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Abstract: We developed a new family of optimal eighth-order derivative-free iterative methods for
finding simple roots of nonlinear equations based on King’s scheme and Lagrange interpolation.
By incorporating four self-accelerating parameters and a weight function in a single variable, we
extend the proposed family to an efficient iterative scheme with memory. Without performing
additional functional evaluations, the order of convergence is boosted from 8 to 15.51560, and the
efficiency index is raised from 1.6817 to 1.9847. To compare the performance of the proposed and
existing schemes, some real-world problems are selected, such as the eigenvalue problem, continuous
stirred-tank reactor problem, and energy distribution for Planck’s radiation. The stability and regions
of convergence of the proposed iterative schemes are investigated through graphical tools, such as
2D symmetric basins of attractions for the case of memory-based schemes and 3D stereographic
projections in the case of schemes without memory. The stability analysis demonstrates that our
newly developed schemes have wider symmetric regions of convergence than the existing schemes
in their respective domains.

Keywords: nonlinear equation; multipoint iterative methods; convergence order; with-memory
method; efficiency index; polynomiography; stereographic projection

1. Introduction

Solving nonlinear equations or root finding is an essential task in numerical analysis
and has a wide range of applications in physics, chemistry, mathematical biology, medicines,
economics, and engineering. Numerical or iterative methods to find approximate solutions
of nonlinear equations are the most frequently used techniques. One can distinguish
between two common approaches for numerical solutions of nonlinear equations, namely
one-point and multipoint iterative schemes. Newton’s method is one of the famous root-
finding methods for solving a single nonlinear equation f (x) = 0, given as follows [1]:

xm = xm −
f (xm)

f ′(xm)
, m ≥ 0, (1)

where f is a real valued function. Newton’s scheme is a one-point method and is quadrati-
cally convergent in some neighborhood of the root η of f for an initial guess x0 close enough
to η. There are several two-point methods to find simple roots of f (x) = 0 in the literature.
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Among them, King’s method is the most popular two-point fourth-order method [2], which
is given as follows:

ym = xm −
f (xm)

f ′(xm)
, m ≥ 0,

zm = ym −
f (xm) + γ f (ym)

f (xm) + (γ− 2) f (ym)

f (ym)

f ′(xm)
, γ ∈ R. (2)

Multipoint iterative schemes gained much interest at the beginning of the twenty-first
century, since they overcome the theoretical limits of one-point methods regarding conver-
gence speed and computational efficiency. Some root-finding schemes based on multipoint
iterations are first studied in the books by Traub [1] and Ostrowski [3] and the papers
in [2,4], published in the twentieth century. Multipoint schemes can be further classified
into two categories: “methods with memory” and “methods without memory”. A multi-
point method using current information only is called a method without memory, while
a method employing the current as well as previous information is known as a method
with memory. An important aspect of the optimality of the methods with memory is that
they improve the convergence order and efficiency index of the iterative schemes without
memory without using additional function evaluations. Moreover, this approach makes it
an impactful class of multipoint iterative methods. Kung and Traub conjectured that an
iterative scheme without memory based on r evaluations of function could obtain an order
of convergence of at most 2r−1 (known as optimal order). The computational efficiency
index of an iterative method is expressed as 2

r−1
r [3].

Traub [1] proposed a uniparametric derivative-free scheme with memory by a slight
modification of Steffensen’s iterative method [5] for suitably chosen x0, ϕ0 as follows:

νm = xm + ϕm f (xm), m ≥ 0,

xm = xm −
f (xm)

f [νm, xm]
, ϕm = − 1

N′1(xm)
, (3)

where f [v, x] = f (v)− f (x)
(v−x) denotes divided difference of first order, N1 = f (xm) + (x− xm)

f [νm, xm], and ϕm is the free accelerating parameter. The iterative scheme with memory (3)
has a convergence order of 2.41. Several researchers have developed root-finding methods
using memory based on existing optimal methods without memory; see, e.g., [2,6–16].

It is a common fact that iterative schemes are very sensitive towards an initial guess.
To resolve this difficulty, we identify the region in which a root lies and, as a result, a variety
of safe initial guesses are available to choose from. The convergence regions and stability of
an iterative scheme can be visualized in 2D dynamical planes with the help of symmetric
basins of attractions and drawing the 3D stereographic projections on the sphere.

One of the biggest challenges of iterative processes is to verify that they converge to the
exact solution, rather than getting stuck in a local minimum or diverging. An effective way
for examining the behavior of iterative methods, particularly those based on fixed-point
iterations, is the analysis of basins of attractions. The areas of the parameter space that
correspond to the same solution are referred to as basins of attractions. The conditions
under which the iterative approach converges, as well as the rate of convergence and
the stability of the solution, can be found by examining the basins of attractions. This
information is essential for choosing the best iterative approach for a particular problem, as
well as for adjusting a method’s parameters to determine how well it performs.

Motivated and inspired by the research being conducted in this direction, we devel-
oped a new modified King’s type scheme with memory, having a convergence order of
at least 15.5156 based on Lagrange interpolation. In Section 2, we present a new optimal
eighth-order derivative-free iterative family without memory. In Section 3, we extend the
proposed optimal scheme without memory presented in Section 2 to an iterative scheme
with memory and provide its convergence analysis. In Section 4, we present some particular
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cases of the weight functions and iterative methods corresponding to the weight functions.
In Section 5, we give applications of the presented iterative methods to solve engineering
problems, such as the energy distribution for Planck’s radiation and continuous stirred-
tank reactor. A comparison of the newly developed iterative scheme with already existing
similar schemes is also presented in Section 5 by using different test functions. In Section 6,
we present the extensive stability analysis of the proposed scheme without memory by
drawing its 3D stereographic projections. In Section 7, we present dynamical analysis of
the proposed iterative scheme with memory with the help of its 2D symmetric basins of
attractions. Finally, the conclusions are discussed in Section 8.

2. Extension of King’s Method to an Optimal Eighth-Order Derivative-Free Scheme

Our primary aim is to develop an optimal eighth-order method without memory based
on Lagrange interpolation which can be extended to an iterative scheme with memory. By
adding Newton’s method to the third step of King’s method (2), we obtain

qm = xm −
f (xm)

f ′(xm)
,

hm = qm −
f (qm)

f ′(xm)

f (xm) + ω f (qm)

f (xm) + (ω− 2) f (qm)
,

xm+1 = hm −
f (hm)

f ′(hm)
. (4)

The three-step iterative scheme (4) is not optimal because it needs five evaluations of
functions to provide eighth-order convergence. To make it optimal, derivative-free, and
extendable to a with-memory scheme, we adopt the following procedure.

