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Abstract: Based on a comparison with first-order equations, we obtain new criteria for investigating
the asymptotic behavior of a class of differential equations with neutral arguments. In this work, we
consider the non-canonical case for an even-order equation. We concentrate on the requirements for
excluding positive solutions, as the method used considers the symmetry between the positive and
negative solutions of the studied equation. The results obtained do not require some restrictions that
were necessary to apply previous relevant results in the literature.
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1. Introduction

Differential equations (DEs) have been widely used in both pure and applied mathe-
matics since they were first introduced in the middle of the 17th century. New connections
between the various branches of mathematics, beneficial interactions with practical do-
mains, and reformulations of fundamental problems and theories in diverse sciences have
all led to a vast variety of new models and issues.

DEs can be used to simulate almost any physical, technological, or biological activity,
including astronomical motion, the construction of bridges, and interactions between
neurons. Most models that represent real phenomena and applications cannot have closed-
form solutions. The available options in this case include finding approximate solutions or
studying the qualitative properties of the solutions of these models, which include stability,
symmetry, oscillation, periodicity, and others.

A type of functional differential equation known as “neutral differential equations
(NDEs)” occurs when the highest derivative of the unknown function appears on the solu-
tion both with and without delay. NDEs are used to simulate a wide range of phenomena
in many applied sciences, see [1].

The various differential models that have been proposed in various applied sciences
have served as a great source of inspiration for research into the qualitative theory of
DEs. According to this approach, the oscillation theory of DEs has made huge strides in
recent decades, see [2–5]. Numerous authors have examined the oscillation of even-order
differential equations and various methods for developing oscillatory criteria for these
equations [6–9].

This study aims to create new conditions to investigate the asymptotic behavior of the
even-order NDE (

a(s)w(n−1)(s)
)′

+ ϕ(s)x(υ(s)) = 0, (1)
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where s ≥ s0, n ≥ 4 are even integers, w(s) := x(s) + ρ(s)x(δ(s)), a, ρ ∈ C1([s0, ∞)), and
δ, υ, ϕ ∈ C([s0, ∞)). Furthermore, we suppose that a′(s) > 0, 0 < ρ(s) ≤ ρ0 < 1, ϕ ≥ 0, ϕ
does not vanish eventually, δ(s) ≤ s, υ(s) ≤ s, υ′(s) ≥ 0, lims→∞ δ(s) = lims→∞ υ(s) = ∞,
and ∫ ∞

s0

1
a(κ)

dκ < ∞.

For a solution to (1), we select a function x ∈ C([sx, ∞)), sx ≥ s0, which has the
properties w ∈ C(n−1)([sx, ∞)) and aw(n−1) ∈ C1([sx, ∞)), and x satisfies (1) on [sx, ∞). We
consider only those solutions to Equation (1) that will not vanish eventually. If a solution x
of (1) is eventually positive or negative, then it is said to be non-oscillatory; otherwise, it is
said to be oscillatory.

The oscillation theory, which has lately seen major growth and development, covers
the study of oscillation for delay, neutral, mixed, and damping ordinary, fractional, and
partial DEs. Second-order delay DEs have received the majority of attention in the literature,
notably in the non-canonical case, see, for example, [10–16]. Recently, Bohner et al. [17]
presented improved criteria for testing the oscillation of solutions of non-canonical second-
order advanced differential equations.

In the non-canonical case, even-order delay DEs have gained more attention than
neutral equations, see, for example, [6,7,18,19].

Li and Rogovchenko [20] considered the NDE(
a(s)

(
w(n−1)(s)

)α)′
+ ϕ(s)xγ(υ(s)) = 0, (2)

where α and γ are ratios of odd positive integers. They obtained the oscillation criteria for
Equation (2) by using comparison techniques and assuming three unknown functions that
satisfy certain conditions. Moreover, the results in [20] required the following restrictions:

δ′(s) ≥ δ∗ > 0 and δ ◦ υ = υ ◦ δ (3)

Recently, Moaaz et al. [21] studied the asymptotic behavior of solutions to the NDE (1).

