionless parameter

χ =
ρ1µ1

ρ2µ2
, (1)

where ρ1, µ1 and ρ2, µ2 are the density and shear viscosity in each fluid [1]. Examples
include the two-fluid planar jet, the two-fluid classical wake, and the two-fluid planar
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mixing layer [1,17]. An exception is the two-fluid momentumless wake derived by Her-
czynski et al. [1]. In this paper, a new conserved quantity for the two-fluid momentumless
far wake, based on the requirement that the total drag on the symmetrical self-propelled
body vanishes, is derived, and new solutions for the two-fluid momentumless far wake are
obtained. It was found that these new solutions depend on the parameter χ.

In Section 2, the boundary layer equations for the two-fluid planar far wake are for-
mulated and the boundary and interface conditions are stated. In Section 3, the multiplier
method is used to derive conservation laws for the system of PDEs for each fluid and the
conserved quantities for the classical and momentumless two-fluid far wakes are derived.
In Section 4, the classical two-fluid wake is considered. The Lie point symmetry associated
with the conserved vector for each fluid is derived and the invariant solution for each fluid
is obtained. Using the boundary and interface conditions, the invariant solution for the
classical two-fluid far wake is calculated. Similarly, in Section 5, three invariant solutions
for the two-fluid far wake, being a self-propelled body, are derived. Finally, the conclusions
are summarised in Section 6.

2. Mathematical Model

Consider the two-fluid laminar far wake behind a symmetric slender planar body of
finite length at the interface between the two fluids and aligned with the flow. The fluids
are immiscible and incompressible and the flow is laminar. A Cartesian coordinate system
is introduced with origin at the trailing edge of the body. The mainstream velocity U0 is the
same for both fluids. The index i = 1 corresponds to the upper fluid and index i = 2 to the
lower fluid. The x- and y-components of the fluid velocities, pressures, densities, kinematic
viscosities, and shear viscosities are denoted by ui, vi, pi, ρi, νi, and µi, where νi = µi/ρi and
for stability, ρ2 > ρ1. The unknown interface between the two fluids is y = φ(x) and the
total drag on the body due to the two fluids is D. The two-fluid wake flow is illustrated in
Figure 1.

U0

Region 1 Region 2 Region 3 Region 4

U0

Oncoming flow Body Near wake Far wake

y

x

ρ1 ν1 μ1

ρ2 ν2 μ2

U1

U2

Figure 1. Schematic diagram of a two-fluid wake by a slender symmetric body with velocity profile
in the far wake. The dotted line is the interface between the two fluids.

The two-fluid flow is steady and therefore

ui = ui(x, y), vi = vi(x, y), pi = pi(x, y). (2)
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The x- and y-components of the steady-state Navier–Stokes equation and the conservation
of mass equation are

ui
∂ui
∂x

+ vi
∂ui
∂y

= − 1
ρi

∂pi
∂x

+ νi

(
∂2ui
∂x2 +

∂2ui
∂y2

)
, (3)

ui
∂vi
∂x

+ vi
∂vi
∂y

= − 1
ρi

∂pi
∂x

+ νi

(
∂2vi
∂x2 +

∂2vi
∂y2

)
− g, (4)

∂ui
∂x

+
∂vi
∂y

= 0, (5)

where i = 1, 2 and g is the body force due to gravity per unit mass, which is in the −y
direction. Equations (3) to (5) are rewritten in dimensionless variables defined in terms of
the upper fluid,

x∗ =
x
L

, y∗ = Re
1
2

y
L

, u∗i =
ui
U0

, v∗i = Re
1
2

vi
U0

, p∗i =
pi

ρiU2
0

, (6)

where L is the characteristic length of the two-fluid boundary layer and the Reynolds
number is

Re =
U0L
ν1

. (7)

We also introduce the Froude number

F =
U0√

gL
. (8)

Equations (3) to (5) become

u∗i
∂u∗i
∂x∗

+ v∗i
∂u∗i
∂y∗

= −ρ1

ρi

∂p∗i
∂x∗

+
1

Re
νi
ν1

∂2u∗i
∂x∗2

+
νi
ν1

∂2u∗i
∂y∗2

, (9)

1
Re

u∗i
∂v∗i
∂x∗

+
1

Re
v∗i

∂v∗i
∂y∗

= −ρ1

ρi

∂p∗i
∂y∗

+
1

Re
νi
ν1

∂2v∗i
∂y∗2

− 1
F2
√

Re
, (10)

∂u∗i
∂x∗

+
∂v∗i
∂y∗

= 0. (11)

We consider flows such that

1
F2
√

Re
.

1
Re

, (12)

that is, provided F & Re
1
4 which will be satisfied provided U0 is sufficiantly large.

Neglecting terms of order 1/Re, Equations (9) and (10) reduce to

u∗i
∂u∗i
∂x∗

+ v∗i
∂u∗i
∂y∗

= −ρ1

ρi

∂p∗i
∂x∗

+
νi
ν1

∂2u∗i
∂y∗2

, (13)

∂p∗i
∂y∗

= 0. (14)
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Thus, p∗i = p∗i (x), and since the mainstream velocity U0 is constant, from Euler’s
equation in the mainstream,

dpi
dx

(x) = 0. (15)

Therefore, the boundary layer equations for the two-fluid wake are

u∗i
∂u∗i
∂x∗

+ v∗i
∂u∗i
∂y∗

=
νi
ν1

∂2u∗i
∂y∗2

(16)

and the conservation of mass Equation (11). The boundary conditions are

u∗1(x∗, ∞) = 1,
∂u∗1
∂y∗

(x∗, ∞) = 0, (17)

u∗2(x∗,−∞) = 1,
∂u∗2
∂y∗

(x∗,−∞) = 0. (18)

Finally, we derive the matching conditions at the interface y = φ(x). In dimensionless
variables the interface is

y∗ = φ∗(x∗) where φ∗(x∗) =
Re

1
2

L
φ(x). (19)

The tangential velocity components must match at the interface because the two fluids
are viscous. The normal velocity components must also match. Hence

u∗1(x∗, φ∗) = u∗2(x∗, φ∗), (20)

v∗1(x∗, φ∗) = v∗2(x∗, φ∗). (21)

The tangential components of the stress vector, t(i)1 , and the normal components of the

stress vector, t(i)2 , must match at the interface. Hence

t∗(1)1 (x∗, φ∗) = t∗(2)1 (x∗, φ∗), (22)

t∗(1)2 (x∗, φ∗) = t∗(2)2 (x∗, φ∗). (23)

Now from Cauchy’s formula and the Navier–Poisson law for a viscous incompressible fluid

t(i)1 = τ
(i)
21 = µi

(
∂ui
∂y

+
∂vi
∂x

)
, (24)

t(i)2 = τ
(i)
22 = −pi + 2µi

∂vi
∂y

. (25)

Expressed in dimensionless variables, (24) and (25) become

t∗(1)1 = τ
∗(i)
21 =

µi
µ1

[
1

Re
1
2

∂u∗i
∂y∗

+
1

Re
3
2

∂v∗i
∂x∗

]
, (26)

t∗(1)2 = τ
∗(i)
22 = −p∗i +

2
Re

µi
µ1

∂v∗i
∂y∗

. (27)
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Terms of order Re−
3
2 are neglected in (26). Substituting (26) and (27) gives the matching

conditions

∂u∗1
∂y∗

(x∗, φ∗) =
µ2

µ1

∂u∗2
∂y∗

(x∗, φ∗), (28)

2
Re

[
µ2

µ1

∂v∗2
∂y∗

(x∗, φ∗)−
∂v∗1
∂y∗

(x∗, φ∗)

]
= p∗2(x∗, φ∗)− p∗1(x∗, φ∗). (29)

The problem is now formulated in terms of the velocity deficit wi(x, y), defined by

ui(x, y) = U0 − wi(x, y). (30)

Expressed in dimensionless variables

u∗i (x∗, y∗) = 1− w∗i (x∗, y∗). (31)

We also have

v∗i (x∗, y∗) = 0 + v∗i (x∗, y∗), (32)

p∗i (x∗, y∗) = 0 + p∗i (x∗, y∗). (33)

For the far wake, w∗i , v∗i , and p∗i are small and their squares and products can be
neglected. The PDEs (11) and (16), the boundary conditions (17) and (18), and the interface
conditions (20), (21), (28) and (29) are expressed in terms of the velocity deficit. The problem
can be stated as follows.