We use the approximation of the derivative f ′(xm) in the first step of the iterative
method (4) as follows:

f ′(xm) ≈ f [νm, xm] + β2 f (νm), (5)

where νm = xm + β1 f (xm).
The derivative f ′(xm) in the second step is replaced by the following approximation

(with a weight function U, depending on variable sm = f (qm)
f (xm)

):

f ′(xm) ≈
f [qm, νm] + β2 f (νm) + β3(qm − νm)(qm − xm)

U(sm)
. (6)

We replace the derivative f ′(hm) in the third step of the iterative scheme (4) by the follow-
ing approximation:

f ′(hm) ≈ L′3(hm) + β4(hm − νm)(hm − qm)(hm − xm), (7)

where β1, β2, β3, and β4 are free parameters and

L′3(hm) = f [hm, νm] + f [hm, xm] + f [hm, qm]− f [xm, qm]− f [νm, qm]− f [xm, νm]

+
(xm − hm) f (xm)

(xm − νm)(xm − qm)
+

(νm − hm) f (νm)

(νm − xm)(νm − qm)
+

(qm − hm) f (qm)

(qm − νm)(qm − xm)
,

where L′3(hm) is the derivative of Lagrange interpolating polynomial of degree three that
interpolates xm, νm, qm, and hm.
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By using the above approximations, we obtain the following eighth-order iterative
method without memory using four function evaluations per cycle:

νm = xm + β1 f (xm),

qm = xm −
f (xm)

f [νm, xm] + β2 f (νm)
,

hm = qm −U(sm)

(
f (qm)

f [qm, νm] + β2 f (νm) + β3(qm − νm)(qm − xm)

)
(

f (xm) + ω f (qm)

f (xm) + (ω− 2) f (qm)

)
,

xm = hm −
f (hm)

Rm
, (8)

where

Rm = f [hm, νm] + f [hm, xm] + f [hm, qm]− f [xm, qm]− f [νm, qm]− f [xm, νm]

+
(xm − hm) f (xm)

(xm − νm)(xm − qm)
+

(νm − hm) f (νm)

(νm − xm)(νm − qm)
+

(qm − hm) f (qm)

(qm − νm)(qm − xm)

+β4(hm − νm)(hm − qm)(hm − xm).

The next theorem indicates that the proposed method without memory (8) has a conver-
gence order of eight with an efficiency index of 8

1
4 ≈ 1.68179.

Theorem 1. Suppose that f : I f ⊂ R→ R is sufficiently differentiable and η ∈ I f is a real root
of an equation f (x) = 0, where I f ⊂ R is an open interval and x0 is a good initial guess close to
root η. Then, the convergence order of four parametric three-step schemes (8) is at least eight if the
following conditions hold for the weight function U(sm):

U(0) = 1, U′(0) = −1, U′′(0) = 2, (9)

and the error equation of the iterative scheme (8) for all values of β1, β2, β3, and β4 is given as

em+1 =
1

f ′(η)2 ((C2 + β2)
2(β1 f ′(η) + 1)4(2 f ′(η)2ωc2

2β1 + 4 f ′(η)2C2β1β2ω

+2 f ′(η)2β1β2
2ω− 2 f ′(η)2C2

2 β1 − 4β2 f ′(η)2β1C2 − 2 f ′(η)2β1β2
2 + 2 f ′(η)C2

2ω

+4 f ′(η)C2β2ω + 2 f ′(η)2β2
2ω− 2β2 f ′(η)C2 − 2 f ′(η)β2

2 − f ′(η)C3 + β3)

(2 f ′(η)2ωc3
2β1 + 4 f ′(η)2ωC2

2 β1β2 + 2 f ′(η)2ωC2β1β2
2 − 2 f ′(η)2C3

2 β1

−4 f ′(η)2β1β2C2
2 − 2 f ′(η)2C2β1β2

2 + 2 f ′(η)ωC3
2 + 4 f ′(η)ωC2

2 β2 + 2 f ′(η)ωC2β2
2

−2 f ′(η)C2
2 β2 − 2 f ′(η)C2β2

2 − f ′(η)C2C3 + f ′(η)C4 + C2β3

−β4))e8
m + O(e9

m). (10)

Proof. Let em be the error in the root η at mth step, specified as

em = xm − η.

Expanding f (xm) using Taylor series, we obtain

f (xm) = f ′(η)(em + C2e2
m + C3e3

m + C4e4
m + C5e5

m + C6e6
m + C7e7

m + C8e8
m) + O(e9

m),

where

Cn =
f (n)(η)
n! f ′(η)

, n ≥ η.
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We obtain the error term em, ξ = νm − η by using Taylor’s expansion:

em, ξ = (1 + β1 f ′(η))em + β1 f ′(η)(C2e2
m + C3e3

m + C4e4
m + C5e5

m + C6e6
m + C7e7

m + C8e8
m) + O(e9

n).

Similarly, by applying Taylor’s series, we obtain f (ηm), which is given as follows:

f (νm) = f ′(η)((1 + β1 f ′(η))em + β1 f ′(η)C2e2
m + · · ·+ O(e9

m)).

Thus, the error term of qm is

em, w = (C2 + β2)(1 + β1 f ′(η))e2
m + · · ·+ O(e9

m),

where
em, w = qm − η.

By applying Taylor’s expansion, we obtain f (qm), which is given as

f (qm) = f ′(η)[(C2 + β2)(1 + β1 f ′(η))e2
m + · · ·+ O(e9

m)].

Again, by Taylor’s series, we obtained the error expression of hm as follows:

em, z = −(C2 + β2)(U(0)− 1)( f ′(η)β1 + 1)e2
n + (3β1 f ′(η)C3 −U′(0) f ′(η)2C2

2 β1

−U′(0) f ′(η)2β2
1β2

2 − 2U′(0) f ′(η)C2
2 β1 − 2U′(0) f ′(η)β1β2

2 −U(0) f ′(η)2C2β2
1β2

−2U(0) f ′(η)C2β1β2 − 2 f ′(η)β1β2
2 f ′(η)2β2

1β2
2 −U′(0)C2

2 −U′(0)β2
2

−2U′(0) f ′(η)2C2β2
1β2 − 4U′(0) f ′(η)C2β1β2 − 2β2C2 − f ′(η)2C2β2

1β2

−2β2 f ′(η)β1C2 − 2C2
2 + f ′(η)2C3β2

1 − 2β1 f ′(η)C2
2 − β2

1 f ′(η)2C2
2 + U(0)C2

2

−2U(0)C3 − 2U′(0)C2β2 −U(0) f ′(η)2Cc3β2
1 − 3U(0) f ′(η)C3β1 + 2C3

−β2
2)e

3
m + · · ·+ O(e9

m). (11)

In order to achieve fourth-order convergence, we choose U(0) = 1, U′(0) = −1, and
U′′(0) = 2; we have an error term of hm:

em,z =
1

f ′(η)
(( f ′(η)β1 + 1)2(C2 + β2)(2 f ′(η)2ωc2

2β1 + 4 f ′(η)2C2β1β2ω + 2 f ′(η)2β1β2
2ω

−2 f ′(η)2C2
2 β1 − 4β2 f ′(η)2β1C2 − 2 f ′(η)2β1β2

2 + 2 f ′(η)C2
2ω + 4 f ′(η)C2β2ω

+2 f ′(η)2β2
2ω− 2β2 f ′(η)C2 − 2 f ′(η)β2

2 − f ′(η)C3 + β3)e4
m + · · ·+ O(e9

m).