Theorem 1 (Theorem 2.1 in [21]). Suppose that

∫ ∞

s0

∫ ∞

l
(h− s)n−3

(
1

a(h)

∫ h

s1

ϕ(κ)dκ

)
dhdl = ∞. (4)

If there is an ε1 ∈ (0, 1) such that the delay DE

ψ′(s) +
ε1

(n− 1)!a(υ(s))
ϕ(s)(1− ρ(υ(s)))[υ(s)]n−1ψ(υ(s)) = 0

is oscillatory and the condition

lim sup
s→∞

∫ s

s0

(
ε1

(n− 2)!
υn−2(κ)ϕ(κ)(1− ρ(υ(κ)))φ(κ)− 1

4a(κ)φ(κ)

)
dκ = ∞

holds for some ε1 ∈ (0, 1), then all solutions of Equation (1) oscillate or converge to zero, where

φ(s) =
∫ ∞

s
a−1(κ)dκ.

We provide helpful lemmas that will be applied throughout the results in the sections
that follow.

Lemma 1 ([22]). Suppose that ψ ∈ Cm+1([s0, ∞)), ψ(j) > 0, for j = 0, 1, . . . , m, and ψ(m+1) ≤
0. Then, ψ(s) ≥ εs

m ψ′(s), for all ε ∈ (0, 1).
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Lemma 2 ([4]). Suppose that ψ ∈ Cm([s0, ∞), (0, ∞)), ψ(m) does not vanish eventually, and
ψ(m) is of fixed sign. If ψ(m−1)ψ(m) ≤ 0 and lims→∞ ψ(s) 6= 0, then, eventually,

ψ(s) ≥ ε

(m− 1)!
sm−1

∣∣∣ψ(m−1)(s)
∣∣∣,

for every ε ∈ (0, 1).

Lemma 3 (Lemma 1.2 in [23]). Suppose that λ1 ≥ 0 and λ2 > 0. Then,

λ1ψ− λ2ψ(α+1)/α ≤ αα

(α + 1)α+1
λα+1

1
λα

2
.

2. Main Results

For any eventually positive solution x to Equation (1), we find that the corresponding
function w has one of the following cases, based on Lemma 1.1 in [22]:

Case 1 w, w′, and w(n−1) are positive and w(n) is nonpositive;

Case 2 w, w′, and w(n−2) are positive and w(n−1) is negative;

Case 3 (−1)kw(k) is positive for all k = 0, 1, 2, . . . , n− 1.

For ease, the symbol Si indicates the category of eventually positive solutions whose
corresponding function satisfies case (i) for i = 1, 2, 3. Moreover, we define

f [0](s) := s, f [m](s) = f
(

f [m−1](s)
)

, for m = 1, 2, . . .

and
φ0(s) :=

∫ ∞

s

1
a(κ)

dκ, φj(s) :=
∫ ∞

s
φj−1(κ)dκ, for j = 1, . . . , n− 2.

Lemma 4 (Lemma 1 in [24]). Suppose that x is an eventually positive solution of (1). Then,
eventually,

x(s) >
m

∑
r=0

(
2r

∏
l=0

ρ
(

δ[l](s)
))[ 1

ρ
(
δ[2r](s)

)w
(

δ[2r](s)
)
− w

(
δ[2r+1](s)

)]
, (5)

for any integer m ≥ 0.

Lemma 5. Suppose that x ∈ S1 ∪ S2. Then,

x(s) > ρ̃(s; m)w(s),

where

ρ̃(s; m) :=
m

∑
r=0

(
2r

∏
l=0

ρ
(

δ[l](s)
))[ 1

ρ
(
δ[2r](s)

) − 1

][
δ[2r](s)

s

](n−1)/ε

.

Proof. Assume that x ∈ S1 ∪ S2. Then, assume that there is an integer ` ∈ [1, n− 1] such
that w(`+1) is the first nonpositive derivative of w. Using Lemma 1 with ψ = w and m = `,
we obtain w(s) ≥ ε

` s w′(s) for all ε ∈ (0, 1). Thus,

d
ds

( w
s`/ε

)
=

`

εs`/ε+1

[ ε

`
s w′ − w

]
≤ 0.

