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Abstract: The study introduces a new threshold method based on a neutrosophic set. The proposal
applies the neutrosophic overset and underset concepts for thresholding the image. The global
threshold method and the adaptive threshold method were used as the two types of thresholding
methods in this article. Images could be symmetrical or asymmetrical in professional disciplines;
the government maintains facial image databases as symmetrical. General-purpose images do
not need to be symmetrical. Therefore, it is essential to know how thresholding functions in both
scenarios. Since the article focuses on biometric image data, face and fingerprint data were considered
for the analysis. The proposal provides six techniques for the global threshold method based on
neutrosophic membership, indicating neutrosophic TF overset (NOTF), neutrosophic TI overset
(NOTI), neutrosophic TIF overset (NOTIF), neutrosophic TF underset (NUTF), neutrosophic TI
underset (NUTI), neutrosophic TIF underset (NUTIF); similarly, in this study, the researchers
generated six novel approaches for the adaptive method. These techniques involved an investigation
using biometric data, such as fingerprints and facial images. The achievement was 98% accurate for
facial image data and 100% accurate for fingerprint data.

Keywords: neutrosophic sets; computer vision; global threshold; adaptive threshold; biometrics;
neutrosophic threshold

1. Introduction

Enhancing an image is necessary to perfect its appearance and highlight certain pro-
cessing aspects of the contained information. Thresholding techniques involve various
algorithms that are based on the characteristics of the image. The gray-level histogram
of the image plays a major role in the task of thresholding, as it allows for the separation
of objects from the image background. Proper thresholding requires the separation of
objects from the background of the image. The characteristics of the image can affect
the outcome directly or indirectly. The neutrosophic theory is applied to digital image
processing and it includes a membership function, an indeterminacy function, and the
non-membership function. The authors implemented the min–max normalization method
to reduce uncertainty noises from the images. Through the computed membership func-
tions, the non-linearity problem was solved by applying the activation functions. The
transformed sets of neutrosophic images helped us to find the similarities and dissim-
ilarities of the image. In addition, to reduce the uncertain noises in an image, Jha [1]
discussed a novel approach of neutrosophic sets (NS) for image segmentation to over-
come the uncertainty intensity issues from the missing data. The interval neutrosophic
sets (INS) enables the transformation of an image and the description of the intervals
of the membership functions. This approach helps to evaluate the contrast between the
membership functions and also defines a score function for INS. Yuan [2] proposed a new
image segmentation method based on INS, and the experimental results showed that it
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achieved higher PSNR values and performed better than the k-means clustering algorithm.
Song [3] proposed a fast image segmentation method that combines a saliency map with
NS (SMNS) to achieve higher accuracy. The SMNS method can effectively solve the issues
of under-segmentation and over-segmentation, and performs well in the presence of salt
and pepper noise, Gaussian white noise, and mixed noise. Multi-class image segmentation
is a method that can handle uncertainty management by weak continuity constraints with
the NS domain [4]. This method segments the images by the spatial and boundary data
of the images. An advantage of this method is that it can perform segmentation without
prior knowledge of the number of classes in the image, using an iterative technique. The
modified Cramer–Rao bound is used to statistically validate noise perturbations. Ji [5]
also proposed a neutrosophic c-means clustering method for color image segmentation
that incorporates gradient-based structural similarity to address misclassification issues.
Instead of using a maximum membership rule, the method implements similarity in the
superpixels. Additionally, the Linguistic neutrosophic cubic set (LNCS) method is used
for NS membership degrees, which aggregates using aggregation operators. The LNCS
method is validated with various noise types, including Gaussian, speckle, and Poisson
noises. The neutrosophic convolutional neural network (NCNN) is a method that involves
the NS theory in CNN techniques to segment or classify the images. NCNN achieves 5.11%
and 2.21% on MNIST and CIFAR-10 datasets, respectively, for five different noise levels.
Yang [6] introduced an adaptive local ternary pattern (ALTP) by using Weber’s law. The
ALTP features select the threshold for local ternary patterns based on automatic strategies.
This proposal focused on face recognition with the center-symmetric adaptive local ternary
(CSALT). The CSALT patterns extract better discriminative information patterns from facial
images. For ORL and JAFEE face datasets, the weighted nonnegative matrix factorization
(WNMF) achieved 98% and 100%, respectively, which are more efficient than the PCA
algorithm [7]. Alagarsamy [8] proposed ear and face recognition by the method of the
Runge–Kutta threshold with ring projection. This proposal was examined for the IIT Delhi
dataset and ORL face data; the level of achievement was approximately 96%. An analysis
of ear symmetry is necessary to understand the possibility of matching an individual’s left
and right ears. Reconstructed portions of the ear were occluded in a surveillance video.
The ear symmetry was assessed geometrically using symmetry operators and Iannarelli’s
measurements [9]. Das [10] proposed a new approach—a pixel-based scheme to segment
fingerprint images. This proposal consists of three phases: image enhancement, threshold
evaluation, and post-processing. Based on the analysis, the author concluded that the SVM
algorithm is not suitable when the speed of recognition is the key factor. From the opening
and closing of the morphological operations, Wan [11] improved the robustness of Otsu’s
algorithm. In this direction, we present a literature review of the individual contributions
in this area.

In this aspect, regarding biometric data, such as fingerprint and face data, NS and
thresholding play important roles. Our objective is to utilize NS, with its membership
functions, to produce better outcomes by analyzing the data in three ways. Each NS
domain image contains more features than the classical features of the images, which is
advantageous in making decisions in scenarios where indeterminacy exists. Since biometric
data contains both symmetrical and asymmetrical types of images, it is essential to analyze
both aspects. In this study, we limited our focus to fingerprint and facial images. Our aim
is to take on the responsibility of implementing NS overset and underset concepts in the
thresholding process. This method will threshold images by dual or triple-step conditions.
We use the concept of thresholding in neutrosophic for face and fingerprint images because
our goal is to integrate these concepts. The remaining sections of this article are organized
as follows: Section 2 presents the preliminaries, Section 3 explains the proposed method,
and Section 4 summarizes the findings and discusses the results obtained. Our conclusions
and the scope of the article’s future work are presented in Section 5.
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2. Preliminaries

Definition 1. Let X be a universe of discourse, with a generic element in X denoted by x, then a
neutrosophic set, A, is an object with form [12]

A = {(x, TA(x), IA(x), FA(x)}

where the functions T, I, F : X →]−0, 1+[ define, respectively, the degree of truth, the degree of
indeterminacy, and the degree of the falsity of the element x ∈ X to the set condition.