Partial differential equations:

∂w∗i
∂x∗

=
νi
ν1

∂2w∗i
∂y∗2

, (34)

−
∂w∗i
∂x∗

+
∂v∗i
∂y∗

= 0. (35)

Boundary conditions:

w∗1(x∗, ∞) = 0,
∂w∗1
∂y∗

(x∗, ∞) = 0, (36)

w∗2(x∗,−∞) = 0,
∂w∗2
∂y∗

(x∗,−∞) = 0. (37)
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Interface conditions:

w∗1(x∗, φ∗) = w∗2(x∗, φ∗), (38)

v∗1(x∗, φ∗) = v∗2(x∗, φ∗), (39)

∂w∗1
∂y∗

(x∗, φ∗) =
µ2

µ1

∂w∗2
∂y∗

(x∗, φ∗), (40)

2
Re

[
µ2

µ1

∂v∗2
∂y∗

(x∗, φ∗)−
∂v∗1
∂y∗

(x∗, φ∗)

]
= p∗2(x∗, φ∗)− p∗1(x∗, φ∗). (41)

Equation (41) gives the pressure difference across the interface once the problem has
been solved. By applying the Principle of Archimedes, Herczynski et al. [1] derived a
further condition for the pressure difference,

p2(x, φ(x))− p1(x, φ(x)) = (ρ1 − ρ2)gφ(x). (42)

Expressed in dimensionless variables, (42) is

p∗2(x∗, φ∗)− p∗1(x∗, φ∗) = − 1
F2
√

Re

(
ρ2

ρ1
− 1
)

φ∗. (43)

The formulations (34) to (41) in dimensionless variables agrees with the formulation
of Herczynski et al. [1] in physical variables. It applies for both the classical wake and the
wake behind a self-propelled body. The two problems differ in their conservation laws and
conserved quantity.

In the remainder of the paper, the star will be suppressed to simplify the notation,
with it being understood that dimensionless quantities are being used.

3. Conservation Laws, Conserved Vectors, and Conserved Quantities

Conservation laws and the corresponding conserved vectors for the system of PDEs (34)
and (35) will first be obtained. The conserved quantity for the two-fluid classical wake and
the two-fluid momentumless wake will be derived.

3.1. Conservation Laws and Conserved Vectors

The multiplier method [6,7] was used to derive conservation laws and corresponding
conserved vectors for the system of boundary layer equations, (34) and (35), describing
the upper and lower wakes. When deriving conservation laws and Lie point symmetries,
x, y, wi, vi, and all partial derivatives of wi and vi with respect to x and y are treated as
independent variables and the subscript notation is used for partial differentiation. When
wi and vi are treated as functions of independent variables x and y, the notation ∂wi

∂x , ∂vi
∂y , . . .

is used. Equations (34) and (35) in subscript notation are

wix =
νi
ν1

wiyy, (44)

−wix + viy = 0. (45)

A conservation law for the system (44) and (45) satisfies

DxT1
i + DyT2

i

∣∣∣∣
(44),(45)

= 0 (46)
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where

Dx = D1 =
∂

∂x
+ wix

∂

∂wi
+ vix

∂

∂vi
+ wixx

∂

∂wix
+ wiyx

∂

∂wiy
+ vixx

∂

∂vix
+ viyx

∂

∂viy
+ . . . (47)

Dy = D2 =
∂

∂y
+ wiy

∂

∂wi
+ viy

∂

∂vi
+ wixy

∂

∂wix
+ wiyy

∂

∂wiy
+ vixy

∂

∂vix
+ viyy

∂

∂viy
+ . . . (48)

and T1
i , T2

i are the components of the conserved vector Ti = (T1
i , T2

i ). The multipliers Λ1
and Λ2 satisfy

Λ1

(
wix −

νi
ν1

wiyy

)
+ Λ2(−wix + viy) = DxT1

i + DyT2
i (49)

for all functions wi(x, y) and vi(x, y). We will choose

Λ1 = Λ1(x, y, wi, vi), Λ2 = Λ2(x, y, wi, vi). (50)

Partial derivatives of wi and vi could be included in the dependence of Λ1 and Λ2 on
the fluid variables in order to look for higher order conservation laws, but we find that
it is sufficient to consider multipliers of the form (50) to derive conserved vectors for the
two-fluid wake.

The Euler operators Ewi and Evi annihilate the divergence expressions on the right
hand side of (49), where

Ewi =
∂

∂wi
− Dx

∂

∂wix
− Dy

∂

∂wiy
+ D2

x
∂

∂wixx
+ DxDy

∂

∂wixy
+ D2

y
∂

∂wiyy
− . . . (51)

Evi =
∂

∂vi
− Dx

∂

∂vix
− Dy

∂

∂viy
+ D2

x
∂

∂vixx
+ DxDy

∂

∂vixy
+ D2

y
∂

∂viyy
− . . . (52)

The determining equations for Λ1 and Λ2 therefore are

Ewi

[
Λ1

(
wix −

νi
ν1

wiyy

)
+ Λ2(−wix + viy)

]
= 0, (53)

Evi

[
Λ1

(
wix −

νi
ν1

wiyy

)
+ Λ2(−wix + viy)

]
= 0. (54)

When fully expanded, Equations (53) and (54) are

− νi
ν1

∂Λ1

∂wi
wiyy +

∂Λ2

∂wi
viy +

∂Λ2

∂x
+

∂Λ2

∂vi
vix −

∂Λ1

∂x
− ∂Λ1

∂vi
vix −

νi
ν1

[
∂2Λ1

∂y2

+
∂2Λ1

∂wi∂y
wiy +

∂2Λ1

∂vi∂y
viy +

∂Λ1

∂wi
wiyy +

∂2Λ1

∂y∂wi
wiy +

∂2Λ1

∂w2
i

w2
iy (55)

+
∂2Λ1

∂vi∂wi
wiyviy +

∂Λ1

∂vi
viyy +

∂2Λ1

∂y∂vi
viy +

∂2Λ1

∂wi∂vi
viywiy +

∂2Λ1

∂v2
i

v2
iy

]
= 0

and

∂Λ1

∂vi
wix −

νi
ν1

∂Λ1

∂vi
wiyy −

∂Λ2

∂vi
wix −

∂Λ2

∂y
− ∂Λ2

∂wi
wiy = 0. (56)
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The partial derivatives of wi(x, y) and vi(x, y) with respect to x and y are independent
because (49) holds for all functions wi(x, y) and vi(x, y) and not only for solutions of (44)
and (45). Equations (55) and (56) can therefore be separated by equating the coefficients of
the partial derivatives of wi and vi and their powers and products. Separating first, (55)
gives the following results:

wiy :
∂2Λ1

∂y∂wi
= 0, w2

iy :
∂2Λ1

∂w2
i

= 0, (57)

wiyy :
∂Λ1

∂wi
= 0, vix :

∂Λ2

∂vi
− ∂Λ1

∂vi
= 0, (58)

viy :
∂Λ2

∂wi
− 2

νi
ν1

∂2Λ1

∂y∂vi
= 0, v2

iy :
∂2Λ1

∂v2
i

= 0, (59)

viyy :
∂Λ1

∂vi
= 0, viywiy :

∂2Λ1

∂wi∂vi
= 0, (60)

Remainder :
∂Λ2

∂x
− ∂Λ1

∂x
− νi

ν1

∂2Λ1

∂y2 = 0. (61)

Hence

Λ1 = Λ1(x, y), Λ2 = Λ2(x, y). (62)

Equation (56) reduces to

∂Λ2

∂y
= 0. (63)

Hence

Λ1 = Λ1(x, y), Λ2 = Λ2(x), (64)

where Λ1(x, y) and Λ2(x) satisfy (61).
In order to make progress we look for a multiplier, Λ1, that is independent of x, that is

Λ1 = Λ1(y). Equation (61) takes the form

dΛ2

dx
(x) =

νi
ν1

d2Λ1

dy2 (y). (65)

By the technique of separation of variables, each side must be a constant, 2a1. Hence

Λ1(y) =
ν1

νi
a1y2 + a2y + a3, Λ2(x) = 2a1x + a4 (66)

where a2, a3, and a4 are constants. Thus, from (49)(
a1

ν1

νi
y2 + a2y + a3

)(
wix −

νi
ν1

wiyy

)
+

(
2a1x + a4

)(
− wix + viy

)
= DxT1

i + DyT2
i (67)
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for arbitrary functions wi(x, y) and vi(x, y).
We next determine the conserved vector T = (T1, T2). Now(

a1
ν1
νi

y2 + a2y + a3

)(
wix −

νi
ν1

wiyy

)
+

(
2a1x + a4

)(
− wix + viy

)

= a1

[
ν1
νi

y2
(

wix −
νi
ν1

wiyy

)
+ 2x

(
− wix + viy

)]
+ a2

[
y
(

wix −
νi
ν1

wiyy

)]

+ a3

[
wix −

νi
ν1

wiyy

]
+ a4

[
− wix + viy

]

= a1

[
Dx

(
ν1
νi

y2wi − 2xwi

)
+ Dy

(
− y2wiy + 2ywi + 2xvi

)]
(68)

+ a2

[
Dx

(
ywi

)
+ Dy

(
− νi

ν1
ywiy +

νi
ν1

wi

)]
+ a3

[
Dx

(
wi

)
+ Dy

(
− νi

ν1
wiy

)]

+ a4

[
Dx

(
− wi

)
+ Dy

(
vi

)]

= Dx

[
a1

(
ν1
νi

y2wi − 2xwi

)
+ a2

(
ywi

)
+ a3

(
wi

)
+ a4

(
− wi

)]
+

Dy

[
a1

(
− y2wiy + 2ywi + 2xvi

)
+ a2

(
− νi

ν1
ywiy +

νi
ν1

wi

)
+ a3

(
− νi

ν1
wiy

)
+ a4

(
vi

)]
.