Using this property with the fact that w′(s) > 0, we have that

w
(

δ[2r+1](s)
)
≤ w

(
δ[2r](s)

)
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and

w
(

δ[2r](s)
)
≥
[

δ[2r](s)
s

]`/ε

w(s) ≥
[

δ[2r](s)
s

](n−1)/ε

w(s).

Hence, it follows from Lemma 4 that

x(s) > w(s)
m

∑
r=0

(
2r

∏
l=0

ρ
(

δ[l](s)
))[ 1

ρ
(
δ[2r](s)

) − 1

][
δ[2r](s)

s

](n−1)/ε

.

The proof is now complete.

Lemma 6. Suppose that x is an eventually positive solution of (1),

lim inf
s→∞

∫ s

υ(s)
Q1(κ)dκ >

1
e

, (6)

and
lim inf

s→∞

∫ s

υ(s)
Q2(κ)dκ >

1
e

, (7)

where
Q1(s) :=

1
(n− 1)!a(υ(s))

[υ(s)]n−1 ϕ(s)ρ̃(υ(s); m)

and

Q2(s) :=
1

(n− 2)!a(υ(s))

∫ υ(s)

s1

ϕ(κ)ρ̃(υ(κ); m)[υ(κ)]n−2dκ.

Then, x ∈ S3.

Proof. Suppose the contrary, i.e., that x ∈ S1 ∪ S2. From Lemma 5, we have that x(s) >
ρ̃(s; m)w(s). Thus, from (1), we arrive at(

a(s)w(n−1)(s)
)′
≤ −ϕ(s)ρ̃(υ(s); m)w(υ(s)). (8)

Assume that x ∈ S1. Using Lemma 2 with ψ = w and m = n, we obtain

w(s) ≥ ε

(n− 1)!
sn−1w(n−1)(s),

which with (8), gives(
a(s)w(n−1)(s)

)′
+

ε

(n− 1)!
[υ(s)]n−1 ϕ(s)ρ̃(υ(s); m)w(n−1)(υ(s)) ≤ 0.

Setting V(s) := a(s)w(n−1)(s) > 0, we obtain

V′(s) + εQ1(s)V(υ(s)) ≤ 0. (9)

Now, we have that V is a positive solution of (9). It follows from [25] (Theorem 1), that
the equation

V′(s) + εQ1(s)V(υ(s)) = 0 (10)

has also a positive solution. Although, Theorem 2 in [26] asserts that condition (6) ensures
the oscillation of Equation (10), which is a contradiction.

Assume that x ∈ S2. Using Lemma 2 with ψ = w and m = n− 1, we obtain, for all
ε ∈ (0, 1),

w(s) ≥ ε

(n− 2)!
sn−2w(n−2)(s). (11)
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Integrating (8) from s1 to s, we have

a(s)w(n−1)(s) ≤ a(s1)w(n−1)(s1)−
∫ s

s1

ϕ(κ)ρ̃(υ(κ); m)w(υ(κ))dκ,

which with (11) gives

a(s)w(n−1)(s) ≤ − ε

(n− 2)!

∫ s

s1

ϕ(κ)ρ̃(υ(κ); m)[υ(κ)]n−2w(n−2)(υ(κ))dκ.

Since w(n−1)(s) < 0, we have that w(n−2)(υ(κ)) ≥ w(n−2)(υ(s)), and so

a(s)w(n−1)(s) ≤ − ε

(n− 2)!
w(n−2)(υ(s))

∫ s

s1

ϕ(κ)ρ̃(υ(κ); m)[υ(κ)]n−2dκ,

or

w(n−1)(υ(s)) ≤ − ε

(n− 2)!a(υ(s))
w(n−2)

(
υ[2](s)

) ∫ υ(s)

s1

ϕ(κ)ρ̃(υ(κ); m)[υ(κ)]n−2dκ

Setting U(s) := w(n−2)(υ(s)) > 0, we obtain

U′(s) + εQ2(s)U(υ(s)) ≤ 0. (12)

Now, we have that U is a positive solution of (12). It follows from [25] (Theorem 1)
that the equation

U′(s) + εQ2(s)U(υ(s)) = 0 (13)

also has a positive solution. Although, Theorem 2 in [26] asserts that condition (7) ensures
the oscillation of Equation (13), which is a contradiction.