−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+

Definition 2 ([13]). Let X be a space of points (objects), with a generic element in X denoted byx.
A single-valued neutrosophic set (SVNS) A in X is characterized by the truth membership function
TA, indeterminacy membership function IA, and falsity membership function FA. For each point, x
in X, TA, IA, FA ∈ [0, 1]. When X is continuous, SVNS A can be written as

A =
∫

X
〈Tx, Ix, Fx〉/x, x ∈ X (1)

when X is discrete, SVNS A can be written as

A =
n

∑
i=1
〈Tx, Ix, Fx〉/x, x ∈ X (2)

Definition 3. A neutrosophic image PNR is characterized by neutrosophic components, which are
T, I, F, where PNR are the pixel values of the image. Neutrosophic images are universally approached
with gray-level images. Therefore, the neutrosophic image set is defined as [14]

PNR(i, j) = {T(i, j), I(i, j), F(i, j)} (3)

In general, mean values and standard deviations of the image are taken as truth and indeterminacy
memberships. The image transformation pixels are made by the following formulae

T(i, j) =
p̄(i, j)− p̄ min
p̄ max− p̄ min

p̄(i, j) =
1

w ∗ w

m=i+ w
2

∑
m=i− w

2

n=j+ w
2

∑
n=j− w

2

p(m, n)

I(i, j) =
δ(i, j)− δ min
δ max−δ min

δ(i, j) = | p(i, j)− p̄(i, j) |
F(i, j) = 1− T(i, j)

where p̄(i, j) is the pixel mean in the region w ∗ w and w is generally w = 2n + 1, (n ≥ 1).

Definition 4 (Single-valued neutrosophic overset [15]). Single-valued neutrosophic overset A
is defined as A = {(x, TA(x), IA(x), FA(x)}, such that there exists at least one element in A that
has at least one neutrosophic component that is > 1, and no element has neutrosophic components
that are < 0.

Definition 5 (Single-valued neutrosophic overset [15]). Single-valued neutrosophic underset
A is defined as A = {(x, TA(x), IA(x), FA(x)}, such that there exists at least one element in A that
has at least one neutrosophic component that is < 0, and no element has neutrosophic components
that are > 1.
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The performance measured [16]

η =
| B0 ∩ BT | + | F0 ∩ FT |

| B0 | + | F0 |
(4)

where B0 is the background of the ground truth image, F0 denotes the foreground of the
ground truth image, BT represents the background area pixels, FT denotes the foreground
area pixels in the image, and | . | is the cardinality of the set.

3. Proposed Method

In this article, we modify the overset and underset concepts for image thresholding.
While using this, the performance of the neutrosophic and a single-valued neutrosophic is
more similar. The article uses neutrosophic sets to address the basic concepts.

Definition 6. Let f (x, y) = I(ı, )m×n ∈ R2 be an image, then the zero padding for neutrosophic
image Pk0 is defined with respect to h as follows:

Pk0(g(x, y)) =


f (x, y) if x + h, y + h ≤ max m, max n or

x− h, y− h < min m, min n
0 if x− h, y− h ≥ min m, min n or

x + h, y + h > max m, max n

(5)

where k = 2N+ 1, 3 ≤ k ≤ min(m, n) and h = k mod (2).

Definition 7. Let f (x, y) = I(ı, )m×n ∈ R2 be an image, then the one padding for the neutro-
sophic image Pk1 is defined with respect to h as

Pk1(A) =


f (x, y) if x + h, y + h ≤ max m, max n or

x− h, y− h < min m, min n
1 if x− h, y− h ≥ min m, min n or

x + h, y + h > max m, max n

(6)

where k = 2N+ 1, 3 ≤ k ≤ min(m, n) and h = k mod (2).

Definition 8. Let A = I(ı, )m×n ∈ R2 be an image, then the set of arithmetic mean µ values for
h of the image is defined as

gµ(A) = { f1µ1, f2µ2, ... fcµc} (7)

fcµc = f (A, Pk(A), h)

=
1
h2

i+∆i

∑
k=i−∆i

j+∆i

∑
l=j−∆i

fc(k, l)

where c = {1, 2, . . . min(m, n)} and ∆i, ∆j = {1, 2, .. ≤ h}

Definition 9. Let f (x, y) = I(ı, )m×n ∈ R2 be an image, then the set of the standard deviation
σ values for h (of the image) is defined as

gσ(x, y) = { f1σ1, f2σ2, . . . fcσc} (8)

fcσc = f (A, Pk, h)

=

√√√√ 1
h2

i+∆i

∑
k=i−∆i

j+∆j

∑
l=j−∆j

( fc(k, l)− fcµc)
2
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where c = {1, 2, . . . min(m, n)} and ∆i, ∆j = {1, 2, . . . ≤ h}

Figure 1 displays the truth, indeterminacy, and falsity memberships for the Lena
image. Figure 1b–d exhibit the corresponding memberships for truth, indeterminacy, and
falsity, respectively. Through membership figures, readers can recognize the indeterminacy
peaks that may affect the system to threshold images. On the other hand, the indeterminacy
peaks that correspond to truth and falsity can also impair one’s ability to make decisions.
This is why we present various threshold methods in this article.

(a) Lena image. (b) Truth membership.

(c) Indeterminacy membership. (d) Falsity membership.

Figure 1. Neutrosophic membership visualization, Lena image source: https://en.wikipedia.org/
wiki/File:Lenna_(test_image).png (accessed on 14 December 2022).