By using the Taylor’s series, we can easily find the expression of f (hm) and Rm that is given
in the newly proposed with-memory method (8). Thus, we obtain a convergence order of
eight in the proposed iterative scheme (8) as follows:

em+1 =
1

f ′(η)2 ((C2 + β2)
2(β1 f ′(η) + 1)4(2 f ′(η)2ωc2

2β1 + 4 f ′(η)2C2β1β2ω

+2 f ′(η)2β1β2
2ω− 2 f ′(η)2C2

2 β1 − 4β2 f ′(η)2β1C2 − 2 f ′(η)2β1β2
2 + 2 f ′(η)C2

2ω

+4 f ′(η)C2β2ω + 2 f ′(η)2β2
2ω− 2β2 f ′(η)C2 − 2 f ′(η)β2

2 − f ′(η)C3 + β3)

(2 f ′(η)2ωC3
2 β1 + 4 f ′(η)2ωC2

2 β1β2 + 2 f ′(η)2ωC2β1β2
2 − 2 f ′(η)2C3

2 β1

−4 f ′(η)2β1β2C2
2 − 2 f ′(η)2C2β1β2

2 + 2 f ′(η)ωC3
2 + 4 f ′(η)ωC2

2 β2 + 2 f ′(η)ωC2β2
2

−2 f ′(η)C2
2 β2 − 2 f ′(η)C2β2

2 − f ′(η)C2C3 + f ′(η)C4 + C2β3

−β4))e8
m + O(e9

n). (12)
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Remark 1. The above theorem verifies that the proposed method (8) has eighth-order convergence
with an efficiency index of 8

1
4 ≈ 1.68179. Furthermore, note that if we chose β1 = − 1

f ′(η) and

β2 = −C2, then the coefficient of e8
m vanishes and we obtain the following error equation:

em+1 =
[
C4

2C3
3
(

β3 − f ′(η)C3
)(

C2
(

β3 − f ′(η)C3
)
+ f ′(η)C4 − β4

)] e14
m

f ′′(η)
+ O

(
e15

m

)
.

By choosing β3 = f ′(η)C3 and β4 = f ′(η)C4, the resulting scheme has an optimal order of
convergence of at least sixteen. In order to accomplish the with-memory iterative scheme, parameters
play an essential role. Thus, from the above error analysis, we observe that the multipoint scheme (8)
is extendable to an iterative scheme with memory.

3. Efficient King’s Type Scheme With Memory

This section covers a significant role in our work. Here, we extend the proposed
optimal scheme (8) such that it achieves the highest possible order and efficiency by using
previous iteration values. We use four self-accelerating parameters, β1, β2, β3, and β4 in the
scheme (8) and approximate these parameters by Newton’s interpolatory polynomial of the
appropriate degree. So, in this way, we can increase the order of convergence. If we choose

β1 = − 1
f ′(η) , β2 = −C2, β3 = f ′(η)C3 and β4 = f ′(η)C4, where Cj =

f (j)(η)
j! f ′(η) and j ≥ 2, then

the order of convergence reaches up to sixteen. Thus, to obtain an iterative scheme with
memory, the parameters β1, β2, β3, and β4 are determined by using the following formulas:

β1 = β1,m = − 1
N′4(xm)

≈ − 1
f ′(η)

,

β2 = β2,m = −
N′′5 (νm)

2N′5(νm)
≈ −C2,

β3 = β3,m = −
N
′′′
6 (qm)

6
≈ f ′(η)C3,

β4 = β4,m = −N
iv

7 (hm)

24
≈ f ′(η)C4. (13)

The above approximations are made by using Newton’s fourth-, fifth-, sixth-, and seventh-
degree interpolatory polynomials, passing through the best available approximations, and
they are given as follows:

N4(ϕ) = N4(ϕ; xm, hm, qm, νm, xm),

N5(ϕ) = N5(ϕ; νm, xm, hm, qm, νm, xm),

N6(ϕ) = N6(ϕ; qm, νm, xm, hm, qm, νm, xm),

N7(ϕ) = N7(ϕ; hm, qm, νm, xm, hm, qm, νm, xm),

for any m ≥ 1. The explicit representations for N4(ϕ), N5(ϕ), N6(ϕ), and N7(ϕ) are given
as follows:

N4(ϕ; xm, hm, qm, νm, xm)

= f (xm) + f [xm, hm](ϕ− xm) + f [xm, hm, qm](ϕ− xm)(ϕ− hm)

+ f [xm, hm, qm, νm](ϕ− xm)(ϕ− hm)(ϕ− qm)

+ f [xm, hm, qm, νm, xm](ϕ− xm)(ϕ− hm)(ϕ− qm)

(ϕ− νm), (14)
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N5(ϕ; νm, xm, hm, qm, νm, xm)

= f (νm) + f [νm, xm](ϕ− νm) + f [νm, xm, hm](ϕ− νm)(ϕ− xm)

+ f [νm, xm, hm, qm](ϕ− νm)(ϕ− xm)(ϕ− hm) + f [νm, xm, hm, qm, νm]

(ϕ− νm)(ϕ− xm)(ϕ− hm)(ϕ− qm) + f [νm, xm, hm, qm, νm, xm]

(ϕ− νm)(ϕ− xm)(ϕ− hm)(ϕ− qm)(ϕ− νm), (15)

N6(ϕ; qm, νm, xm, hm, qm, νm, xm)

= f (qm) + f [qm, νm](ϕ− qm) + f [qm, νm, xm](ϕ− qm)(ϕ− νm)

+ f [qm, νm, xm, hm](ϕ− qm)(ϕ− νm)(ϕ− xm) + f [qm, νm, xm, hm, qm]

(ϕ− qm)(ϕ− νm)(ϕ− xm)(ϕ− hm) + f [qm, νm, xm, hm, qm, νm]

(ϕ− qm)(ϕ− νm)(ϕ− xm)(ϕ− hm)(ϕ− qm)

+ f [qm, νm, xm, hm, qm, νm, xm](ϕ− qm)(ϕ− νm)(ϕ− xm)

(ϕ− hm)(ϕ− qm)(ϕ− νm), (16)

N7(ϕ; hm, qm, νm, xm, hm, qm, νm, xm)

= f (hm) + f [hm, qm](ϕ− hm) + f [hm, qm, ηx](ϕ− hm)(ϕ− qm)

+ f [hm, qm, νm, xm](ϕ− hm)(ϕ− qm)(ϕ− ηx) + f [hm, qm, νm, xm, hm]

(ϕ− hm)(ϕ− qm)(ϕ− νm)(ϕ− xm) + f [hm, qm, νm, xm, hm, qm]

(ϕ− hm)(ϕ− qm)(ϕ− νm)(ϕ− xm)(ϕ− hm)

+ f [hm, qm, νm, xm, hm, qm, νm](ϕ− hm)(ϕ− qm)(ϕ− νm)(ϕ− xm)

(ϕ− hm)(ϕ− qm) + f [hm, qm, νm, xm, hm, qm, νm, xm]

(ϕ− hm)(ϕ− qm)(ϕ− νm)(ϕ− xm)(ϕ− hm)(ϕ− qm)

(ϕ− νm). (17)

Now, we substitute the free parameters β1, β2, β3, and β4 in (8) with β1,x, β2,m, β3,m, and
β4,m. Consequently, we obtain a three-step iterative scheme with memory, as given below:

νm = xm + β1,m f (xm), β1,m = − 1
N′4(xm)

, m ≥ 0,

qm = xm −
f (xm)

f [νm, xm] + β2,m f (νm)
, β2,m = −

N′′5 (νm)

2N′5(νm)
,

β3,m = −
N
′′′
6 (qm)

6
, β4,m = −N

iv

7 (hm)

24
,

hm = ym −U(sm)

(
f (qm)

f [qm, νm] + β2,m f (νm) + β3,m(qm − νm)(qm − xm)

)
(

f (xm) + ω f (qm)

f (xm) + (ω− 2) f (qm)

)
,

xm = hm −
f (hm)

Rm
, (18)

where β1,0, β2,0, β3,0, and β4,0 should be chosen suitably, sm = f (qm)
f (xm)