Therefore, x ∈ S3. The proof is now complete.

2.1. Criteria for Convergence of Non-Oscillatory Solutions to Zero

Theorem 2. Suppose that (6) and (7) hold. If

∫ ∞

s0

∫ ∞

h

(l − s)n−3

a(l)

∫ l

s1

ϕ(κ)dκ dl dh = ∞, (14)

then all solutions of Equation (1) oscillate or converge to zero.

Proof. Assume the contrary, i.e., that x is an eventually positive solution of (1). From
Lemma 6, we have x ∈ S3. Since w(s) > 0 and w′(s) < 0, we have that lims→∞ w(s) = c ≥
0. Assume that c > 0. Then, there is a s1 ≥ s0 such that c− ε < w(s) < c + ε for all s ≥ s1

and ε > 0. By choosing ε < 1−ρ0
1+ρ0

c, we get that

x(s) > w(s)− ρ0w(δ(s)) > (1− ρ0)c− (1 + ρ0)ε > Lc,

where L = (1−ρ0)c−(1+ρ0)ε
c > 0. Hence, (1) becomes(

a(s)w(n−1)(s)
)′
≤ −Lcϕ(s). (15)

Integrating (15) from s1 to s, we get

a(s)w(n−1)(s) ≤ a(s1)w(n−1)(s1)− Lc
∫ s

s1

ϕ(κ)dκ,
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and so
w(n−1)(s) ≤ − Lc

a(s)

∫ s

s1

ϕ(κ)dκ (16)

Integrating (16) twice from s to ∞, we get

w(n−2)(s) ≥ Lc
∫ ∞

s

1
a(l)

∫ l

s1

ϕ(κ)dκ dl,

and

w(n−3)(s) ≤ −Lc
∫ ∞

s

∫ ∞

h

1
a(l)

∫ l

s1

ϕ(κ)dκ dl dh

= −Lc
∫ ∞

s

(l − s)
a(l)

∫ l

s1

ϕ(κ)dκ dl. (17)

Integrating (17) n− 4 times from s to ∞, we obtain

w′(s) ≤ −Lc
∫ ∞

s

(l − s)n−3

a(l)

∫ l

s1

ϕ(κ)dκ dl.

Integrating this inequality from s1 to ∞, we obtain

w(s1) ≥ Lc
∫ ∞

s1

∫ ∞

h

(l − s)n−3

a(l)

∫ l

s1

ϕ(κ)dκ dl dh,

which contradicts (14). Then, c = 0 and hence lims→∞ x(s) = 0. The proof is now complete.

In the following theorem, we prove that the nonoscillatory solutions of Equation (1)
converge to zero without using an additional condition such as condition (14) in Theorem 2.

Theorem 3. Suppose that

lim inf
s→∞

∫ s

υ(s)
Q̃1(κ)dκ >

1
e

(18)

and
lim inf

s→∞

∫ s

υ(s)
Q̃2(κ)dκ >

1
e

, (19)

where
Q̃1(s) :=

1
(n− 1)!a(υ(s))

[υ(s)]n−1Q3(s),

Q̃2(s) :=
1

(n− 2)!a(s)

∫ s

s1

[υ(κ)]n−2Q3(s)dκ,

and

Q3(s) := ϕ(s)
(

1− ρ(υ(s))
φn−2(δ(υ(s)))

φn−2(υ(s))

)
.

Then, all solutions of Equation (1) oscillate or converge to zero.

Proof. Assume the contrary, i.e., that x is an eventually positive solution of (1) and
lims→∞ x(s) 6= 0. From the fact that w′ is of fixed sign, we have that w is increasing
or decreasing.

Assume that w is increasing. Since φ′n−2(s) ≤ 0, we get that φn−2(δ(s)) ≥ φn−2(s) and

1− ρ(s) ≥ 1− ρ(s)
φn−2(δ(s))

φn−2(s)
.
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Thus,

x(s) >
(

1− ρ(s)
φn−2(δ(s))

φn−2(s)

)
w(s). (20)

Assume that w is decreasing. Then, (−1)kw(k) are positive for all k = 0, 1, 2, . . . , n− 1.