Equation (68) is satisfied for arbitrary functions wi(x, y) and vi(x, y). When wi and vi
are solutions of the system (44) and (45), then (68) becomes

Dx

[
a1

(
ν1

νi
y2wi − 2xwi

)
+ a2

(
ywi

)
+ a3

(
wi

)
+ a4

(
− wi

)]

+ Dy

[
a1

(
− y2wiy + 2ywi + 2xvi

)
+ a2

(
− νi

ν1
ywiy +

νi
ν1

wi

)
(69)

+ a3

(
− νi

ν1
wiy

)
+ a4

(
vi

)]∣∣∣∣
(44),(45)

= 0.

Hence, the conserved vector for the system of PDEs (44) and (45) derived from the
multipliers (66) is of the form

T1
i = a1

(
ν1

νi
y2wi − 2xwi

)
+ a2

(
ywi

)
+ a3

(
wi

)
+ a4

(
− wi

)
, (70)

T2
i = a1

(
− y2wiy + 2ywi + 2xvi

)
+ a2

(
− νi

ν1
ywiy +

νi
ν1

wi

)
+ a3

(
− νi

ν1
wiy

)
+ a4

(
vi

)
. (71)
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The conserved vector is a linear combination of the following four conserved vectors
obtained by setting all ai = 0, except one, in turn.

a1 6= 0 : T1
i =

ν1

νi
y2wi − 2xwi, T2

i = −y2wiy + 2ywi + 2xvi, (72)

a2 6= 0 : T1
i = ywi, T2

i =
νi
ν1
(−ywiy + wi), (73)

a3 6= 0 : T1
i = wi, T2

i = − νi
ν1

wiy, (74)

a4 6= 0 : T1
i = −wi, T2

i = vi. (75)

The general conserved vector for the system of PDEs (44) and (45) is a linear combi-
nation of the four conserved vectors (72) to (75). The conserved vector (72) generates the
conserved quantity for the two-fluid momentumless wake while the conserved vector (74)
generates the conserved quantity for the two-fluid classical wake. The conserved vector (75)
describes conservation of mass in the two-fluid wake. The physical significance of the
conserved vector (73) is not understood at present.

3.2. Conserved Quantity for the Two-Fluid Classical Wake

Instead of regarding the conserved vectors as functions of x, y, w, v, . . . they are now
treated as (different) functions of the independent variables x and y. Equation (4) becomes

∂T1
i

∂x
+

∂T2
i

∂y
= 0. (76)

The conserved quantity for the two-fluid classical wake is derived from the conserved
vector (74) and the interface condition for the shear stress (40). Substituting (74) into
(76) gives

∂wi
∂x

=
νi
ν1

∂2wi
∂y2 . (77)

Consider first the lower fluid. Integrate (77) with respect to y from y = −∞ to y = φ(x)
and apply the formula for differentiation under the integral sign [18] and the boundary
condition (37). This gives

d
dx

∫ φ(x)

−∞
w2(x, y)dy− w2(x, φ(x))

dφ

dx
=

ν2

ν1

∂w2

∂y
(x, φ(x)). (78)

Similarly, for the upper fluid and integrating (77) with respect to y from y = φ(x) to
y = +∞ we obtain

d
dx

∫ ∞

φ(x)
w1(x, y)dy + w1(x, φ(x))

dφ

dx
= −∂w1

∂y
(x, φ(x)). (79)

The terms on the right hand side of (78) and (79) are first order in smallness and
cannot be neglected. It is because of these terms that there is not a conserved quantity for
the upper fluid and a conserved quantity for the lower fluid. Substituting (78) and (79)
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for ∂w2
∂y (x, φ(x)) and ∂w1

∂y (x, φ(x)) into the interface condition, (40) removes the first order
terms. By imposing the interface condition (38), we obtain

d
dx

[
ρ2

ρ1

∫ φ(x)

−∞
w2(x, y)dy +

∫ ∞

φ(x)
w1(x, y)dy

]
=

(
ρ2

ρ1
− 1
)

w1(x, φ(x))
dφ

dx
. (80)

Let

Rc(φ, w1) =

(
ρ2

ρ1
− 1
)

w1(x, φ(x))
dφ

dx
. (81)

The quantity Rc(φ, w1) is second order in smallness since φ(x) is small and is identi-
cally zero when the interface is along the x-axis. Second order terms have already been
neglected in the derivation of Equation (34). Neglecting Rc(φ, w1) gives

D∗ =
ρ2

ρ1

∫ φ(x)

−∞
w2(x, y)dy +

∫ ∞

φ(x)
w1(x, y)dy (82)

is a constant independent of x where D∗ is the dimensionless drag on the obstacle. The con-
served quantity (82) was used by Herczynski et al. [1].

3.3. Conserved Quantity for the Two-Fluid Momentumless Wake

For the two-fluid momentumless wake behind a self-propelled body, the total drag on
the body is zero:

D∗ =
ρ2

ρ1

∫ φ(x)

−∞
w2(x, y)dy +

∫ ∞

φ(x)
w1(x, y)dy = 0. (83)

The conserved quantity for the two-fluid momentumless wake is derived from the
conserved vector (72) and the condition (83). When (72) is substituted into (76) we obtain,
with the aid of (45),

ν1

νi

∂

∂x
(y2wi)− 2wi +

∂

∂y
(−y2wiy + 2ywi) = 0. (84)

Consider first the lower fluid and integrate (84) with respect to y from y = −∞ to
y = φ(x). Assume the stronger boundary conditions than (37) that

y2 ∂w2

∂y
(x, y)

∣∣∣∣
y=−∞

= 0, yw2(x, y)
∣∣∣∣
y=−∞

= 0 (85)

and apply the theorem for differentiation under the integral sign [18]. This gives

∫ φ(x)

−∞
w2(x, y)dy =

ν1

2ν2

d
dx

∫ φ(x)

−∞
y2w2(x, y)dy− ν1

2ν2
w2(x, φ(x))φ2(x)

dφ

dx
(86)

− 1
2

∂w2

∂y
(x, φ(x))φ2(x) + w2(x, φ(x))φ(x).

Proceeding similarly for the upper fluid and assuming that

y2 ∂w1

∂y
(x, y)

∣∣∣∣
y=+∞

= 0, yw1(x, y)
∣∣∣∣
y=+∞

= 0 (87)
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it is found that∫ ∞

φ(x)
w1(x, y)dy =

1
2

d
dx

∫ ∞

φ(x)
y2w1(x, y)dy +

1
2

w1(x, φ(x))φ2(x)
dφ

dx

(88)

+
1
2

∂w1

∂y
(x, φ(x))φ2(x)− w1(x, φ(x))φ(x).

The integrals on the left hand side of (86) and (88) are first order in smallness and
cannot be neglected. They are the reason why there is not a conserved quantity for the
lower fluid wake and a conserved quantity for the upper fluid wake. These first order
terms are eliminated by using the property that the total drag on the self-propelled body is
zero. By substituting (86) and (88) in condition (83), it can be verified that

d
dx

[
ρ2

ρ1

ν1

ν2

∫ φ(x)

−∞
y2w2(x, y)dy +

∫ ∞

φ(x)
y2w1(x, y)dy

]
= RM(φ, w1, w2) (89)

where

RM(φ, w1, w2) =

[
ρ2

ρ1
w2(x, φ(x))− w1(x, φ(x))

]
φ(x)

(
φ(x)

dφ

dx
− 2
)

(90)

+

[
ρ2

ρ1

∂w2

∂y
(x, φ(x))− ∂w1

∂y
(x, φ(x))

]
φ2(x).