, and
Rm = f [hm, νm] + f [hm, xm] + f [hm, qm] − f [xm, qm] − f [νm, qm] − f [xm, νm] +

(xm−hm) f (xm)
(xm−νm)(xm−qm)

+ (νm−hm) f (vm)
(νm−xm)(νm−qm)

+ (qm−hm) f (qm)
(qm−νm)(qm−xm)

+ β4,m(hm − νm)(hm − qm)(hm − xm).
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Lemma 1. If β1,m = − 1
N′4(xm)

, β2,m = − N′′5 (νm)

2N′5(νm)
, β3,m = −N

′′′
6 (qm)

6 , β4,m = −N
iv
7 (hm)

24 , for

m = 1, 2, · · · , then the following holds:

1 + β1,m f ′(η) ∼ em−1,zem−1,wem−1,ξ em−1,

c2 + β2,m ∼ em−1,zem−1,wem−1,ξ em−1, (19)

Pm ∼ em−1,zem−1,wem−1,ξ em−1, (20)

Qm ∼ em−1,zem−1,wem−1,ξ em−1, (21)

where

Pm = (2 f ′(η)2ωc2
2β1 + 4 f ′(η)2c2β1β2ω + 2 f ′(η)β2

1β2
2ω− 2 f ′(η)2C2

2 β1

−4β2 f ′(η)2β1C2 − 2 f ′(η)2β1β2
2 + 2 f ′(η)C2

2ω + 4 f ′(η)C2β2ω

+2 f ′(η)2β2
2ω− 2β2 f ′(η)C2 − 2 f ′(η)β2

2 − f ′(η)C3 + β3), (22)

Qm = (2 f ′(η)2ωC3
2 β1 + 4 f ′(η)2ωC2

2 β1β2 + 2 f ′(η)2ωC2β1β2
2 − 2 f ′(η)2C3

2 β1

−4β2 f ′(η)2β1C2
2 − 2 f ′(η)2C2β1β2

2 + 2 f ′(η)ωC3
2 + 4 f ′(η)ωC2

2 β2

+2 f ′(η)ωC2β2
2 − 2 f ′(η)C2

2 β2 − 2 f ′(η)C2β2
2 − f ′(η)C2C3 + f ′(η)C4

+C2β3 − r4). (23)

Proof. The proof follows from Lemma 1 in [15].

Theorem 2. Suppose that x0 is an initial approximation which is close to a root η of a non-
linear function f (x), with f being sufficiently differentiable. If the self-accelerating parameters
β1,m, β2,m, β3,m, and β4,m are evaluated by the formulae given in (13), then the three-step with-
memory scheme (18) has an R-order of convergence of at least 15.5156 with an efficiency index of
15.5156

1
4 ≈ 1.9847.

Proof. Assume that the sequence {xm} is generated by the iterative scheme (18) converging
to a real zero η with at least order r, then we may write

em+1 ∼ er
m, (24)

where em = xm − η. From (24), we obtain:

em+1 ∼ (er
m)

r = er2

m−1. (25)

Let {νm}, {qm}, and {hm} be the iterative sequences of the convergence orders σ1, σ2, and
σ3, then the error relation is of the form:

em,ξ ∼ (er
m)

σ1 = erσ1
m−1, (26)

em,w ∼ (er
m)

σ2 = erσ2
m−1, (27)

em,z ∼ (er
m)

σ3 = erσ3
m−1. (28)
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Now, using (26)–(28) and Lemma 1, we obtain

1 + β1,m f ′(η) ∼ eσ1+σ2+σ3+1
m−1 , (29)

C2 + β2,m ∼ eσ1+σ2+σ3+1
m−1 , (30)

Pm ∼ eσ1+σ2+σ3+1
m−1 , (31)

Qm ∼ eσ1+σ2+σ3+1
m−1 , (32)

where Pm and Qm are given in (22) and (23). So, by Theorem 1, we obtain the following
terms:

em,ξ ∼
(
1 + β1,m f ′(η)

)
em, (33)

em,w ∼
(
1 + β1,m f ′(η)

)
(C2 + β2,m)e2

m, (34)

em,z ∼
[(

1 + β1,m f ′(η)
)2
(C2 + β2,m)Pm

]
e4

m, (35)

em+1 ∼
[(

1 + β1,m f ′(η)
)4
(C2 + β2,m)

2PmQm

]
e8

m, (36)

where Pm and Qm are given in (22) and (23). Now, substitute (24) and (29)–(32) in (33)–(36);
we obtain

em,ξ = eσ1+σ2+σ3+1+r
m−1 , (37)

em,w = e2(σ1+σ2+σ3+1)+2r
m−1 , (38)

em,z = e4(σ1+σ2+σ3+1)+4r
m−1 , (39)

em+1 = e8(σ1+σ2+σ3+1)+8r
m−1 . (40)

By attributing the coefficients of the suitable exponents of em−1 in the pair of following
relations (26)∧(37), (27)∧(38), (28)∧(39), and (25)∧(40), respectively, we obtained the system
of equations in σ1, σ2, σ3, and r as

rσ1 − r− (σ1 + σ2 + σ3 + 1) = 0,

rσ2 − 2r− 2(σ1 + σ2 + σ3 + 1) = 0,

rσ3 − 4r− 4(σ1 + σ2 + σ3 + 1) = 0,

r2 − 8r− 8(σ1 + σ2 + σ3 + 1) = 0. (41)

By solving these equations, we obtain the nontrivial solutions σ1 = 1.939451, σ2 = 3.878902,
σ3 = 7.757804, and r = 15.515609. Hence, the R-order of convergence of the proposed
iterative scheme with memory is at least 15.5156.

4. Some Special Cases of Weight Functions

We choose the following choices of weight functions satisfying the conditions
U(0) = 1, U′(0) = −1, U′′(0) = 2:

U(sm) = 1− sm + 2 sin(sm)
2,

U(sm) =
1

1 + sm − 2s2
m

. (42)

By using the above weight functions defined in (42), we obtain the following special cases
of the proposed without-memory iterative scheme (8):
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Method AK1:

νm = xm + β1,m f (xm),

qm = xm −
f (xm)

f [νm, xm] + β2,m f (νm)
,

hm = qm − (1− sm + 2 sin(sm)
2)

(
f (qm)

f [qm, νm] + β2,m f (νm) + β3,m(qm − νm)(qm − xm)

)
(

f (xm) + ω f (qm)

f (xm) + (ω− 2) f (qm)

)
,

xm+1 = hm −
f (hm)

Rm
, (43)

Method AK2:

νm = xm + β1,m f (xm),

qm = xm −
f (xm)

f [νm, xm] + β2,m f (νm)
,

hm = qm −
(

1
1 + sm − 2s2

m

)(
f (qm)

f [qm, νm] + β2,m f (νm) + β3,m(qm − νm)(qm − xm)

)
(

f (xm) + ω f (qm)

f (xm) + (ω− 2) f (qm)

)
,

xm+1 = hm −
f (hm)

Rm
. (44)

The special cases of the proposed with-memory iterative scheme (18) are as follows:
Method AKM1:

νm = xm + β1,m f (xm), β1,m = − 1
N ′

4(xm)
,

qm = xm −
f (xm)

f [νm, xm] + β2,m f (νm)
, β2,m = −

N′′5 (νm)

2N ′
5(νm)

,

β3,m = −
N
′′′
6 (qm)

6
, β4,m = −

N
iv

7 (hm)