3.1. Neutrosophic Overset Global Threshold

Let A = I(ı, )m×n ∈ R2 be an image, then the neutrosophic components of A repre-
sent T, I, F ∈ [0, 1] with respect to h.

Definition 10 (TF Overset). The neutrosophic overset of A based on T, F memberships for the
threshold value α satisfies the following conditions

i. T(x, y) > α and F(x, y) ≤ α
ii. | I(x, y)− arg max(gσ(A)) |> α− arg max(gσ(A))

where

T, I, F = f (A, Pk0 , h, PNR)

fσ(A) = f (gσ, Pk0 , h)

then the binary image for the global threshold value α is defined as

NOTF(Aα) =

{
1 if it satisfies the condition i & ii
0 otherwise.

(9)

https://en.wikipedia.org/wiki/File:Lenna_(test_image).png
https://en.wikipedia.org/wiki/File:Lenna_(test_image).png
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Definition 11 (TI Overset). The neutrosophic overset of A based on T, I memberships for the
threshold value α satisfies the following conditions

i. T(x, y) > α and I(x, y) <
√

α
ii. F(x, y) ≤ α

then the binary image for the global threshold value α is defined as

NOTI(Aα) =

{
1 if satisfies the condition i & ii
0 otherwise

(10)

Definition 12 (TIF Overset). The neutrosophic overset of A based on T, I memberships for the
threshold value α satisfies the following conditions

i. T(x, y) > α
ii. I(x, y) < α
iii. F(x, y) ≤ α

then the binary image for the global threshold value α is defined as

NOTIF(Aα) =

{
1 if it satisfies the condition i ii & iii
0 otherwise.

(11)

The article observes how the accuracy tends to vary with the alpha values in Figure 2.
Here, this article considers three different types of ground truth values: binary using the
OTSU method, normalization, and the minimax normalization method. These metrics are
computed for neutrosophic overset thresholds based onNOTF; Figure 2a,NOTI Figure 2b,
and NOTIF Figure 2c.

(a) NOTF (b) NOTI

(c) NOTIF

Figure 2. Neutrosophic overset global threshold accuracy analysis for various α values.

3.2. Neutrosophic Overset Adaptive Threshold

Let A = I(ı, )m×n ∈ R2 be an image, then the neutrosophic components of A repre-
sent T, I, F ∈ [0, 1] with respect to h.

Definition 13 (TF Overset). The neutrosophic overset of A based on T, F memberships for the
adaptive threshold satisfies the following conditions

i. T(x, y)× (L− 1) > αt(x, y) and T(x, y) > I(x, y)
ii. F(x, y)× (L− 1) < αt(x, y) and F(x, y) > I(x, y)
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where

T, I, F = f (A, Pk0 , h, PNR)

αt = {α1, α2, . . . αt}
= f (A, Pk0 , h, gµ)

The adaptive image over TF of A is

NOTF(Aαt) =

{
gµ if satisfies the condition i & ii
0 otherwise

(12)

then the binary image over TF of A is

NOTF(Aαt
bin) =

{
1 if gµ > 0
0 otherwise

(13)

Definition 14 (TI Overset). The neutrosophic overset of A based on T, I memberships for the
adaptive threshold satisfies the following conditions:

i. T(x, y)× (L− 1) > αt(x, y) and T(x, y) > I(x, y)
ii. I(x, y)× (L− 1) > αt(x, y) and I(x, y) > F(x, y)

The adaptive image over TI of A is

NOTI(Aαt) =

{
gµ if satisfies the condition i & ii
0 otherwise

(14)

then the binary image over TI of A is

NOTI(Aαt
bin) =

{
1 if gµ > 0
0 otherwise

(15)

Definition 15 (TIF Overset). The neutrosophic overset of A based on T, I, F memberships for the
adaptive threshold satisfies the following conditions:

i. T(x, y)× (L− 1) > αt(x, y) or F(x, y)× (L− 1) < αt(x, y)
ii. T(x, y) > I(x, y) or F(x, y) < I(x, y)

The adaptive image over TIF of A is

NOTIF(Aαt) =

{
gµ if satisfies the condition i & ii
0 otherwise

(16)

then the binary image over TF of A

NOTIF(Aαt
bin) =

{
1 if gµ > 0
0 otherwise

(17)

The comparison between the mean adaptive threshold and the Gaussian adaptive
threshold for the multivariate normal distribution is depicted in Figure 3. Figure 3a–f
exhibit the NOTF(Aαt) mean adaptive, Gaussian adaptive, NOTI(Aαt) mean adaptive,
NOTIF(Aαt) mean adaptive, and Gaussian adaptive, respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Neutrosophic overset adaptive thresholding method. (a)NOTF c-means method, (b) NOTF

Gaussian method, (c) NOTI c-means method, (d) NOTI Gaussian method, (e) NOTIF c-means
method and (f) NOTIF Gaussian method. Sudoku image source: https://www.fatalerrors.org/a/
opencv-threshold-segmentation.html (accessed on 15 December 2022).

3.3. Neutrosophic Underset Global Threshold

Let A = I(ı, )m×n ∈ R2 be an image, then the single-valued neutrosophic components
of A represent T, I, F ∈ [0, 1] with respect to h.

Definition 16 (TF Underset). The single-valued neutrosophic underset of A based on T, F mem-
berships for the threshold value α satisfies the following conditions

i. T(x, y) < α and F(x, y) ≥ α
ii. | I(x, y)− arg max(gσ(A)) |> α− arg max(gσ(A))

https://www.fatalerrors.org/a/opencv-threshold-segmentation.html
https://www.fatalerrors.org/a/opencv-threshold-segmentation.html
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where

T, I, F = f (A, Pk1 , h, PNR)

fσ(A) = f (gσ, Pk1 , h)

then the binary image for the global threshold value α is defined as

NUTF(Aα) =

{
0 if satisfies the condition i & ii
1 otherwise

(18)

Definition 17 (TI Underset). The neutrosophic underset of A based on T, I memberships for the
threshold value α satisfies the following conditions

i. T(x, y) < α and I(x, y) <
√

α
ii. F(x, y) ≥ α

then the binary image for the global threshold value α is defined as

NUTI(Aα) =

{
0 if satisfies the condition i & ii
1 otherwise

(19)

Definition 18 (TIF Underset). The neutrosophic underset of A based on T, I, F memberships for
the threshold value α satisfies the following conditions

i. T(x, y) < α
ii. I(x, y) < α
iii. F(x, y) ≥ α

then the binary image for the global threshold value α is defined as

NUTIF(Aα) =

{
0 if satisfies the condition i ii & iii
1 otherwise

(20)

The article demonstrates how the alpha values in Figure 4 tend to alter how accurate
the neutrosophic underset theory is. The accuracy study for this neutrosophic underset of
the global threshold takes into consideration Lena’s image.