The function RM(φ, w1, w2) depends only on terms of second order in smallness.
If RM(φ, w1, w2) is neglected then

K∗ =
ρ2

ρ1

ν1

ν2

∫ φ(x)

−∞
y2w2(x, y)dy +

∫ ∞

φ(x)
y2w1(x, y)dy (91)

is a dimensionless constant independent of x. The constant K∗ is the conserved quantity for
the two-fluid momentumless wake. It differs in the first term from the conserved quantity
(in dimensionless form)

K =
ρ2

ρ1

∫ φ(x)

−∞
y2w2(x, y)dy +

∫ ∞

φ(x)
y2w1(x, y)dy (92)

derived by Herczynski et al. [1], which does not satisfy the condition (83) that the total drag
on the self-propelled body is zero.

The quantity RM(φ, w1, w2) can be simplified using the interface conditions (38)
and (40) to

RM(φ, w1) =

(
ρ2

ρ1
− 1
)

w1(x, φ(x))φ(x)
(

φ(x)
dφ

dx
− 2
)
+

(
ν1

ν2
− 1
)

∂w1

∂y
(x, φ(x))φ2(x). (93)

It is identically zero when the interface is along the x-axis. It will be investigated further
in Section 5 after the solutions for the two-fluid momentumless wake have been derived.

The conserved quantities (82) and (91) are required in Sections 4 and 5 to complete the
solution for the classical and momentumless two-fluid wakes.

4. Invariant Solution for the Two-Fluid Classical Wake

The Lie point symmetry associated with the conserved vector for the upper wake
and the Lie point symmetry associated with the conserved vector for the lower wake will
be derived. The two associated Lie point symmetries will then be used to generate the
invariant solution for the two-fluid classical wake. The problem will be formulated in terms
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of the stream function for each wake.
Since the conservation of mass equation, (35), is satisfied for each wake, a stream

function ψi(x, y) can be introduced for each wake defined by

wi =
∂ψi
∂y

, vi =
∂ψi
∂x

. (94)

Equation (35) is identically satisfied. Expressed in terms of the stream function,
Equations (34) to (41) become:

Partial differential equation

∂2ψi
∂x∂y

=
νi
ν1

∂3ψi
∂y3 . (95)

Boundary conditions

∂ψ1

∂y
(x, ∞) = 0,

∂2ψ1

∂y2 (x, ∞) = 0, (96)

∂ψ2

∂y
(x,−∞) = 0,

∂2ψ2

∂y2 (x,−∞) = 0. (97)

Interface conditions

∂ψ1

∂y
(x, φ) =

∂ψ2

∂y
(x, φ), (98)

∂ψ1

∂x
(x, φ) =

∂ψ2

∂x
(x, φ), (99)

∂2ψ1

∂y2 (x, φ) =
µ2

µ1

∂2ψ2

∂y2 (x, φ), (100)

2
Re

[
µ2

µ1

∂2ψ2

∂x∂y
(x, φ)− ∂2ψ1

∂x∂y
(x, φ)

]
= p2(x, φ)− p1(x, φ). (101)

The conserved vectors, (74), for the upper wake and the lower wake for the classical
two-fluid wake, expressed in terms of the stream function, are

T1
i = ψiy, T2

i = − νi
ν1

ψiyy, i = 1, 2. (102)

In order to simplify the notation, in the following calculations the index i will be
suppressed in all quantities except in the ratio νi

ν1
and in the interface conditions. The results

apply to both the upper and lower wakes.

4.1. Associated Lie Point Symmetries

The Lie point symmetry

X = ξ1(x, y, ψ)
∂

∂x
+ ξ2(x, y, ψ)

∂

∂y
+ η(x, y, ψ)

∂

∂ψ
(103)

is associated with the conserved vector T = (T1, T2) provided

X(Ts) + TsDk(ξ
k)− TkDk(ξ

s) = 0 (104)
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where

D1 = Dx =
∂

∂x
+ ψx

∂

∂ψ
+ ψxx

∂

∂ψx
+ ψyx

∂

∂ψy
+ . . . , (105)

D2 = Dy =
∂

∂y
+ ψy

∂

∂ψ
+ ψxy

∂

∂ψx
+ ψyy

∂

∂ψy
+ . . . . (106)

Equation (104) consists of the two components

s = 1 : X(T1) + T1D2(ξ
2)− T2D2(ξ

1) = 0, (107)

s = 2 : X(T2) + T2D1(ξ
1)− T1D1(ξ

2) = 0. (108)

The Lie point symmetry X is prolongated to sufficiently high order to operate on the
partial derivatives in the conserved vector.

Consider first the component (107). Now, from (102)

X(T1) = ζ2 (109)

where

ζ2 = D2(η)− ψkD2(ξ
k). (110)

When expanded fully, Equation (107) becomes

∂η

∂y
+

∂η

∂ψ
ψy −

∂ξ1

∂y
ψx −

∂ξ1

∂ψ
ψxψy −

νi
ν1

(
∂ξ1

∂y
ψyy +

∂ξ1

∂ψ
ψyψyy

)
= 0. (111)

Separating (111) according to the partial derivatives of ψ and their products gives

∂η

∂y
= 0,

∂η

∂ψ
= 0,

∂ξ1

∂y
= 0,

∂ξ1

∂ψ
= 0 (112)

and therefore

ξ1 = ξ1(x), ξ2 = ξ2(x, y, ψ), η = η(x). (113)

Consider next the second component (108) with (113) for X. Now

X(T2) = − νi
ν1

ζ22 (114)

where the prolongation ζ22 is defined by [19]

ζ22 = D2(ζ2)− ψ2kD2(ξ
k) (115)

and ζ2 is given by (110). When expanded in full, (108) becomes

νi
ν1

[
∂2ξ2

∂y2 ψy + 2
∂2ξ2

∂y∂ψ
ψ2

y +
∂2ξ2

∂ψ2 ψ3
y + 2

∂ξ2

∂y
ψyy + 3

∂ξ2

∂ψ
ψyψyy −

dξ1

dx
ψyy

]
(116)

− ∂ξ2

∂x
ψy −

∂ξ2

∂ψ
ψxψy = 0.
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Separating (116) by ψxψy gives

∂ξ2

∂ψ
= 0 (117)

and therefore ξ2 = ξ2(x, y). By separating the remaining terms in (116) we obtain

ψyy : 2
∂ξ2

∂y
(x, y) =

dξ1

dx
(x), (118)

ψy :
νi
ν1

∂2ξ2

∂y2 =
∂ξ2

∂x
. (119)

Differentiating (118) with respect to y yields

∂2ξ2

∂y2 = 0 (120)

and therefore from (119), ξ2 = ξ2(y). Equation (118) is now separable in the variables x
and y and therefore

ξ1(x) = 2c1x + c2, ξ2(y) = c1y + c3, η = η(x). (121)

We consider the general case in which c1 6= 0. We can divide X by c1 or equivalently
set c1 = 1. Hence

X = (2x + c2)
∂

∂x
+ (y + c3)

∂

∂y
+ η(x)

∂

∂x
(122)

where η(x) is an arbitrary function.
Equation (122) is the Lie point symmetry associated with the conserved vector in the

upper wake and in the lower wake. The constants c2 and c3 and the function η(x) are
different in each part of the two-fluid classical wake.

4.2. General Form of the Invariant Solution

Now, ψ = Ψ(x, y) is an invariant solution of the PDE (95) generated by the Lie point
symmetry (122) provided

X(ψ−Ψ(x, y))
∣∣∣∣
ψ=Ψ(x,y)

= 0, (123)

that is provided

(2x + c2)
∂Ψ
∂x

+ (y + c3)
∂Ψ
∂y

= η(x). (124)

The differential equations of the characteristic curves of (124) are

dx
2x + c2

=
dy

y + c3
=

dΨ
η(x)

. (125)

Two independent solutions are

y + c3(
x + 1

2 c2

) 1
2
= a1, Ψ(x, y)− G(x) = a2, (126)
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where a1 and a2 are constants and

G(x) =
∫ x η(x)dx

(2x + c2)
. (127)

The general solution of the first order PDE (124) is a2 = F(a1) where F is an arbitrary
function. Hence

ψ(x, y) = F(ξ) + G(x) (128)

where

ξ =
y + c3(

x + 1
2 c2

) 1
2

. (129)

We chose the origin of the coordinate ξ in the upper and lower wakes to be at y = 0.
Hence c3 = 0. Additionally, a singularity, if it exists, will be at the obstacle x = 0. Hence,
c2 = 0 and

ξ =
y

x
1
2

. (130)

The coordinate ξ and the Lie point symmetry (122) are the same in the upper and
lower wakes.