24
,

hm = qm − (1− sm + 2 sin(sm)
2)

(
f (qm)

f [qm, νm] + β2,m f (νm) + β3,m(qm − νm)(qm − xm)

)
(

f (xm) + ω f (qm)

f (xm) + (ω− 2) f (qm)

)
,

xm+1 = hm −
f (hm)

Rm
. (45)

Method AKM2:

νm = xm + β1,m f (xm), β1,m = − 1
N ′

4(xm)
,

qm = xm −
f (xm)

f [νm, xm] + β2,m f (νm)
, β2,m = −

N′′5 (νm)

2N ′
5(νm)

,

β3,m = −
N
′′′
6 (qm)

6
, β4,m = −

N
iv

7 (hm)

24
,

hm = qm −
(

1
1 + sm − 2s2

m

)(
f (qm)

f [qm, νm] + β2,m f (νm) + β3,m(qm − νm)(qm − xm)

)
(

f (xm) + ω f (qm)

f (xm) + (ω− 2) f (qm)

)
,

xm+1 = hm −
f (hm)

Rm
, (46)
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where sm = f (qm)
f (xm)

and

Rm = f [hm, νm] + f [hm, xm] + f [hm, qm]− f [xm, qm]− f [νm, qm]− f [xm, νm]

+
(xm − hm) f (xm)

(xm − νm)(xm − qm)
+

(νm − hm) f (νm)

(νm − xm)(νm − qm)
+

(qm − hm) f (qm)

(qm − νm)(qm − xm)

+β4,m(hm − νm)(hm − qm)(hm − xm).

5. Numerical Experiments

The primary purpose of the development of an iterative scheme for the solution of
nonlinear equations is to achieve as rapid as possible convergence order with minimal cost
of computation. In this section, we compare the newly constructed schemes with already
existing methods. The computational order of convergence (COC) is defined by

COC ≈ log| f (xm+1)/ f (xm)|
log| f (xm)/ f (xm−1)|

.

The computer programming package, Maple 18, is used with 2000 fixed floating points in
the numerical tests. The error approximation (|xm − η|) for the first three iterations is given
in Tables 1–10. We compare the family of without-memory methods (AK1) and (AK2)
and with-memory methods (AKM1) and (AKM2) with the three-step optimal methods
proposed by Lotfi et al. [17], represented by (LM); Cordero et al. [18], represented by (M1);
and Zafar et al. [13], represented by (FWM), which are given below:

Method LM:

νm = xm + α1,m f (xm), α1,m = − 1
N′4(xm)

, m ≥ 2,

qm = xm −
f (xm)

f [xm, νm] + α2,m f (νm)
, α2,m = −

N′′5 (νm)

2N′5(νm)
,

α3,m =
N
′′′
6 (qm)

6
, α4,m =

N
iv

7 (hm)

24
,

hm = qm −
f (qm)

f [qm, xm] + f [νm, xm, qm](qm − xm) + α3,m(qm − νm)(qm − xm)
,

xm+1 = hm −
f (hm)

Bm
, (47)

where x0, α1,0, α2,0, α3,0, and α4,0 are given and

Bm = f [xm, hm] + ( f [νm, xm, qm]− f [νm, xm, hm]− f [qm, xm, hm])(xm − hm)

+α4,m(hm − νm)(hm − qm)(hm − xm).

Method M1:

νm = xm + p1,x f (xm), p1,m = − 1
N ′

4(xm)
, m ≥ 0,

qm = xm −
f (xm)

f [xm, νm] + p2,m f (νm)
, p2,m = −

N′′5 (νm)

2N ′
5(νm)

,

p3,m =
N
′′′

6 (qm)

6
, p4,m =

N
iv

7 (hm)

24
, dm =

f (qm)

f (xm)
,

hm = qm − (1 + 2dm)(1− dm)

(
f (qm)

f [qm, νm] + p2,m f (νm) + p3,m(qm − νm)(qm − xm)

)
,

xm+1 = hm −
f (hm)

Gm
, (48)
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where p1,0, p2,0, p3,0, and p4,0 are given and

Gm = f [qm, hm] + f [hm, qm, xm](hm − qm) + f [hm, qm, xm, νm](hm − qm)(hm − xm)

+p4,m(hm − νm)(hm − qm)(hm − xm).

Method FWM:

νm = xm + b1,x f (xm), b1,m = − 1
N′4(xm)

, m ≥ 0,

qm = xm −
f (xm)

f [xm, νm] + b2,m f (νm)
, b2,m = −

N′′5 (νm)

2N′5(νm)
,

b3,m =
N
′′′
6 (qm)

6
, b4,m =

N
iv

7 (hm)

24
, dm =

f (qm)

f (xm)
,

hm = qm − (1− dm)

(
f (qm)

f [qm, νm] + b2,m f (νm) + b3,m(qm − νm)(qm − xm)

)
(

f (xm) + ω f (qm)

f (xm) + (ω− 2) f (qm)

)
,

xm+1 = hm −
f (hm)

Em
, (49)

where b1,0, b2,0, b3,0, and b4,0 are given and

Em = f [qm, hm] + f [hm, qm, xm](hm − qm) + f [hm, yx, xm, νm](hm − qm)(hm − xm)

+b4,m(hm − νm)(hm − qm)(hm − xm).

For the comparison of the with-memory schemes, we use β1,0 = β3,0 = β4,0 = b1,0 =
b3,0 = b4,0 = α1,0 = α4,0 = p1,0 = p3,0 = p4,0 = 0.01, α2,0 = −0.1, and β2,0 = b2,0 = p2,0 =
α3,0 = 0.1 to start the iterative process.

Table 1. Numerical results of methods without memory for F1(x).

F1(x) = exp(−x)− 1 + 1
5 x, x0 = −0.16, η = 0

|x1− η| |x2− η| |x3− η| COC

LM 2.79× 10−9 2.60× 10−71 1.44× 10−567 7.99

M1 5.84× 10−8 3.78× 10−59 1.16× 10−468 7.99

FWM 5.84× 10−8 3.78× 10−59 1.16× 10−468 7.99

AK1 1.95× 10−8 1.89× 10−63 1.47× 10−503 7.99

AK2 1.08× 10−8 6.47× 10−66 1.11× 10−523 7.99

Table 2. Numerical results of methods with memory for F1(x).

F1(x) = exp(−x)− 1 + 1
5 x, x0 = −0.16, η = 0

|x1− η| |x2− η| |x3− η| COC

LM 2.79× 10−9 3.09× 10−142 3.45× 10−2000 13.97

M1 5.84× 10−8 3.44× 10−120 1.35× 10−1866 15.56

FWM 5.84× 10−8 3.44× 10−120 1.35× 10−1866 15.56

AKM1 1.95× 10−8 7.52× 10−128 2.29× 10−1985 15.56

AKM2 1.08× 10−8 5.43× 10−132 1.80× 10−2000 15.15
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Table 3. Numerical results of methods without memory for F2(x).

F2(x) = x9− 29x8 + 349x7− 2261x6 + 8455x5− 17663x4

+15927x3 + 6993x2− 24732x + 12960, x0 = 1.09, η = 1

|x1− η| |x2− η| |x3− η| COC

LM 1.85× 10−4 9.40× 10−23 4.05× 10−169 8.00

M1 3.24× 10−3 1.72× 10−8 4.04× 10−51 8.08

FWM 3.24× 10−3 1.72× 10−8 4.04× 10−51 8.08

AK1 1.43× 10−5 9.45× 10−29 3.43× 10−214 8.00

AK2 1.55× 10−4 9.50× 10−23 1.82× 10−168 8.00

Table 4. Numerical results of methods with memory for F2(x).