(a) NUTF(Aα) (b) NUTI(Aα)

(c) NUTIF(Aα)

Figure 4. Neutrosophic underset global threshold accuracy analysis for various α values.
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3.4. Neutrosophic Underset Adaptive Threshold

Let A = I(ı, )m×n ∈ R2 be an image, then the single-valued neutrosophic components
of A represent T, I, F ∈ [0, 1] with respect to h.

Definition 19 (TF Underset). The neutrosophic underset of A based on T, F memberships for the
adaptive threshold satisfies the following conditions

i. T(x, y)× (L− 1) > αt(x, y) and T(x, y) > I(x, y)
ii. F(x, y)× (L− 1) < αt(x, y) and F(x, y) > I(x, y)

where

T, I, F = f (A, Pk1 , h, PNR)

αt = {α1, α2, . . . αt}
= f (A, Pk1 , h, gσ)

The adaptive image over TF of A is

NUTF(Aαt) =

{
gµ if satisfies the condition i & ii
0 otherwise

(21)

then the binary image over TF of A

NUTF(Aαt
bin) =

{
1 if gµ > 0
0 otherwise

(22)

Definition 20 (TI Underset). The neutrosophic overset of A based on T, I memberships for the
adaptive threshold satisfies the following conditions

i. T(x, y)× (L− 1) > αt(x, y) and T(x, y) > I(x, y)
ii. I(x, y)× (L− 1) > αt(x, y) and I(x, y) > F(x, y)

The adaptive image over TI of A is

NUTI(Aαt) =

{
gµ if satisfies the condition i & ii
0 otherwise

(23)

then the binary image over TI of A

NUTI(Aαt
bin) =

{
1 if gµ > 0
0 otherwise

(24)

Definition 21 (TIF Underset). The neutrosophic underset of A based on T, I, F memberships for
the adaptive threshold satisfies the following conditions

i T(x, y)× (L− 1) > αt(x, y) or F(x, y)× (L− 1) ≤ αt(x, y)
ii T(x, y) > I(x, y) or F(x, y) ≤ I(x, y)

The adaptive image over TIF of A is

NUTIF(Aαt) =

{
gµ if satisfies the condition i & ii
0 otherwise

(25)

then the binary image over TIF of A

NUTIF(Aαt
bin) =

{
1 if gµ > 0
0 otherwise

(26)
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The analog method of the overset adaptive for the multivariate distribution is con-
trasted with the neutrosophic underset adaptive threshold in Figure 5.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Neutrosophic underset adaptive thresholding method. (a) NUTF c-means method,
(b) NUTF Gaussian method, (c) NUTI c-means method, (d) NUTI Gaussian method, (e) NUTIF

c-means method and (f) NUTIF Gaussian method.

The accuracy of a sample image (in comparison with the neutrosophic global and
adaptive threshold approaches) is presented in Tables 1 and 2, respectively.
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Table 1. Accuracy of the global threshold method for α = 0.5.

Lena Image Method ηnorm ηminmax ηOtsu+bin Avg

NOTF 99.378 93.524 98.787 97.23

NOTI 99.578 93.724 98.587 97.296
NOTIF 99.107 95.04 97.271 97.139
NUTF 99.378 93.524 98.787 97.23
NUTI 99.36 93.507 98.804 97.224
NUTIF 99.147 93.293 99.018 97.153

Table 2. Accuracy of the adaptive threshold method based on αt.

Sudoku Image Method ηgauss ηmean Avg

NOTF 92.791 90.844 91.818

NOTI 92.729 90.782 91.756
NOTIF 92.653 90.707 91.68
NUTF 85.013 83.067 84.04
NUTI 84.947 83 83.973
NUTIF 84.947 83 83.973

4. Results and Discussion

We used hardware that supports the 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz
2.42 GHz with 16 GB of RAM capacity for the analysis.

As previously discussed, symmetrical images are present on authenticated documents,
such as passports, driver’s licenses, voter identification cards, Aadhar cards, etc. However,
a face cannot always be symmetrical. Some faces may even be asymmetric when they
have wounds or natural misalignments. Due to the patterns of the structures, symmetric
fingerprint images are very uncommon. Likewise, biometric images include both symmetric
and asymmetric formation images. Therefore, the proposed methods must cooperate
efficiently in both scenarios.

The sample images for each method of visualization are explicit in Figure 6. The
original image is displayed in the first column of the figure, followed by NOTF, NOTI ,
NOTIF, NUTF, NUTI , NUTIF global and adaptive thresholds, in that order. Similarly,
the symmetric image outputs of the proposed thresholding methods are also displayed in
Figure 7. The threshold image is validated using average accuracy, recall, and f1 score. The
ground truth for the global threshold is determined by normalization, minimax, and Otsu
with binary, while the adaptive threshold is based on Gaussian and mean threshold.

Figure 6. Proposed outputs of the sample images.