Using the fact that
(

a(s)w(n−1)(s)
)′
≤ 0, we obtain

−w(n−2)(s) ≤
∫ ∞

s

a(κ)w(n−1)(κ)

a(κ)
dκ ≤ φ0(s)a(s)w(n−1)(s).

Then,
(

w(n−2)/φ0

)′
≥ 0, and so

−w(n−3)(s) ≥
∫ ∞

s

w(n−2)(κ)

φ0(κ)
φ0(κ)dκ ≥ φ1(s)

φ0(s)
w(n−2)(s).

By repeating this procedure, we arrive at (w/φn−2)
′ ≥ 0. Using this property, we get

that (20) holds. Therefore, Equation (1) becomes(
a(s)w(n−1)(s)

)′
≤ −Q3(s)w(υ(s)). (21)

Now, we classify the positive solutions of Equation (1) into the following only
two categories:

(C1) w and w(n−1) are positive and w(n) is non-positive;
(C2) w and w(n−2) are positive and w(n−1) is negative.

By following the same approach as in Lemma 6 and using inequality (21) instead of
(8), we get the required result.

The proof is now complete.

Example 1. Consider the NDE(
s4[x(s) + ρ0x(λs)]′′′

)′
+ ϕ0x(µs) = 0, (22)

where ρ0 ∈ (0, 1), λ, µ ∈ (0, 1], and ϕ0 > 0. We find δ[2r](s) = λ2rs,

ρ̃(s; m) =

[
1
ρ0
− 1
] m

∑
r=0

ρ2r+1
0 λ6r/ε := ρ̃0,

Q1(s) =
ρ̃0 ϕ0

6µ

1
s

,

and
Q2(s) =

ϕ0ρ̃0µ

6
1
s

.

It is easy to verify that (14) is satisfied. Conditions (6) and (7) reduce to

ρ̃0 ϕ0

6µ
ln

1
µ
>

1
e

and
ϕ0ρ̃0µ

6
ln

1
µ
>

1
e

,
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respectively. Therefore, using Theorem 2, all solutions of Equation (22) oscillate or converge to zero if

ϕ0 >
6

eρ̃0µ ln(1/µ)
. (23)

Remark 1. By applying Theorem 1, we obtain that all solutions of Equation (22) oscillate or
converge to zero if

ϕ0 > max
{

6µ

e(1− ρ0) ln(1/µ)
,

9
2µ2(1− ρ0)

}
. (24)

Consider the following special case of (22):(
s4
[

x(s) +
9

10
x
(

9s
10

)]′′′)′
+ ϕ0x(µs) = 0.

If µ = 0.5, then conditions (23) and (24) reduce to ϕ0 > 36.532 and ϕ0 > 180.0, respectively.
Figure 1 shows the minimum values of the parameter ϕ0 for all values of µ ∈ (0, 1) for conditions
(23) and (24). Thus, our results improve the results in [21].

Figure 1. Comparison between conditions (23) and (24).

2.2. Oscillation Criteria for All Solutions

In the next section, we present criteria that test the oscillation of all solutions of the
considered equation. For this, we need the following constraint:

1
ρ(s)

>
φn−2(δ(s))

φn−2(s)

Lemma 7 (Lemma 2, Lemma 3 in [27]). Suppose that x ∈ S3. Then,

(−1)i+1w(i)(s) ≤
[

a(s)w(n−1)(s)
]
φn−i−2(s)

and

(−1)i

(
w(i)(s)

φn−i−2(s)

)′
≥ 0

eventually for i = 0, 1, . . . , n− 2.
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Lemma 8. Suppose that x ∈ S3. Then,(
a(s)w(n−1)(s)

)′
≤ −ϕ(s)ρ̂(υ(s); m)w(υ(s)), (25)

where

ρ̂(s; m) :=
m

∑
r=0

(
2r

∏
l=0

ρ
(

δ[l](s)
)) 1

ρ
(
δ[2r](s)

) − φn−2

(
δ[2r+1](s)

)
φn−2

(
δ[2r](s)

)
.