F2(x) = x9− 29x8 + 349x7− 2261x6 + 8455x5− 17663x4

+15927x3 + 6993x2− 24732x + 12960, x0 = 1.09, η = 1

|x1− η| |x2− η| |x3− η| COC

LM 1.85× 10−4 5.87× 10−57 4.16× 10−881 15.69

M1 3.24× 10−3 1.14× 10−36 1.59× 10−569 15.92

FWM 3.24× 10−3 1.14× 10−36 1.59× 10−569 15.92

AKM1 1.43× 10−5 3.99× 10−78 7.98× 10−1215 15.67

AKM2 1.55× 10−4 1.54× 10−57 6.74× 10−892 15.74

Table 5. Numerical results of methods without memory for F3(x).

F3(x) = x4 + 11.50x3 + 47.49x2 + 83.06325x +51.23266875,

x0 = 1.09, η = 1

|x1− η| |x2− η| |x3− η| COC

LM 1.10× 10−9 3.80× 10−71 7.82× 10−563 7.99

M1 4.27× 10−8 4.58× 10−57 8.12× 10−449 7.99

FWM 4.27× 10−8 4.58× 10−57 8.12× 10−449 7.99

AK1 1.64× 10−8 7.60× 10−61 1.63× 10−479 7.99

AK2 4.37× 10−9 8.300× 10−66 1.41× 10−519 7.99

Table 6. Numerical results of methods with memory for F3(x).

F3(x) = x4 + 11.50x3 + 47.49x2 + 83.06325x +51.23266875,

x0 = 1.09, η = 1

|x1− η| |x2− η| |x3− η| COC

LM 1.10× 10−9 8.99× 10−143 3.61× 10−1998 13.94

M1 4.27× 10−8 1.10× 10−116 3.95× 10−1854 15.99

FWM 4.27× 10−8 1.10× 10−116 3.95× 10−1854 15.99

AKM1 1.64× 10−8 2.45× 10−123 1.52× 10−1960 15.99

AKM2 4.37× 10−9 1.57× 10−132 3.71× 10−1998 15.11
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Table 7. Numerical results of methods without memory for F4(x).

F4(x) = 1
3x4 − x2− 1

3x + 1, x0 = 1.25, η = 1

|x1− η| |x2− η| |x3− η| COC

LM 6.33× 10−7 5.89× 10−50 3.29× 10−394 7.99

M1 1.38× 10−8 5.58× 10−64 3.94× 10507 8.00

FWM 1.38× 10−8 5.58× 10−64 3.94× 10507 8.00

AK1 1.38× 10−8 1.22× 10−63 4.54× 10−504 7.99

AK2 1.38× 10−8 1.48× 10−63 2.60× 10−503 7.99

Table 8. Numerical results of methods with memory for F4(x).

F4(x) = 1
3x4 − x2− 1

3x + 1, x0 = 1.25, η = 1

|x1− η| |x2− η| |x3− η| COC

LM 6.33× 10−7 1.43× 10−95 1.01× 10−1469 15.50

M1 1.38× 10−8 1.16× 10−122 2.13× 10−1891 15.50

FWM 1.38× 10−8 1.16× 10−122 2.13× 10−1891 15.50

AKM1 1.38× 10−8 1.19× 10−122 2.93× 10−1891 15.50

AKM2 1.38× 10−8 1.20× 10−122 3.44× 10−1891 15.50

Table 9. Numerical results of methods without memory for F5(x).

F5(x) = sin(x)− 1
100 x, x0 = 0.7, η = 0

|x1− η| |x2− η| |x3− η| COC

LM 1.60× 10−5 1.24× 10−43 1.56× 10−348 8.00

M1 8.83× 10−7 8.08× 10−54 4.01× 10−430 7.99

FWM 8.83× 10−7 8.08× 10−54 4.01× 10−430 7.99

AK1 6.19× 10−7 4.26× 10−55 2.15× 10−440 7.99

AK2 4.33× 10−7 2.32× 10−56 1.56× 10−450 7.99

Table 10. Numerical results of methods with memory for F5(x).

F5(x) = sin(x)− 1
100 x, x0 = 0.7, η = 0

|x1− η| |x2− η| |x3− η| COC

LM 1.60× 10−5 1.23× 10−80 1.20× 10−1260 15.71

M1 8.83× 10−7 5.98× 10−99 1.26× 10−1547 15.72

FWM 8.83× 10−7 5.98× 10−99 1.26× 10−1547 15.72

AKM1 6.19× 10−7 6.68× 10−101 3.56× 10−1578 15.72

AKM2 4.33× 10−7 6.74× 10−103 1.95× 10−1609 15.72

5.1. Location of Maximum Energy Distribution

Planck’s radiation law

θ =
8πabq−5

eab/quv − 1
,

where θ is the energy density within an isothermal black body, q is the wavelength of
radiation, v is the absolute temperature of the black body, b is Planck’s constant, u is the
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Boltzmann’s constant, and a is the speed of light. To determine the wavelength which
maximizes the energy density, we calculate

dθ

dq
=

8πabq−5

eab/quv − 1

(
−5 +

(ab/quv)eab/quv

eab/quv − 1

)
.

The term in front of the parentheses is zero in the limits, as q → 0 and as q → ∞,
although both of these situations give rise to minima in the energy density. The maximum
we are seeking arises when the term inside the parenthesis is zero. This happens when

1− ab
5qmaxuv

= e−ab/qmaxuv,

where qmax is the wavelength that maximizes the energy density. If we let x = ab/qmaxuv,
then the equation for the maximum becomes

1− x
5
= e−x.

Let us define the function
F(x) = e−x − 1 +

x
5
= 0. (50)

The problem is now converted into a root-finding problem, as shown in (50). The solution
of the equation is 4.965114232, 0.

5.2. Eigenvalue Problem

One of the most challenging and toughest tasks of linear algebra concerns the eigen-
values of a large square matrix. Another big task is to find the roots of the characteristics
equation of a square matrix greater than 4. So, we consider the following 9× 9 matrix [19]:

S =
1
8



−12 0 0 19 −19 76 −19 18 437
−64 24 0 −24 24 64 −8 32 376
−16 0 24 4 −4 16 −4 8 92
−40 0 0 −10 50 40 2 20 242
−4 0 0 −1 41 4 1 0 25
−40 0 0 18 −18 104 −18 20 462
−84 0 0 −29 29 84 21 42 501
16 0 0 4 4 −16 4 16 −92
0 0 0 0 0 0 0 0 24


The characteristics polynomial of the above matrix S is given as follows:

F(x) = x9− 29x8 + 349x7− 2261x6 + 8455x5− 17663x4 + 15927x3 + 6993x2− 24732x + 12960 (51)

The problem is now converted into a root-finding problem, as shown in (51). The solution
of the equation is 1, 4, 5, 8,−1, 3, 3, 3, 3.

5.3. Continuous Stirred-Tank Reactor (CSTR)

We assume an isothermal stirred-tank reactor (CSTR). Consider the components B and
G, which represent the feed rates to reactors Q and q−Q, respectively.