The article will first investigate biometric data collected from different databases, such
as FVC 2000 [17], FVC 2002- [18], FVC 2004 [19], SD302a [20], SD302d [21], and Soco [22].
A variety of sensor datasets, including low-cost optical sensors, low-cost capacitive sensors,
and optical sensors are included in the dataset FVC 2000. Similar to the previous dataset,
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FVC 2002 includes an optical sensor, a capacitive sensor, and a synthetic fingerprint genera-
tion type that generates fingerprint images that are 110 fingers wide with 8 impressions
(finger deep). The FVC 2004 dataset also contains updated versions of the optical sensor
“V300”, optical sensor “U4000”, thermal sweeping sensor “FCD4B14CB”, and synthetic
fingerprint generation version 3. The databases are significantly more challenging to use
than the FVC2002 and FVC2000 ones due to the intentional perturbations that are produced
by data. The NIST datasets (SD302a and SD302d) were used to generate activity scenarios
where subjects would probably leave their fingerprints on various objects. The activities
and objects were selected to simulate the types of items frequently used in actual law
enforcement casework and different latent print development techniques. The analysis was
made from 18 sample images with various types of datasets.

Figure 7. Proposed output of the symmetric sample image. Original image source: https://en.
wikipedia.org/wiki/File:Braus_1921_395.png (accessed on 28 January 2023).

Table 3 lists the performance accuracy of each approach for the considered fingerprint
data. According to the data in the table, the following technique is advised for each dataset:
FVC 2000—NOTI , FVC 2002—NOTF, NUTF, FVC 2004—NUTI , SD302a—NUTF, NUTI ,
SD302d—NUTI , Soco—NUTI ,NUTIF for global threshold; FVC 2000—NOTF, FVC 2002—
NOTF, NOTI , FVC 2004—NOTIF, SD302a -NOTIF, SD302d—NOTI , Soco—NOTIF for
the adaptive threshold. According to the threshold type, the best method for the global
threshold is NUTI , and the best method for the adaptive thresholds is NOTIF, as shown
Figure 8. Overall, NUTI is preferable to other methods for fingerprint images.

Based on our data, we have found that NOTF performs poorly in comparison to
other global threshold methods. In a set-by-set comparison, the underset method is rec-
ommended for the global threshold. In comparison to the other methods, all underset
methods performed poorly. Even though the set-wise analysis favored the underset meth-
ods, the overset methods dominated the adaptive threshold. The majority of fingerprint
images were asymmetrical, so choosing one of the suggested threshold methods would not
have made much of a difference. This denotes that when using a symmetry analysis, it is
meaningless as to whether an image is symmetric or asymmetric if it is a fingerprint image.
Instead, we use the global threshold method by using neutrosophic underset approaches.
The sample image for the SD302a dataset contained more fingerprint patterns than the
background’s brightness level. Furthermore, it had a few shades of existence where inten-
sity measurements were missing. The image in the dataset with the highest accuracy had
more shades or missing measurements. The neutrosophic overset method is preferable
in cases where the image contains missing data, especially for the SD302a dataset. The
samples in the SD302b dataset, which were completely covered by patterns, performed
remarkably well in the global threshold technique’s neutrosophic underset method and
overset method. However, the overset method outperformed the underset accuracy in
the adaptive approach. With an equivalently bright background, the Soco dataset sample
images contained more dark shades. This dataset performed similar to SD302b when using
the global threshold method. The overset method was more advantageous in the adaptive
case than the underset method. FVC2000 was completely distinct from previous image
types because of the gray features that make fingerprint images. These samples progressed
well toward both global threshold tasks. The underset approach in the adaptive method
aimed to attain the same level of accuracy. Visually, it is evident that the FVC 2002 and 2004
samples are of a similar type, with some ambiguous fingerprint patterns mixed in with
dark shading noise. Undersets performed extraordinarily well in global thresholding for
both datasets. However, oversets in the adaptive methods had some noticeable accuracy.
The results indicate that the NOTF method typically performs poorly in some scenarios in
terms of the global threshold.

https://en.wikipedia.org/wiki/File:Braus_1921_395.png
https://en.wikipedia.org/wiki/File:Braus_1921_395.png
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Table 3. Accuracy of fingerprint data.

Dataset NOTF NOT I NOT IF NUTF NUT I NUT IF

Global Threshold

SD302a
0.331 ± 0.022 0.934 ± 0.054 0.921 ± 0.053 0.886 ± 0.054 0.925 ± 0.054 0.888 ± 0.053
0.324 ± 0.034 0.927 ± 0.003 0.905 ± 0.005 0.923 ± 0.079 0.923 ± 0.003 0.906 ± 0.003
0.312 ± 0.027 0.939 ± 0.016 0.932 ± 0.016 0.893 ± 0.07 0.934 ± 0.015 0.91 ± 0.015

SD302d
0.312 ± 0.025 0.945 ± 0.021 0.934 ± 0.023 0.911 ± 0.064 0.943 ± 0.021 0.924 ± 0.021
0.29 ± 0.021 0.945 ± 0.023 0.942 ± 0.023 0.924 ± 0.052 0.943 ± 0.023 0.929 ± 0.024
0.946 ± 0.028 0.944 ± 0.028 0.929 ± 0.027 0.946 ± 0.028 0.935 ± 0.028 0.894 ± 0.028

Soco
0.429 ± 0.002 0.989 ± 0.009 0.964 ± 0.009 0.664 ± 0.006 0.995 ± 0.009 0.991 ± 0.008
0.464 ± 0.009 0.98 ± 0.031 0.957 ± 0.03 0.533 ± 0.017 0.982 ± 0.031 0.977 ± 0.031
0.39 ± 0.01 0.979 ± 0.028 0.951 ± 0.029 0.777 ± 0.023 0.984 ± 0.028 0.978 ± 0.027

FVC2000
0.382 ± 0.018 0.965 ± 0.036 0.936 ± 0.035 0.795 ± 0.039 0.966 ± 0.036 0.953 ± 0.034
0.394 ± 0.046 0.937 ± 0.095 0.893 ± 0.091 0.805 ± 0.096 0.938 ± 0.095 0.936 ± 0.094
0.972 ± 0.031 0.969 ± 0.031 0.938 ± 0.029 0.972 ± 0.032 0.972 ± 0.032 0.97 ± 0.03