Proof. It follows from Lemma 4 that (5) holds. From Lemma 7, we have w/φn−2(s) is
increasing, and so

w
(

δ[2r+1]
)
≤

φn−2

(
δ[2r+1]

)
φn−2

(
δ[2r]

) w
(

δ[2r]
)

.

Thus, (5) becomes

x(s) >
m

∑
r=0

(
2r

∏
l=0

ρ
(

δ[l](s)
)) 1

ρ
(
δ[2r](s)

) − φn−2

(
δ[2r+1](s)

)
φn−2

(
δ[2r](s)

)
w
(

δ[2r](s)
)

.

Since z is decreasing, we obtain

x(s) > w(s)
m

∑
r=0

(
2r

∏
l=0

ρ
(

δ[l](s)
)) 1

ρ
(
δ[2r](s)

) − φn−2

(
δ[2r+1](s)

)
φn−2

(
δ[2r](s)

)
,

which with Equation (1) gives(
a(s)w(n−1)(s)

)′
≤ −ϕ(s)ρ̂(υ(s); m)w(υ(s)).

The proof is now complete.

Theorem 4. Suppose that (6) and (7) hold. If

lim inf
s→∞

∫ s

υ(s)

[
φn−3(u)

∫ u

s1

ϕ(κ)ρ̂(υ(κ); m)dκ

]
du >

1
e

, (26)

then all solutions of Equation (1) are oscillatory.

Proof. Assume the contrary, i.e., that x is an eventually positive solution of (1). From
Lemma 6, we have x ∈ S3. Using Lemma 8, we get (25). Integrating (25) from s1 to s, we
arrive at

a(s)w(n−1)(s) ≤ −
∫ s

s1

ϕ(s)ρ̂(υ(κ); m)w(υ(κ))dκ

≤ −w(υ(s))
∫ s

s1

ϕ(κ)ρ̂(υ(κ); m)dκ.

It follows from Lemma 7 that w′(s) ≤
[

a(s)w(n−1)(s)
]
φn−3(s), and so

w′(s) + w(υ(s))φn−3(s)
∫ s

s1

ϕ(κ)ρ̂(υ(κ); m)dκ ≤ 0. (27)

Therefore, w is a positive solution of (27). It follows from [25] (Theorem 1), that the
equation

w′(s) + w(υ(s))φn−3(s)
∫ s

s1

ϕ(κ)ρ̂(υ(κ); m)dκ = 0 (28)
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also has a positive solution. Although, Theorem 2 in [26] asserts that condition (26) ensures
the oscillation of Equation (28), which is a contradiction.

The proof is now complete.

Example 2. Consider NDE (22), where ρ0 < λ. We find φ0(s) = 1/
(
3s3), φ1(s) = 1/

(
6s2),

φ1(s) = 1/(12s), and

ρ̂(s; m) :=
[
1− ρ0

λ

] m

∑
r=0

ρ2r
0 = ρ̂0.

Condition (26) reduces to
1
6

ρ̂0 ϕ0 ln
1
µ
>

1
e

. (29)

Using Theorem 4, all solutions of Equation (22) are oscillatory if

ϕ0 > max
{

6
eρ̃0µ ln(1/µ)

,
6

eρ̂0 ln(1/µ)

}
.

Consider the following special case of (22):(
s4
[

x(s) +
7
8

x
(

9s
10

)]′′′)′
+ ϕ0x

( s
2

)
= 0 (30)

and (
s4
[

x(s) +
7
8

x
(

9s
10

)]′′′)′
+ ϕ0x

(
7s
10

)
= 0. (31)

All solutions of Equations (30) and (31) are oscillatory if ϕ0 > 55.136 (condition (23)) and
ϕ0 > 30.243 (condition (29)), respectively.

3. Conclusions

In this work, the asymptotic behavior of solutions to even-order neutral differential
equations in the non-canonical case is studied. We obtained a new relationship between
the solution and its corresponding function. We then used this new relationship to derive
criteria that ensure that all non-oscillatory solutions converge to zero. The new criteria do
not require additional restrictions to delay functions (as in (3)). Furthermore, Theorem 3
improves Theorem 1, as it does not require verification of the extra condition (4).
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