The conserved quantity (82) for the two-fluid classical wake when expressed in terms
of the invariant solution (128) and (130) is

D∗ =
ρ2

ρ1

∫ φ(x)

x
1
2

−∞

dF2

dξ
dξ +

∫ ∞

φ(x)

x
1
2

dF1

dξ
dξ. (131)

For D∗ to be a constant independent of x, it is sufficient that

φ(x)

x
1
2

= k (132)

where k is a constant. The equation of the interface is

φ(x) = kx
1
2 (133)

and on the interface, ξ = k. The conserved quantity becomes

D∗ =
ρ2

ρ1

∫ k

−∞

dF2

dξ
dξ +

∫ ∞

k

dF1

dξ
dξ. (134)

We now rewrite the velocity components (94) and Equations (95) to (101) in terms of
the invariant solution (128) and (130):

Velocity components

wi(x, y) = x−
1
2

dFi
dξ

, (135)

vi(x, y) = − 1
2x

ξ
dFi
dξ

+
dGi
dx

. (136)
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Ordinary differential equation (ODE)

2
νi
ν1

d3Fi
dξ3 +

d
dξ

(
ξ

dFi
dξ

)
= 0. (137)

Boundary conditions

dF1

dξ
(∞) = 0,

d2F1

dξ2 (∞) = 0, (138)

dF2

dξ
(−∞) = 0,

d2F2

dξ2 (−∞) = 0. (139)

Interface conditions

dF1

dξ
(k) =

dF2

dξ
(k), (140)

dG1

dx
=

dG2

dx
, (141)

d2F1

dξ2 (k) =
µ2

µ1

d2F2

dξ2 (k), (142)

1
Re

(
1− µ2

µ1

)
dF1

dξ
(k)x−

3
2 = p2(x, φ(x))− p1(x, φ(x)). (143)

Equation (143) was simplified with the aid of (140) and (142).
From (127) with c2 = 0,

dG1

dx
=

1
2x

η1(x),
dG2

dx
=

1
2x

η2(x) (144)

and therefore from the interface condition (141), η1(x) = η2(x) = η(x). The Lie point
symmetry (122) is therefore the same in the upper wake and lower wake,

X = 2x
∂

∂x
+ y

∂

∂y
+ η(x)

∂

∂ψ
. (145)

Additionally, from the interface condition (141),

G1(x) = G2(x) + G0, (146)

where G0 is a constant. Since an arbitrary constant in the stream function (128) does not
contribute to the velocity components, we can take G0 = 0 and therefore

ψi(x, y) = Fi(ξ) + G(x). (147)

4.3. Invariant Solution for the Two-Fluid Classical Wake

Clearly, the ODE (137) can be integrated at least once. This is an example of the
Double Reduction Theorem [10], which states that if the form of the invariant solution is
determined by a conserved vector of the PDE then the reduced ODE can be integrated at
least once.
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We integrated the ODE (137) once with respect to ξ and imposed the boundary
conditions (138) and (139). It is necessary to assume the stronger boundary conditions

ξ
dF1

dξ

∣∣∣∣
ξ=+∞

= 0, ξ
dF2

dξ

∣∣∣∣
ξ=−∞

= 0. (148)

This gives

2
νi
ν1

d2Fi
dξ2 + ξ

dFi
dξ

= 0 (149)

which is a first order ODE in dFi
dξ . Hence

dFi
dξ

= Bi exp
(
− ν1

4νi
ξ2
)

(150)

where Bi is a constant. The assumption (148) is clearly satisfied by (150). Since wi(x, y)
and vi(x, y), given by (135) and (136), depend on dFi

dξ and are independent of Fi(ξ) it is not
necessary to integrate (150) further.

The interface conditions (140) and (142) become

B1 exp
(
− 1

4
k2
)
= B2 exp

(
− ν1

4ν2
k2
)

, (151)

k B1 exp
(
− 1

4
k2
)
= k

ρ2

ρ1
B2 exp

(
− 1

4
ν1

ν2
k2
)

. (152)

Eliminating B2 gives

k
(

1− ρ2

ρ1

)
B1 exp

(
− 1

4
k2
)
= 0. (153)

We consider two fluids with ρ1 6= ρ2. Additionally, B1 6= 0 because if B1 = 0 then from
(151), B2 = 0 and w1 = 0 and w2 = 0. Hence

k = 0 (154)

and from (151)

B1 = B2 = B. (155)

Since k = 0, it follows from (133) that

φ(x) = 0. (156)

The interface is therefore the x-axis. In the derivation of the conserved quantity (82),
Rc(φ(x), w1) was neglected. However, Rc(φ(x), w1) = 0 since φ(x) = 0. The total drag D∗

is therefore independent of x without approximation.
The constant B cannot be obtained from the boundary conditions (138) and (139) which

are identically satisfied. It is obtained from the conserved quantity (134). Substituting (150)
into (134) gives

D∗ = B
[

ρ2

ρ1
I1 + I2

]
(157)
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where

I1 =
∫ ∞

0
exp

(
− 1

4
ν1

ν2
ξ2
)

dξ =

(
ν2

ν1

) 1
2√

π, (158)

I2 =
∫ ∞

0
exp

(
− 1

4
ξ2
)

dξ =
√

π (159)

and we used

Γ(n) =
∫ ∞

0
un−1 exp(−u)du, Γ

(
1
2

)
=
√

π, (160)

where Γ(n) is the Gamma function [18]. Hence

B =
D∗

√
π

[
ρ2
ρ1

(
ν2
ν1

) 1
2

+ 1
] (161)

which may be expressed in terms of the parameter [1]

χ =
ρ1µ1

ρ2µ2
(162)

as

B =
D∗χ

1
2

√
π

[
1 + χ

1
2

] . (163)

The velocity deficit is, from (135) and (150),

wi(x, y) =
B

x
1
2

exp
(
− ν1

4νi

y2

x

)
(164)

and

∂wi
∂y

(x, y) = −B
2

ν1

νi

y
x

exp
(
− ν1

4νi

y2

x

)
. (165)

The turning point of the velocity deficit is therefore on the interface. Additionally,
from (136) and (150),

vi(x, y) = −B
2

y2

x
3
2

exp
(
− ν1

4νi

y2

x

)
+

dG
dx

. (166)

However, on the interface between two fluids, the normal component of velocity
vanishes. Hence

vi(x, 0) =
dG
dx

= 0 (167)

and therefore G(x) = G0 where G0 is a constant. However, a constant in the stream
function (147) does not contribute to the velocity. We therefore set G0 = 0. Additionally,
from definition (127)

dG
dx

=
η(x)
2x

= 0 (168)
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and therefore η(x) = 0. The Lie point symmetry (135) generates the solution reduces to

X = 2x
∂

∂x
+ y

∂

∂y
. (169)

4.4. Results for the Two-Fluid Classical Wake

The x-component of the fluid velocity is

ui(x, y) = 1− wi(x, y) = 1− D

√
π

[
1 + ρ2

ρ1

(
ν2
ν1

) 1
2
] 1

x
1
2

exp
(
− ν1

4νi

y2

x

)
. (170)

The density ratio ρ2
ρ1

affects only the amplitude of the velocity deficit and not the
effective width of the two-fluid wake. Since

exp
(
− ν1

4νi

y2

x

)
< e−1 = 0.3678 for

ν1

4νi

y2

x
> 1 (171)

the effective width Wi of each part of the two-fluid wake is

Wi = 2
(

νi
ν1

) 1
2

x
1
2 (172)

and therefore

W2

W1
=

(
ν2

ν1

) 1
2

. (173)

In Figure 2, the velocity ui(x, y) is plotted against y at x = 2 for ρ2
ρ1

= 10 and ν2
ν1

= 25.
We see that the effective width of the lower wake is approximately five times greater than
that of the upper wake, in agreement with the ratio (173).

y

0.990 0.992 0.994 0.996 0.998 1.000 1.002
-40

-30

-20

-10

0

10

ui

Figure 2. Velocity component ui(x, y) of the classical two-fluid wake, where i = 1 is the upper fluid
and i = 2 is the lower fluid, plotted against y at x = 2 for D = 1, ρ2

ρ1
= 10 and ν2

ν1
= 25. The interface

is y = 0.
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The condition (143) for the pressure difference across the interface becomes using (150),
(161), and k = 0,

p2(x, 0)− p1(x, 0) =
1

Re

(
1− µ2

µ1

)
D

√
π

[
1 + ρ2

ρ1

(
ν2
ν1

) 1
2
] x−

3
2 . (174)

Since terms of order 1
Re are neglected, it follows that

p2(x, 0) = p1(x, 0) (175)

and that the pressure is continuous across the interface. This agrees with (43), derived by
Herczynski et al. [1], since φ(x) = 0.