FVC2002
0.924 ± 0.08 0.921 ± 0.081 0.896 ± 0.083 0.924 ± 0.08 0.918 ± 0.08 0.893 ± 0.078
0.445 ± 0.003 0.977 ± 0.005 0.933 ± 0.006 0.701 ± 0.015 0.982 ± 0.006 0.968 ± 0.005
0.948 ± 0.037 0.944 ± 0.037 0.925 ± 0.037 0.948 ± 0.037 0.945 ± 0.037 0.931 ± 0.037

FVC2004
0.427 ± 0.0 0.999 ± 0.0 0.982 ± 0.0 0.608 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
0.408 ± 0.016 0.938 ± 0.053 0.92 ± 0.053 0.657 ± 0.039 0.938 ± 0.054 0.938 ± 0.054
0.411 ± 0.005 0.991 ± 0.014 0.974 ± 0.015 0.648 ± 0.01 0.992 ± 0.014 0.992 ± 0.014

Adaptive Threshold

SD302a
0.835 ± 0.002 0.835 ± 0.002 0.849 ± 0.001 0.837 ± 0.002 0.837 ± 0.002 0.837 ± 0.002
0.686 ± 0.002 0.686 ± 0.002 0.851 ± 0.002 0.846 ± 0.003 0.846 ± 0.003 0.846 ± 0.003
0.858 ± 0.004 0.858 ± 0.004 0.805 ± 0.004 0.794 ± 0.004 0.794 ± 0.004 0.794 ± 0.004

SD302d
0.869 ± 0.006 0.869 ± 0.005 0.788 ± 0.005 0.778 ± 0.005 0.779 ± 0.006 0.779 ± 0.006
0.752 ± 0.001 0.752 ± 0.001 0.88 ± 0.001 0.874 ± 0.002 0.874 ± 0.002 0.874 ± 0.002
0.883 ± 0.004 0.883 ± 0.004 0.856 ± 0.003 0.843 ± 0.004 0.843 ± 0.004 0.843 ± 0.004

Soco
0.852 ± 0.004 0.854 ± 0.004 0.838 ± 0.001 0.791 ± 0.003 0.793 ± 0.003 0.793 ± 0.003
0.824 ± 0.008 0.825 ± 0.008 0.834 ± 0.005 0.802 ± 0.004 0.803 ± 0.004 0.803 ± 0.004
0.718 ± 0.003 0.72 ± 0.004 0.856 ± 0.003 0.81 ± 0.004 0.81 ± 0.004 0.81 ± 0.004

FVC2000
0.901 ± 0.004 0.901 ± 0.004 0.909 ± 0.001 0.903 ± 0.003 0.903 ± 0.003 0.903 ± 0.003
0.858 ± 0.009 0.858 ± 0.009 0.889 ± 0.001 0.851 ± 0.009 0.851 ± 0.009 0.851 ± 0.009
0.633 ± 0.01 0.634 ± 0.01 0.645 ± 0.0 0.754 ± 0.014 0.755 ± 0.014 0.755 ± 0.014

FVC2002
0.847 ± 0.007 0.845 ± 0.006 0.846 ± 0.006 0.831 ± 0.006 0.829 ± 0.006 0.829 ± 0.006
0.728 ± 0.004 0.738 ± 0.005 0.851 ± 0.004 0.849 ± 0.008 0.853 ± 0.008 0.854 ± 0.007
0.937 ± 0.006 0.94 ± 0.006 0.921 ± 0.006 0.871 ± 0.008 0.87 ± 0.008 0.87 ± 0.008

FVC2004
0.848 ± 0.006 0.848 ± 0.006 0.942 ± 0.001 0.77 ± 0.006 0.77 ± 0.006 0.77 ± 0.006
0.644 ± 0.003 0.645 ± 0.004 0.848 ± 0.002 0.8 ± 0.005 0.8 ± 0.005 0.8 ± 0.005
0.832 ± 0.01 0.832 ± 0.009 0.898 ± 0.001 0.764 ± 0.007 0.764 ± 0.008 0.764 ± 0.008

The images we used for the facial image analysis were from Caltech Web Faces [23],
MIT-CBCL [24], RF (real fake) data [25] NIST-MEDS (Multiple Encounter Dataset)-I [26],
and NIST- MEDS-II [27]. Google Image Search was used to collect images of people for
the Caltech Web Faces dataset by attempting to enter frequently given names. The dataset
is accompanied by a ground truth file that provides the positions of the centers of each
frontal face’s eyes, nose, and mouth. It comprises a total of 10,524 human faces in various
scenarios and resolutions, including portrait photos and groups of people. In the MIT-
CBCL database, there are ten faces. These data contain high-resolution images of faces in
frontal, half-profile, and profile views, along with fake images made from 3D head models
made by fitting a morphable model. In MEDS-I and MEDS-II, the resolution and image
sizes vary significantly. The MEDS data offer instances of repeated observations of the
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same person over time and include people of different ages; the baseline performance
benchmark for face detection was carried out by the MITRE Corporation using Google
Picasa. MEDS-I and MEDS-II are intended to promote research and assist the NIST multiple
biometric evaluations. The MEDS-II update roughly doubles the number of images and
expands the metadata support research and evaluation of pose conformance and local facial
features. These data are available to assist the FBI and partner organizations in developing
face recognition tools, techniques, and procedures in order to support next-generation
identification (NGI), forensic comparison, training, analysis, facial image conformance
standards, as well as inter-agency exchange standards. The MITRE Corporation developed
MEDS-I and MEDS-II in the FBI Data Analysis Support Laboratory (DASL). Facial analysis
was made from 15 sample images with various types of datasets.