B + G → Q

Q + G → C1

C1 + G → D1

D1 + G → E1
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To develop simple feedback control systems, Douglas analyzed this problem in [20].
In the investigation of this system, he presented the following equation for the transfer
function of the reactor with a proportional control system:

Gc
2.98(x + 2.25)

(x + 1.45)(x + 2.85)2(x + 4.35)
= −1,

where Gc is the gain of the proportional controller. If we take Gc = 0, we obtain the
nonlinear equation:

F(x) = x4 + 11.50x3 + 47.49x2 + 83.06325x + 51.23266875. (52)

Transfer equations have four negative real roots, given as

x1 = −1.45; x2 = −2.85; x3 = −2.85; x4 = −4.45.

These roots are called the poles of the open-loop transfer function. Table 11 shows the test
functions, exact roots, and initial approximations.

For the sake of comparison, a variety of test functions are considered. Our without-
memory methods (AK1) and (AK2) performed better for test functions F2(x), F4(x), F5(x),
F6(x), and F7(x). In the case of the with-memory methods, (AKM1) and (AKM2) per-
formed exceptionally well for all the test functions F1(x), F2(x), F3(x), F4(x), F5(x), F6(x),
and F7(x). All these results can be verified from Tables 1, 3, 5, 7, 9, 12, and 13 in the case
of without-memory methods and from Tables 2, 4, 6, 8, 10, 14, and 15 in the case of with-
memory methods. Considering the above-mentioned facts, it is concluded that our newly
constructed with- and without-memory methods are robust, proficient, and considerably
better than the already existing schemes of similar types.

Table 11. Test functions for comparison of different methods.

Ex. Test Functions Exact Root Initial Point

1 F1(x) = exp(−x)− 1 + 1
5 x η = 0 x0 = −0.16

2 F2(x) = x9 − 29x8 + 349x7 − 2261x6 + 8455x5 η = 1 x0 = 1.09

−17663x4 + 15927x3 + 6993x2 − 24732x + 12960

3 F3(x) = x4 + 11.50x3 + 47.49x2 + 83.06325x + 51.23266875 η = −4.3 x0 = −4.35

4 F4(x) = 1
3x4 − x2 − 1

3x + 1 η = 1 x0 = 1.25

5 F5(x) = sin(x)− 1
100 x η = 0 x0 = 0.7

6 F6(x) = arctan(x) η = 0 x0 = 1

7 F7(x) = x3 + x2 − 3x− 3 η = −1 x0 = 0.12

Table 12. Numerical results of methods without memory for F6(x).

F6(x) = arctan(x), x0 = 1, η = 0

|x1− η| |x2− η| |x3− η| COC

LM 3.90× 10−2 2.16× 10−16 2.14× 10−130 7.99

M1 1.98× 10−2 1.36× 10−19 4.56× 10−156 7.95

FWM 1.98× 10−2 1.36× 10−19 4.56× 10−156 7.95

AK1 1.76× 10−2 7.67× 10−20 4.41× 10−158 7.96

AK2 4.12× 10−3 2.35× 10−24 3.31× 10−194 7.96
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Table 13. Numerical results of methods without memory for F7(x).

F7(x) = x3 + x2− 3x− 3, x0 = 0.12, η = −1

|x1− η| |x2− η| |x3− η| COC

LM 1.60× 10−2 4.92× 10−15 4.66× 10−115 7.99

M1 1.74× 10−4 3.61× 10−29 1.27× 10−226 7.99

FWM 1.74× 10−4 3.61× 10−29 1.27× 10−226 7.99

AK1 1.73× 10−4 1.35× 10−29 1.90× 10−230 7.99

AK2 1.73× 10−4 6.46× 10−30 2.45× 10−233 7.99

Table 14. Numerical results of methods with memory for F6(x).

F6(x) = arctan(x), x0 = 1, η = 0

|x1− η| |x2− η| |x3− η| COC

LM 3.90× 10−2 6.65× 10−25 1.07× 10−382 15.71

M1 1.98× 10−2 1.02× 10−30 1.02× 10−474 15.69

FWM 1.98× 10−2 1.02× 10−30 1.02× 10−474 15.69

AKM1 1.76× 10−2 2.31× 10−31 6.29× 10−485 15.70

AKM2 4.12× 10−3 1.83× 10−40 2.08× 10−628 15.74

Table 15. Numerical results of methods with memory for F7(x).

F7(x) = x3 + x2− 3x− 3, x0 = 0.12, η = −1

|x1− η| |x2− η| |x3− η| COC

LM 1.60× 10−2 7.05× 10−31 2.31× 10−484 15.99

M1 1.74× 10−4 1.71× 10−61 1.38× 10−973 15.99

FWM 1.74× 10−4 1.71× 10−61 1.38× 10−973 15.99

AKM1 1.73× 10−4 1.62× 10−61 5.57× 10−974 15.99

AKM2 1.73× 10−4 1.58× 10−61 3.72× 10−974 15.99

6. Stereographic Projection of Iterative Method without Memory

In this section, we analyzed the reliability of the iterative scheme through stereo-
graphic projection, which is a useful tool to provide us significant information about the
convergence and stability of without-memory multipoint iterative schemes. This type of
analysis has been performed by Andrew Nicklawsky [21].

Stereographic projection is a mapping between a sphere and a plane. The set of points
on the surface of the sphere gives a complete representation in 3D space, the directions
being the set of lines from the center of the sphere. It is defined as the unit sphere U2 in 3D
space, and R3 is the set of points (x, y, z) such that

U2 = {(x, y, z) ∈ R3|x2 + y2 + z2 = 1} ⊂ R3.

For the stereographic projection, the transformation of the Cartesian coordinates is as follows:

(x, y, z) = (
2X

1 + X2 + Y2 ,
2Y

1 + X2 + Y2 ,
−1 + X2 + Y2

1 + X2 + Y2 ).
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The transformation of the Polar coordinates is as follows:

(r, θ, z) =
(

2R
1 + R2 ,	,

R2 − 1
R2 + 1

)
.

The origin of the above two projections is (0, 0): the point (0, 0,−1) is on the south pole,
the interior of the unit circle is mapped on the southern hemisphere, and the unit circle is
mapped on the equator. The point (0, 0, 1) is on the north pole, which is undefined but can
be considered the manifestation of infinity as the points growing closer to it come from
points in the plane increasingly distant from the origin. We take three complex polynomials
to obtain the stereographic projection of different methods, which are

r1(z) = z3 − 1.

r2(z) = z5 − 1.

r3(z) = z6 − 1.

To generate the stereographic projection, we used a maximum of 60 iterations with 200 reso-
lutions implemented in the computer programming language MATLAB R2014a. The roots
of each polynomial are marked with different colors. r1(z) has three roots, so it can be seen
from the stereographic images of r1(z) that three colors appeared, and these three colors
reflect three roots, where the black color is used for divergence. The same holds in the case
of r2(z), where five colors can be seen, and in the case of r3(z), where six colors of roots
can be seen from the stereographic projections. If the sequence of root-finding iterative
schemes converges in a smaller number of iterations, then the color will be bright, and if it
is not converging to any of the roots, then the initial root is allotted with black color. In the
following figures, we used a lower value of −2 and an upper value of 2 with an increment
of 0.1 on polynomials of 3rd, 5th, and 6th degree. The dynamical behavior of the newly
proposed without-memory iterative schemes (AK1) and (AK2) and the known schemes
without memory by Zafar et al. [13] (FWM), Cordero et al. [18] (M1), and Lotfi et al. [17]
(LM) are seen in Figures 1–6.