5. Invariant Solution for the Two-Fluid Momentumless Wake

Invariant solutions for the two-fluid momentumless wake will now be investigated
by using the same procedure as described in Section 4 for the two-fluid classical wake.
The conserved vectors (72) for the upper and lower wakes of the two-fluid momentumless
wake, expressed in terms of the stream function defined by (94), are

T1
i =

ν1

νi
y2ψiy − 2xψiy, T2

i = −y2ψiyy + 2yψiy + 2xψix. (176)

The index i will again be suppressed in all quantities, except in the ratio νi
ν1

and in the
interface conditions.

5.1. Associated Lie Point Symmetries

The Lie point symmetry is given by (103). Consider first condition (107). Using (176)
for T1,

X(T1) = −2ξ1ψy + 2
ν1

νi
yξ2ψy +

(
ν1

νi
y2 − 2x

)
ζ2 (177)

where the prolongation coefficient ζ2 is given by (110). When expanded fully and after
cancellation of terms, (107) is

− 2ξ1ψy + 2
ν1
νi

yξ2ψy +
ν1
νi

y2
(

∂η

∂y
+

∂η

∂ψ
ψy −

∂ξ1

∂y
ψx −

∂ξ1

∂ψ
ψxψy

)
− 2x

(
∂η

∂y
+

∂η

∂ψ
ψy

)
(178)

+ y2
(

∂ξ1

∂y
ψyy +

∂ξ1

∂ψ
ψyψyy

)
− 2y

(
∂ξ1

∂y
ψy +

∂ξ1

∂ψ
ψ2

y

)
= 0.

Separating (178) by the independent partial derivatives ψyψyy and ψyy gives

∂ξ1

∂ψ
= 0,

∂ξ1

∂y
= 0 (179)

and therefore ξ1 = ξ1(x). Separating (178) by ψy yields

−2ξ1 + 2
ν1

νi
yξ2 +

(
ν1

νi
y2 − 2x

)
∂η

∂ψ
= 0. (180)

Finally, the remaining terms independent of partial derivatives of ψ are(
ν1

νi
y2 − 2x

)
∂η

∂y
= 0 (181)
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and hence η = η(x, ψ).
Hence, for the first component (107)

ξ1 = ξ1(x), ξ2 = ξ2(x, y, ψ), η = η(x, ψ), (182)

which are related by condition (180).
Consider the next condition (108), where the Lie point symmetry X is given (182)

subject to (180). Using (176) for T2,

X(T2) = 2ξ1ψx − 2yξ2ψyy + 2ξ2ψy + 2xζ1 + 2yζ2 − y2ζ22, (183)

where the prolongation coefficients ζ2 and ζ22 are defined by (110) and (115) and

ζ1 = D1(η)− ψkD1(ξ
k). (184)

Condition (108) is expanded and separated according to the powers and products of
the independent partial derivatives of ψ:

ψyψyy :
∂ξ2

∂ψ
= 0, (185)

ψyy : −2yξ2 + 2y2 ∂ξ2

∂y
− y2 ∂η

∂ψ
− y2 dξ1

dx
= 0, (186)

ψxψy :
∂ξ2

∂ψ
= 0, (187)

ψ3
y :

∂2ξ2

∂ψ2 = 0, (188)

ψ2
y : −2y

∂ξ2

∂ψ
− y2 ∂2η

∂ψ2 + 2y2 ∂2ξ2

∂y∂x
= 0, (189)

ψy : 2ξ2 − 2y
∂ξ2

∂y
+ y2 ∂2ξ2

∂y2 −
ν1

νi
y2 ∂ξ2

∂x
+ 2y

dξ1

dx
+ 2y

∂η

∂ψ
= 0, (190)

ψx : ξ1(x) + x
∂η

∂ψ
= 0, (191)

Remainder :
∂η

∂x
= 0, (192)

where the Remainder is independent of the partial derivatives of ψ.
It follows from (185) that ξ2 = ξ2(x, y) and from (192) that η = η(ψ). Hence, from (189)

η(ψ) = a1ψ + a2 (193)

where a1 and a2 are constants and from (191),

ξ1(x) = −ax. (194)
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By substituting (193) and (194) for ξ1(x) and η(x) into condition (180) it is found that

ξ2 = −1
2

a1y. (195)

It is readily verified that the remaining two conditions, (186) and (193), are identically
satisfied. Hence

X = −a1x
∂

∂x
− 1

2
a1y

∂

∂y
+ (a1ψ + a2)

∂

∂ψ
. (196)

We consider the general case in which a1 6= 0 and rewrite X as

X = 2x
∂

∂x
+ y

∂

∂y
− 2(ψ + c)

∂

∂ψ
(197)

where c = a2
a1

is an arbitrary constant.
Equation (197) is the Lie point symmetry associated with the conserved vectors (176)

in the upper and lower wakes. The constant c is different in each part of the two-fluid
dimensionless wake. Unlike (122) the two-fluid classical wake, the Lie point symmetry
(197) does not contain an arbitrary function.

5.2. General Form of the Invariant Solution

An invariant solution ψ = Ψ(x, y) of the PDE (95) generated by the Lie point symmetry
(197) satisfies the condition (123), which takes the form

2x
∂Ψ
∂x

+ y
∂Ψ
∂y

= −2(Ψ + c). (198)

The differential equations of the characteristic curves of (198) are

dx
2x

=
dy
y

= − dΨ
2(Ψ + c)

. (199)

Two independent solutions of (199) are

y

x
1
2
= b1, x(Ψ + c) = b2, (200)

where b1 and b2 are constants. The general solution of the PDE (198) is b2 = F(b1) where F
is an arbitrary function. Hence

ψ(x, y) =
1
x

F(ξ)− c, ξ =
y

x
1
2

. (201)

Since an additive constant in a stream function does not contribute to the velocity
components, we take c = 0. The Lie point symmetry (197) and the similarity variable ξ are
therefore the same in the upper and lower parts of the wake.

The conserved quantity (91), expressed in terms of the invariant solution (201), is

K∗ =
ρ2

ρ1

ν1

ν2

∫ φ(x)

x
1
2

−∞
ξ2 dF2

dξ
dξ +

∫ ∞

φ(x)

x
1
2

ξ2 dF1

dξ
dξ. (202)

For K∗ to be a constant independent of x, it is sufficient that

φ(x)

x
1
2

= k (203)
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where k is a constant. The equation of the interface is again

φ(x) = kx
1
2 . (204)

The interface ξ = k and the conserved quantity become

K∗ =
ρ2

ρ1

ν1

ν2

∫ k

−∞
ξ2 dF2

dξ
dξ +

∫ ∞

k
ξ2 dF1

dξ
dξ. (205)

The velocity components (94) and the conditions (95) to (101) are now expressed in
terms of the invariant solution (201).

Velocity components:

wi(x, y) = x−
3
2

dFi
dξ

, (206)

vi(x, y) = − 1
2x2

[
2Fi(ξ) + ξ

dFi
dξ

]
. (207)

Partial differential equation:

2
νi
ν1

d3Fi
dξ3 +

d
dξ

(
ξ

dFi
dξ

)
+ 2

dFi
dξ

= 0. (208)

Boundary conditions:

dF1

dξ
(∞) = 0,

d2F1

dξ2 (∞) = 0, (209)

dF2

dξ
(−∞) = 0,

d2F2

dξ2 (−∞) = 0. (210)

Interface conditions:

dF1

dξ
(k) =

dF2

dξ
(k), (211)

F1(k) = F2(k), (212)

d2F1

dξ2 (k) =
µ2

µ1

d2F2

dξ2 (k), (213)

3
Re

(
1− µ2

µ1

)
dF1

dξ
(k)x−

5
2 = p2(x, φ(x))− p1(x, φ(x)). (214)

The interface condition (214) was simplified using (211) and (213). The Lie point
symmetry, which generates the invariant solution for the upper and lower wakes, is the
scaling symmetry

X = 2x
∂

∂x
+ y

∂

∂y
− 2ψ

∂

∂ψ
. (215)
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5.3. Invariant Solutions for the Two-Fluid Momentumless Wake

The differential Equation (208) can be integrated at least one time, which is another
example of the Double Reduction Theorem [10]. Integrating (208) yields

2νi
ν1

d2Fi
dξ2 + ξ

dFi
dξ

+ 2Fi = Ai (216)

where Ai is a constant. As well as the boundary conditions (209) and (210), further boundary
conditions at ξ = ±∞ are required. It will be verified that the solution satisfies the extra
boundary conditions. It will be assumed that there is no entrainment of fluid by the wake
at ξ = ±∞, which implies that

vi(x,±∞) = 0 (217)

where the + sign applies for i = 1 and the − sign for i = 2. Then, from (207)