Images of faces typically differed from those of fingerprints. Multiple objects, such
as ears, eyes, noses, and facial expressions, were not present in fingerprint images. NS
must perform tasks involving face data thresholding in multi-object images. In the global
threshold method for the considered face, the data from Table 4 for CWF—NOTI , for CBCL
and RF—except NOTIF, for MEDS-I—NUTI , NUTIF, and for MEDS-II—NOTI , NUTI ,
and NUTIF perform exceptionally well. Typically, NOTI is preferable for global face data
thresholds. While focusing on the adaptive approach for CWF—NUTF,NUTIF, for CBCL—
all underset methods NUTF, NUTI , NUTIF, for RF—NOTF, for MEDS-I and II NUTF,
NUTI , NUTIF provide impressive results for face data. In terms of general performances,
both the NUTF and NUTIF methods perform admirably; however, regarding the error
rate, the NUTF method is preferable for adaptive purposes; NUTIF is the best possible
method that combines global and adaptive approaches for the considered face dataset. For
facial images, a symmetrical analysis is possible, so using symmetrically based images
for analysis makes sense. In the CW, CBCL, and MEDS-II datasets, symmetric images
perform better than asymmetric images for the neutrosophic global threshold. In this type
of threshold, only MEDS-I under-performs. The RF only contains asymmetric images.
Furthermore, the adaptive threshold method outperforms symmetrical facial images. As
the article suggests, symmetrical facial images perform much better than asymmetrical
ones in the global and adaptive thresholds. Readers can also validate this via Figure 8. In a
set-by-set comparison of the global and adaptive techniques, the underset method models
outperform the overset method. NOTIF performed less efficiently in both global and
adaptive approaches compared to other methods. To better assess the global performance
of these methods, when an image contains multiple objects, the adaptive method is the best
solution. The CWF sample data consisted of facial images, facial images with text, and multi-
object faces with text existences, which were analyzed. Except for TF-based approaches,
the other techniques used to calculate the global threshold have good levels of accuracy.
However, when the TF method was switched to an adaptive approach, it also overcame
its flaws, and all of the suggested methods produced positive results. Comparatively,
the global threshold performs very well compared to the adaptive method in most of the
scenarios. The CBCL samples had bright backgrounds and covered faces. In both global
and adaptive approaches, the accuracy levels of all proposed methods were achieved at
around 90%. The results revealed that all methods performed well and more similarly when
the image did not contain multi-objects or bright backgrounds. Images with expression
scenarios were included in the RF sample data. Expression images passed the global
threshold manner successfully above 91%. However, it would have been challenging to
reach 90% with the adaptive method. As a result, when the α value is well-known, a global
threshold is preferable. The MEDS-I and II datasets, which contain various background
facial images with or without objects, are similar. In an environment with global thresholds,
MEDS-I performed better than MEDS-II. MEDS-I’s global method was not overcome by
MEDS-I in the adaptive concept but the MEDS-II adaptive method’s accuracy overcame
the MEDS-II global method.
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(a) (b)

(c) (d)

Figure 8. Method-wise analysis for the global and adaptive threshold for fingerprint and facial image
data; (a) global method for fingerprint data, (b) adaptive method for fingerprint data, (c) global
method for face data, (d) adaptive method for face data.

Table 4. Accuracy of face data.

Dataset NOTF NOT I NOT IF NUTF NUT I NUT IF

Global Threshold

CWF
0.365 ± 0.027 0.94 ± 0.054 0.925 ± 0.056 0.759 ± 0.072 0.941 ± 0.053 0.94 ± 0.054
0.469 ± 0.008 0.955 ± 0.04 0.934 ± 0.039 0.489 ± 0.031 0.957 ± 0.04 0.95 ± 0.036
0.424 ± 0.005 0.988 ± 0.016 0.973 ± 0.015 0.606 ± 0.012 0.984 ± 0.015 0.977 ± 0.015

CBCL
0.958 ± 0.028 0.952 ± 0.028 0.94 ± 0.028 0.958 ± 0.028 0.958 ± 0.028 0.957 ± 0.027
0.979 ± 0.018 0.979 ± 0.018 0.978 ± 0.018 0.979 ± 0.018 0.979 ± 0.018 0.978 ± 0.018
0.987 ± 0.013 0.987 ± 0.013 0.971 ± 0.013 0.987 ± 0.013 0.987 ± 0.013 0.987 ± 0.013

RF
0.915 ± 0.073 0.915 ± 0.073 0.91 ± 0.074 0.915 ± 0.073 0.915 ± 0.073 0.914 ± 0.073
0.961 ± 0.003 0.96 ± 0.003 0.956 ± 0.004 0.961 ± 0.003 0.961 ± 0.003 0.958 ± 0.003
0.971 ± 0.041 0.971 ± 0.041 0.964 ± 0.04 0.971 ± 0.041 0.971 ± 0.041 0.971 ± 0.041

MEDS-I
0.961 ± 0.029 0.961 ± 0.029 0.954 ± 0.029 0.961 ± 0.029 0.961 ± 0.029 0.958 ± 0.029
0.344 ± 0.013 0.97 ± 0.01 0.96 ± 0.01 0.797 ± 0.032 0.97 ± 0.01 0.97 ± 0.01
0.937 ± 0.063 0.937 ± 0.063 0.925 ± 0.065 0.937 ± 0.063 0.937 ± 0.063 0.937 ± 0.063

MEDS-II
0.383 ± 0.014 0.955 ± 0.01 0.945 ± 0.01 0.688 ± 0.04 0.955 ± 0.01 0.955 ± 0.01
0.431 ± 0.043 0.883 ± 0.103 0.873 ± 0.101 0.545 ± 0.115 0.884 ± 0.107 0.884 ± 0.107
0.356 ± 0.08 0.797 ± 0.188 0.793 ± 0.183 0.516 ± 0.165 0.798 ± 0.188 0.797 ± 0.187
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Table 4. Cont.