Figure 1. Stereographic projection of AK1 (left), AK2 (middle), and FWM (right) on r1(z).

Figure 2. Stereographic projection of M1 (left) and LM (Right) on r1(z).

Figure 3. Stereographic projection of AK1 (left), AK2 (middle), and FWM (right) on r2(z).

Figure 4. Stereographic projection of M1 (left) and LM (right) on r2(z).
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Figure 5. Stereographic projection of AK1 (left), AK2 (middle), and FWM (right) on r3(z).

Figure 6. Stereographic projection of M1 (left) and LM (right) on r3(z).

Figures 1–6 show the region of convergence and divergence through the stereographic
projection of the developed families (AK1) and (AK2) compared with the existing families
of the same domain. It can be seen from Figures 1 and 2. that the newly developed
methods AK1 and AK2 have wider and brighter regions of convergence and less regions
of divergence as compared with FWM and M1, and their stability is comparable with LM
in the case of r1(z). The same behavior can be observed from Figures 3 and 4 in the case
of polynomial r2(z) and Figures 5 and 6 in the case of r3(z). Since the dynamical behavior
of the presented families (AK1) and (AK2) have less black color in contrast with (FWM)
and (M1), the stability and consistency of the newly proposed family is evident from the
stereographic projection.

Without-memory iterative methods are algorithms that determine a subsequent itera-
tion exclusively from the previous one. The current iteration, which is located on the sphere,
can be converted to a point on the plane via stereographic projection. The next iterate is
then obtained by applying the iteration process in the plane and projecting the resulting
point back onto the sphere. This method can make the computation of iterates simpler,
because working with points on a plane rather than a sphere may be simpler. Additionally,
stereographic projection can show how iterates move on the sphere during the progress of
an iteration, which can give geometric insight into how iterative techniques behave.

7. Dynamical Analysis of Iterative Methods With Memory

It is interesting to visualize the convergence region and stability of an iterative scheme
through complex tools, such as symmetric basins of attraction and stereographic projections.
The basic definitions and complex behavior of rational functions can be found in [22–25].
In the previous section, we investigated stereographic projections, and here, we analyze
their symmetric basins of attractions for various iterative methods.

From a numerical viewpoint, complex properties of rational functions associated with
iterative schemes give us significant information about their stability. To generate symmetric
basins of attractions, we used two different scheme on Matlab R2014a. We consider a square
box B = [−2, 2]× [−2, 2] ∈ C with 200× 200 grids. An initial approximation for the zero
of a polynomial lies in the basins of attractions if an iterative method converges to it with
stopping criterion; | f (ξm)| < 10−5.

The first scheme assigns a specific shade to the initial points in order to visualize the
convergence speed as a function of the number of iterations. Each initial point is assigned
a unique color. If the iterative scheme’s sequence converges in fewer iterations, the color
is brighter; if it does not converge to any of the roots after 30 iterations, the initial root
is assigned a dark blue color. We use the same scale in the second method but assign
a shade to each starting point based on the number of iterations required for the root-
finding scheme to converge to any of the given function’s roots. We use a maximum of
25 iterations and the same stopping criteria as previously stated. If an iterative scheme
does not converge within the specified number of iterations, it is said to be divergent for
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that particular starting point and is denoted by black shade. To generate symmetric basins
of attractions (polynomiographs), we employ three complex functions, which are

y3(ξ) = ξ3 − 1, ξ = 1.0,−0.5000 + 0.86605I,−0.5000− 0.86605I

y5(ξ) = ξ5 − 1, ξ = 1.0, 0.3090 + 0.95105I,−0.8090 + 0.58778I,

−0.8090− 0.58778I, 0.30902− 0.95105I.

y6(ξ) = ξ6 − 1
2

ξ5 +
11(i + 1)

4
ξ4 − 3i + 19

4
ξ3 +

5i + 11
4

ξ2 +
i− 11

4
ξ +

3
2
− 3i,

ξ = −1.0068 + 2.0047i, 0.0281 + 0.9963i, 0.0279− 1.5225i,

1.0235− 0.9556i, 0.9557− 0.0105i,−0.5284− 0.5125i.

The symmetric basins of attractions of the proposed with-memory schemes (AKM1) and
(AKM2) and the existing methods with memory by Zafar et al. [13] (FWM), Lotfi et al. [17]
(LM), and Cordero et al. [18] (M1) are shown in Figures 7–9.

(AKM1) (AKM1) (AKM2) (AKM2)

(FWM) (FWM) (LM) (LM)

(M1) (M1)

Figure 7. The convergence regions of different methods with memory for y3(ξ).

According to Figures 7–9, we conclude that with-memory methods (45) and (46),
depending upon self-accelerating parameters calculated by (12), have the fastest order of
convergence, as their convergence regions are darker and brighter than the other known
schemes. Our methods (AKM1) and (AKM2) have wider convergence regions as com-
pared with (FWM), (LM), and (M1). Thus, the proposed schemes are more reliable and
have better convergence regions than (FWM), (LM), and (M1).

Additionally, the investigation of attraction basins can indicate the possibility of differ-
ent solutions, which could have significant implications for the modeled system. In physics,
for instance, the existence of numerous stable solutions can cause phase transitions, while in
optimization problems, the existence of several solutions can point to the existence of local
minima or maxima. In conclusion, the analysis of attraction basins offers a potential tool
for comprehending the behavior of iterative approaches and enhancing their effectiveness.
It can help professionals and researchers across a range of disciplines in more effectively
and precisely resolving challenging issues.
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(AKM1) (AKM1) (AKM2) (AKM2)

(FWM) (FWM) (LM) (LM)

(M1) (M1)

Figure 8. The convergence regions of different methods with memory for y5(ξ).

(AKM1) (AKM1) (AKM2) (AKM2)

(FWM) (FWM) (LM) (LM)

(M1) (M1)

Figure 9. The convergence regions of different methods with memory for y6(ξ).

8. Conclusions

In this paper, we developed a new family of optimal eighth-order derivative-free
iterative method without memory for finding simple roots of nonlinear equations based on
King’s scheme [2] and Lagrange interpolation. A convergence analysis is presented to show
that the proposed method without memory has an optimal order of convergence of eight.
Furthermore, we used four self-accelerating parameters and one variable’s weight function
to extend the special cases (AK1) and (AK2) of the proposed family without memory to
iterative schemes with memory, (AKM1) and (AKM2), without using additional func-
tion evaluations. We successfully increased the order of convergence from 8 to 15.51560.
The efficiency index of the proposed family without memory is increased from 1.6817 to
1.9847 without using additional functional evaluations. For the sake of comparison and
implementation of the proposed and existing iterative schemes with and without memory,
numerical results are presented using various test problems, including the eigenvalue
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problem, continuous stirred-tank reactor, and energy distribution for Planck’s radiation.
Various dynamical approaches are presented to see the effectiveness of competitive iterative
schemes: 3D stereographic projection in the case of iterative schemes without memory and
2D symmetric basins of attractions in the case of iterative schemes with memory. Such
a rich analysis is rarely found in the literature. From both approaches, it is evident that
our newly developed schemes are more stable, robust, and competent in their respective
domains. Future research and analysis of the proposed scheme may be carried out in terms
of stability and wide convergence zones in various domains. Visualizing the behavior of the
iterative approaches may need looking into the usage of other graphical tools in addition
to 2D symmetric basins of attraction and 3D stereographic projections.
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