2Fi(±∞) + lim
ξ→±∞

ξ
dFi
dξ

= 0. (218)

By imposing also the boundary conditions (209) and (210), it follows that Ai = 0.
By multiplying (216) by ξ it can be expressed in the form

2νi
ν1

[
d

dξ

(
ξ

dFi
dξ

)
− dFi

dξ

]
+

d
dξ

(
ξ2Fi

)
= 0 (219)

which can be integrated to give

ξ
dFi
dξ
− Fi(ξ) +

ν1

2νi
ξ2Fi = Ei (220)

where Ei is a constant. We assume that separately

Fi(±∞) = 0 and lim
ξ→±∞

ξ
dFi
dξ

(ξ) = 0, (221)

which implies (218) and further that

lim
ξ→±∞

ξ2Fi(ξ) = 0. (222)

Hence Ei = 0 and (220) takes the form

dFi
dξ

=

(
1
ξ
− ν1

2νi
ξ

)
Fi (223)

which is variable-separable. It is found that

Fi(ξ) = Biξ exp
(
− ν1

4νi
ξ2
)

(224)

where Bi is a constant. It is readily verified that the boundary conditions (218), (221),
and (222) are identically satisfied by the solution (224). Unlike the classical wake, for the
momentumless wake, vi(x, y) depends on Fi(ξ) which therefore needs to be calculated.
The constant Bi cannot be obtained from the boundary conditions, which are identically
satisfied by (224).
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The interface conditions (211) to (214) become

B1

(
1− 1

2
k2
)
− B2

(
1− ν1

2ν2
k2
)

exp
[

1
4

(
1− ν1

ν2

)
k2
]
= 0, (225)

k
[

B1 − B2 exp
(

1
4

(
1− ν1

ν2

)
k2
)]

= 0, (226)

k
[

B1(6− k2)− B2
µ2

µ1

(
6− ν1

ν2
k2
)

exp
(

1
4

(
1− ν1

ν2

)
k2
)]

= 0, (227)

3
Re

(
1− µ2

µ1

)
B1

(
1− 1

2
k2
)

exp
(
− 1

4
k2
)

x−
5
2 = p2(x, φ(x))− p1(x, φ(x)). (228)

There are two cases to consider, k = 0 and k 6= 0.

5.3.1. Case k = 0

From (204), the interface is the x-axis, φ(x) = 0. Equations (226) and (227) are identi-
cally satisfied, while (225) reduces to B1 = B2 = B. The solution (224) becomes

Fi(ξ) = Bξ exp
(
− ν1

4νi
ξ2
)

. (229)

The remaining interface condition (228) takes the form

3
Re

(
1− µ2

µ1

)
Bx−

5
2 = p2(x, 0)− p1(x, 0). (230)

The constant B is obtained from the conserved quantity (205). Since k = 0, it follows
that φ(x) = 0 and therefore from (90) that RM(φ(x), w1, w2) = 0. The quantity K∗ given
by (91) is therefore independent of x without approximation. Substituting (229) into
(205) yields

K∗ = B
[

ρ2

ρ1

ν1

ν2

(
I3 −

1
2

ν1

ν2
I4

)
+ I5 + I6

]
(231)

where

I3 =
∫ ∞

0
ξ2 exp

(
− ν1

4ν2
ξ2
)

dξ = 2
(

ν2

ν1

) 5
2√

π, (232)

I4 =
∫ ∞

0
ξ4 exp

(
− ν1

4ν2
ξ2
)

dξ = 12
(

ν2

ν1

) 5
2√

π, (233)

I5 =
∫ ∞

0
ξ2 exp

(
− 1

4
ξ2
)

dξ = 2
√

π, (234)

I6 =
∫ ∞

0
ξ4 exp

(
− 1

4
ξ2
)

dξ = 12
√

π. (235)
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The integrals I3 to I6 were evaluated by transforming them to Gamma functions
defined by (160) and using the properties

Γ(n) = (n− 1)Γ(n− 1), n > 1; Γ
(

1
2

)
=
√

π. (236)

Hence

B = − K∗

4
√

π

[
ρ2
ρ1

(
ν2
ν1

) 1
2

+ 1
] (237)

which can be expressed as

B = − K∗χ
1
2

4
√

π

[
1 + χ

1
2

] (238)

where χ is defined by (160).

5.3.2. Case k 6= 0

Then from (226)

B1 = B2 exp
[

1
4

(
1− ν1

ν2

)
k2
]

(239)

and by substituting (239) into (225) we obtain(
ν1

ν2
− 1
)

B2 = 0. (240)

Since B2 6= 0 for a nontrivial solution, it follows that

ν1

ν2
= 1 (241)

and therefore from (239), B1 = B2 = B. The solution (224) becomes

F(ξ) = Bξ exp
(
− 1

4
ξ2
)

(242)

which is the same for the upper and lower wakes. The interface condition (227) reduces to(
1− µ2

µ1

)(
6− k2

)
B = 0. (243)

However, since ν1 = ν2,

µ2

µ1
=

ρ2

ρ1
> 1 (244)

for stability. Hence, for B 6= 0,

k = ±
√

6. (245)

The equation of the interface (204) becomes

φ(x) = ±
√

6x
1
2 . (246)
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The remaining interface condition (228) assumes the form

−6B
Re

(
1− µ2

µ1

)
exp

(
− 3

2

)
x−

5
2 = p2(x, φ(x))− p1(x, φ(x)) (247)

where φ(x) is given by (246).
The boundary conditions (209) and (210) are identically satisfied by the solution (229).

The constant B is obtained from the conserved quantity (205) and takes different values, B+

and B−, for k = +
√

6 and k = −
√

6. Substitute (229) into (205). For k = +
√

6,

K = B+

[(
ρ2

ρ1
+ 1
)(

I5 −
1
2

I6

)
+

(
ρ2

ρ1
− 1
)(

J1 −
1
2

J2

)]
(248)

while for k = −
√

6

K = B−

[(
ρ2

ρ1
+ 1
)(

I5 −
1
2

I6

)
−
(

ρ2

ρ1
− 1
)(

J1 −
1
2

J2

)]
, (249)

where I5 and I6 are given by (234) and (235) and

J1 =
∫ √6

0
ξ2 exp

(
− 1

4
ξ2
)

dξ = 2
√

π erf
((

3
2

) 1
2
)
− 4
(

3
2

) 1
2

exp
(
− 3

2

)
, (250)

J2 =
∫ √6

0
ξ4 exp

(
− 1

4
ξ2
)

dξ = 12
√

π erf
((

3
2

) 1
2
)
− 48

(
3
2

) 1
2

exp
(
− 3

2

)
, (251)

where the error function erf(x) is defined as [20]

erf(x) =
2√
π

∫ x

0
exp

(
− u2

)
du. (252)

Hence

B+ = − K

4
√

π

[
ρ2
ρ1

+ 1 +
(

ρ2
ρ1
− 1
)

S
] , (253)

B− = − K

4
√

π

[
ρ2
ρ1

+ 1−
(

ρ2
ρ1
− 1
)

S
] , (254)

where

S = erf
((

3
2

) 1
2
)
− 5√

π

(
3
2

) 1
2

exp
(
− 3

2

)
= 0.1458. (255)

Thus B+ < 0 and B− < 0.
In the derivation of the conserved quantity (91) for the momentumless wake, RM was

neglected. Using (93) for RM and the solution for k = ±
√

6, it can be verified that

RM(φ(x), w1(x, φ(x))) = ∓2
√

6 exp
(
− 3

2

)
B
(

ρ2

ρ1
− 1
)

1
x

. (256)

Unlike RC and RM for k = 0, RM for k = ±
√

6 is non-zero, but it is small for the far wake
with x >> 1.
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5.4. Results for the Two-Fluid Momentumless Wake

There are three cases to analyse—k = 0 and k = ±
√

6.

5.4.1. Case k = 0

From (206) and (229), the x-component of the fluid velocity is

vi(x, y) = 1− wi(x, y) = 1− 1
2

ν1

νi

B

x
3
2

(
2

νi
ν1
− y2

x

)
exp

(
− 1

4
ν1

νi

y2

x

)
(257)

where B is given by (237). Since B < 0 we see that ui(x, 0) > 1. Additionally

∂ui
∂y

(x, y) =
1
4

(
ν1

νi

)2

B
y

x
5
2

(
6

νi
ν1
− y2

x

)
exp

(
− 1

4
ν1

νi

y2

x

)
. (258)

In Figure 3, the velocity ui(x, y) is plotted against y at x = 2 for ρ2
ρ1

= 10 and ν2
ν1

= 25.
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Figure 3. Velocity component ui(x, y) for the two-fluid momentumless wake for k = 0, where i = 1 is
the upper fluid and i = 2 is the lower fluid, plotted against y at x = 2 for K = 1, ρ2

ρ1
= 10 and ν2

ν1
= 25.