Dataset NOTF NOT I NOT IF NUTF NUT I NUT IF

Adaptive Threshold

CWF
0.631 ± 0.005 0.631 ± 0.006 0.826 ± 0.002 0.856 ± 0.007 0.856 ± 0.007 0.856 ± 0.007
0.832 ± 0.007 0.838 ± 0.007 0.81 ± 0.007 0.738 ± 0.009 0.744 ± 0.009 0.744 ± 0.009
0.854 ± 0.011 0.854 ± 0.011 0.841 ± 0.004 0.903 ± 0.01 0.902 ± 0.01 0.903 ± 0.009

CBCL
0.923 ± 0.013 0.923 ± 0.013 0.923 ± 0.012 0.909 ± 0.013 0.909 ± 0.013 0.909 ± 0.013
0.909 ± 0.003 0.909 ± 0.003 0.909 ± 0.004 0.925 ± 0.006 0.925 ± 0.006 0.925 ± 0.006
0.895 ± 0.004 0.895 ± 0.004 0.895 ± 0.004 0.934 ± 0.009 0.934 ± 0.009 0.934 ± 0.009

RF
0.85 ± 0.004 0.85 ± 0.004 0.849 ± 0.004 0.855 ± 0.014 0.855 ± 0.014 0.855 ± 0.014
0.892 ± 0.001 0.892 ± 0.001 0.85 ± 0.001 0.753 ± 0.006 0.753 ± 0.006 0.753 ± 0.006
0.742 ± 0.011 0.742 ± 0.011 0.853 ± 0.0 0.874 ± 0.011 0.874 ± 0.011 0.874 ± 0.011

MEDS-I
0.521 ± 0.008 0.521 ± 0.008 0.597 ± 0.001 0.835 ± 0.014 0.835 ± 0.014 0.835 ± 0.014
0.694 ± 0.006 0.694 ± 0.006 0.808 ± 0.002 0.906 ± 0.012 0.906 ± 0.012 0.906 ± 0.012
0.637 ± 0.004 0.637 ± 0.004 0.636 ± 0.007 0.919 ± 0.015 0.919 ± 0.015 0.919 ± 0.015

MEDS-II
0.498 ± 0.008 0.498 ± 0.009 0.708 ± 0.0 0.857 ± 0.015 0.857 ± 0.015 0.857 ± 0.015
0.442 ± 0.003 0.442 ± 0.003 0.547 ± 0.0 0.964 ± 0.006 0.964 ± 0.006 0.964 ± 0.006
0.76 ± 0.008 0.761 ± 0.008 0.761 ± 0.008 0.818 ± 0.008 0.819 ± 0.008 0.819 ± 0.008

5. Conclusions

This research, expected to demonstrate the effectiveness of the neutrosophic set concept
in handling indeterminacy challenges, can also be applied to image data. We explored
twelve innovative approaches for global and adaptively thresholding images. Following
the procedures, these techniques reveal various image patterns. With the help of these
multiple image patterns, it might be possible to overcome challenges in the threshold task.
The analysis of biometric image data, such as fingerprint and face data, was considered for
the threshold task. Symmetrical and asymmetrical approaches were also investigated. As
per the results, the symmetrical concept was ineffective for fingerprint images but effective
for facial images. Asymmetric faces typically produced worse results than symmetric ones.
Face data scored 98% as the best score and fingerprint images reached maximum accuracy.
Through this study, we found excellent quantitative results. The proposed method was
used mainly for the biometrics dataset. The methods examined different types of fingerprint
and face data, such as sensor type, background intensity, and bright and dark shades in the
images; each dataset was unique from the others. Every NO method, except for NOT F ,
performed with greater than 90% accuracy in the majority of global threshold cases. The
NU method achieved 100% accuracy for fingerprint images depending on the data. When
there were missing measurements in the image and shades presented on both NO and
NU , the latter method had an advantage. We obtained lower adaptive accuracy values
when compared to global. The precise alpha value is essential for the global threshold.
The use of adaptive techniques is preferable when the alpha is unknown. The proposed
methods used the mean intensity value of the local blocks to evaluate the alpha values.
Here, the alpha values vary according to the image block. The advantage of the method is
that it functions well when an image has multiple objects in it. Whenever very few errors
occurred, these methods achieved a maximum of 94% accuracy for fingerprint images.
The difference between the classical threshold and the proposed threshold methods was
analyzed based on their ability to handle indeterminacy. The proposed methods were also
tested on facial images containing multiple objects; all proposed methods except for the
NOT F method yielded positive results in the global thresholding approach. The CBCL
dataset had a maximum face data accuracy of 98%. When comparing the overset and
underset, the underset was the most preferable. The MEDS-II data for adaptive estimation
received 96%, and the underset method was recommended for the image threshold. The
overall findings were that the TF-based overset and underset lacked accuracy. It would
be challenging to improve the better results. Feature segmentation-based techniques have
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the potential to improve biometric recognition by enabling gender, age, and expression
detection, among other things. Furthermore, these techniques could be applied to various
types of image data, including medical images and animal images. If these methods prove
to be effective in all domains, they could become the most impactful image pre-processing
technique. Our primary goal is to implement these techniques in all segments of image
analysis. The proposed methods will be applied to binary image classification for various
types of image datasets in the future.
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Abbreviations

Abbreviations/Symbols Definition
h Block size
T Truth membership
I Indeterminacy membership
F Falsity membership
Pk0 Zero padding
Pk1

One padding
gµ Arithmetic mean function
gσ Standard deviation function
η Performance measure
α Global threshold value
αt Adaptive threshold value
I(ı, )m×n Image with i, j coordinates with m rows and n columns
NOTF(Aα) TF-based neutrosophic overset global threshold of image A
NOTI(Aα) TI-based neutrosophic overset global threshold of image A
NOTIF(Aα) TIF-based neutrosophic overset global threshold of image A
NOTF(Aαt ) TF-based neutrosophic overset adaptive threshold of image A
NOTI(Aαt ) TI-based neutrosophic overset adaptive threshold of image A
NOTIF(Aαt ) TIF-based neutrosophic overset adaptive threshold of image A
NUTF(Aα) TF-based neutrosophic underset global threshold of image A
NUTI(Aα) TI-based neutrosophic underset global threshold of image A
NUTIF(Aα) TIF-based neutrosophic underset global threshold of image A
NUTF(Aαt ) TF-based neutrosophic underset adaptive threshold of image A
NUTI(Aαt ) TI-based neutrosophic underset adaptive threshold of image A
NUTIF(Aαt ) TIF-based neutrosophic underset adaptive threshold of image A
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