The interface is y = 0.

From (257), the velocity deficit is zero at points C and M where

yC =
√

2x
1
2 , yM = −

√
2
(

ν2

ν1

) 1
2

x
1
2 . (259)

From (258) the local maxima of the velocity deficit are at points A and N where

yA =
√

6x
1
2 , yN = −

√
6
(

ν2

ν1

) 1
2

x
1
2 . (260)

The magnitudes of the local maxima of the velocity deficit, AD and NP, are equal and
given by

AD = NP = 2|B| exp
(
− 3

2

)
x−

3
2 . (261)
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The minimum velocity deficit is at y = 0 and its magnitude satisfies

HG =
|B|
x

3
2

. (262)

The ratio of the magnitude of the velocity deficit at y = 0 to the magnitude at yA and
yB is

HG
AD

=
1
2

exp
(

3
2

)
= 2.24 (263)

which is independent of both ρ2
ρ1

and ν2
ν1

.
The effective width of the two fluid momentumless wake does not depend on the

density ratio ρ2
ρ1

and increases as the viscosity ratio ν2
ν1

increases. The magnitudes of the

maximum and minimum velocity deficits depend on ρ2
ρ1

and ν2
ν1

only through B and decrease

as ρ2
ρ1

and ν2
ν1

increase.
The interface condition (228) for the pressure difference becomes setting k = 0 and

using (237),

p2(x, 0)− p1(x, 0) = − 3
4Re

(
1− µ2

µ1

)
K

√
π

[
ρ2
ρ1

(
ν2
ν1

) 1
2

+ 1
] x−

5
2 . (264)

Since terms of order 1
Re are neglected, the pressure is continuous across the interface.

5.4.2. Case k = +
√

6

The viscosity ratio ν2
ν1

= 1 and the interface is at y = +
√

6 x
1
2 . From (206) and (242),

ui(x, y) = 1− wi(x, y) = 1− 1
2

B+ x−
3
2

(
2− y2

x

)
exp

(
− 1

4
y2

x

)
(265)

and

∂ui
∂y

(x, y) =
1
4

B+
y

x
5
2

(
6− y2

x

)
exp

(
− y2

4x

)
(266)

where B+ is given by (253).
In Figure 4, the velocity component ui(x, y) is plotted against y at x = 2 for ρ2

ρ1
= 10.

The velocity deficit is zero at

yC =
√

2x
1
2 , yM = −

√
2x

1
2 . (267)

The local maximum of the velocity deficit is at

yA =
√

6x
1
2 , yN = −

√
6x

1
2 (268)

and

AD = NP = 2 |B+| exp
(
− 3

2

)
x−

3
2 . (269)

The minimum velocity deficit is at y = 0 and its magnitude satisfies

HG = |B+| x−
3
2 . (270)
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The ratio of the magnitude of the velocity deficit at y = 0 to the magnitude at yA and
yB is given by (263), as for k = 0.

y

H
G

D

P

A

N

C

M

0.998 0.999 1.000 1.001 1.002 1.003 1.004
-10

-5

0

5

10

ui

Figure 4. Velocity component ui(x, y) for the two-fluid momentumless wake for k = +
√

6, where
i = 1 is the upper fluid and i = 2 is the lower fluid, plotted against y at x = 2 for K = 1 and ρ2

ρ1
= 10.

The interface is y =
√

6 x
1
2 at point A.

The interface between the two fluids is at the turning point A in Figure 4. The mag-
nitude of the maximum and minimum velocity deficits depend on ρ2

ρ1
and decrease as ρ2

ρ1
increases. The interface condition (228) for the pressure difference becomes on setting
k =
√

6,

p2(x, φ(x))− p1(x, φ(x)) = − 6
Re

exp
(
− 3

2

)(
1− µ2

µ1

)
B+x−

5
3 . (271)

Since terms of order 1
Re are neglected, the pressure is continuous across the interface.

5.4.3. Case k = −
√

6

The interface is at y = −
√

6x
1
2 . The results for k = −

√
6 apply with B+ replaced by

B−. Since ρ2
ρ1

> 1 for stability, B− > B+. In Figure 5, the velocity component ui(x, y) for

k = +
√

6 and k = −
√

6 are plotted for comparison. For k = −
√

6, the interface between
the two fluids is at the turning point N on the y-axis.
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y
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k = -√6

k = -√6
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N
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k = +√6
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ui

Figure 5. Velocity component ui(x, y) for the two-fluid momentumless wake for k = +
√

6 and
k = −

√
6, where i = 1 is the upper fluid and i = 2 is the lower fluid, plotted against y at x = 2

for K = 1 and ρ2
ρ1

= 10. For k = +
√

6 the interface is at the turning point A while for k = −
√

6 the
interface is at the turning point N.

6. Conclusions

Four new solutions for the two-fluid two-dimensional wake were found. For the
two-fluid classical wake and one of the two-fluid momentumless wakes there was no
deflection of the interface which was along the positive x-axis. The four new solutions are
subject to conditions. For the two-fluid classical wake, the solution exists provided ρ2

ρ1
6= 1

which is satisfied because ρ2 > ρ1 for stability. For the three two-fluid momentumless
wakes, the condition of no entrainment of fluid at y = ±∞ was imposed while the wakes
with interface y = ±

√
6x

1
2 exist provided ν2

ν1
= 1.

The conservation laws for the system of partial differential equations in the upper
and lower wakes played a significant part in the solution. The derivation of the conserved
vectors for the classical and momentumless wakes as a linear combination of four conserved
vectors unified the theory. There is not a conserved quantity for the upper and lower wakes
separately because of non-zero interface terms which are eliminated by an additional
condition. The conserved quantity for the two-fluid classical wake was derived from the
conservation laws and the interface condition for the shear stress while the conserved
quantity for the two-fluid momentumless wake was derived from the conservation laws
and the condition that the total drag on the obstacle is zero. From the conserved quantity,
the general form of the equation of the interface y = kx

1
2 and the constant of integration B

were derived.
The four interface conditions also played a significant part in the solution. The interface

conditions on the tangential and normal components of the fluid velocity and on the
tangential component of the stress determined the value of k in the equation of the interface,
while the fourth interface condition on the normal stress determined the pressure difference
across the interface.

The derivation of the associated Lie point symmetry required a prolongation only
to second order. Since the partial differential equation for the stream function is third
order, a prolongation to third order would be required to derive the Lie point symmetry
from the invariance condition. It was therefore easier to derive the associated Lie point
symmetry which could be done manually. Since the partial differential equation for the
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stream function was reduced to an ordinary differential equation by an associated Lie point
symmetry the resulting ordinary differential equation could be integrated at least once
by the Double Reduction Theorem [10]. We saw that the differential equations could be
integrated completely and analytical solutions could be derived.

We found that the effective width of the two-fluid wakes depends on the viscosity ratio
ν2
ν1

and is independent of the density ratio ρ2
ρ1

. The maximum and minimum magnitudes

of the velocity deficit depend on both ρ2
ρ1

and ν2
ν1

through the constant B. When ν2
ν1
6= 1

the classical and momentumless two-fluid wakes are not symmetrical about the interface,
φ(x) = 0, but the magnitude of the maximum velocity deficit in the upper and lower
halves of the momentumless wake are equal. For all three two-fluid momentumless wakes,
the ratio of the magnitude of the velocity deficit at y = 0 to the magnitude at the two
local turning points is independent of ρ2

ρ1
and ν2

ν1
and is approximately 2.24. The two-fluid

classical and momentumless wake for ν2
ν1
6= 1 both depend on the parameter χ = ρ1µ1

ρ2µ2
.

The advantages of the methods used can be summarised as follows:

• The boundary layer and far wake approximations lead to an analytical solution.
• The multiplier method was a systematic way to derive the conservation laws and

unified the theory of the classical and momentumless wakes.
• The conserved quantities for the two-fluid classical and momentumless wakes could

be derived from the conservation laws for the upper and lower parts of the wake and
the interface and boudary conditions.

• The associated Lie point symmetry, which is all that is required to derive the general
form of the invariant solution, was easier to calculate than the Lie point symmetry of
the partial differential equation and could be obtained manually.

• The double reduction theorem ensured that the ordinary differential equation obtained
by the first reduction could be integrated at least one time.

• The equation of the interface was obtained from the conserved quantity.

There is scope for future work on the two-fluid wake, which is a relatively new area of
investigation. Research has been done on the far wake and on the laminar wake. Two-fluid
classical and momentumless near wakes and two-fluid turbulent near and far wakes could
be investigated.
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