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Abstract: In comparison to fractional-order differential equations, integer-order differential equations
generally fail to properly explain a variety of phenomena in numerous branches of science and
engineering. This article implements efficient analytical techniques within the Caputo operator to
investigate the solutions of some fractional partial differential equations. The Adomian decompo-
sition method, homotopy perturbation method, and Elzaki transformation are used to calculate
the results for the specified issues. In the current procedures, we first used the Elzaki transform
to simplify the problems and then applied the decomposition and perturbation methods to obtain
comprehensive results for the problems. For each targeted problem, the generalized schemes of
the suggested methods are derived under the influence of each fractional derivative operator. The
current approaches give a series-form solution with easily computable components and a higher
rate of convergence to the precise solution of the targeted problems. It is observed that the derived
solutions have a strong connection to the actual solutions of each problem as the number of terms in
the series solution of the problems increases. Graphs in two and three dimensions are used to plot
the solution of the proposed fractional models. The methods used currently are simple and efficient
for dealing with fractional-order problems. The primary benefit of the suggested methods is less
computational time. The results of the current study will be regarded as a helpful tool for dealing
with the solution of fractional partial differential equations.

Keywords: analytical techniques; Elzaki transform; fractional differential equations; Caputo operator

1. Introduction

Fractional calculus has been the subject of extensive investigation for a long time.
In the subject of fractional calculus, new methods and mechanisms are constantly being
developed which enable the discovery of significant, difficult insights and previously
unknown connections across many fields of physics. The calculus theory was developed
in the seventeenth century by Newton and Leibniz. Leibniz developed the integral and
derivative notations that are still in use these days. Later, any real order was added to
the definition of the terms’ derivatives and integrals. Lacroix introduced the idea of a
noninteger-order derivative for the first time in 1819. Abel examined the initial application
in 1823 [1]. Therefore, the aforementioned field received considerable attention from
Fourier, Liouville, Riemann, Grunwald, Letnikov, etc. [2,3]. Fractional order differentiation
and integration do not have specific definitions, whereas arbitrary order differentiation
and integration offer an expansion of the classical order. The definitions of arbitrary-order
derivatives and integrations have been introduced by many academics in different ways.
The definitions of Caputo and Riemann–Liouvilli among all these are the most broadly
applicable. All of these approaches are only expansions of the techniques already used to
address the integer case models because the noninteger derivative simplifies the integer
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derivative to any order [4,5]. Thus, the memory effect is a term that is widely used to
describe the study of the dynamics of the function fractionally. The classical derivatives
are gradually shown using the nonlocality of the fractional operators. Fractional operators
are used to define complex memories and a range of other objects that can be studied
using standard mathematical methods like classical differential calculus. Although the
application of the FC concept across several academic areas is still in the early stages, FC
is currently a very promising tool due to its broadening use in the dynamics of complex
nonlinear occurrences.

The main reason for studying numerical methods for fractional differential equations
(FDEs) is that fractional derivative models are becoming more and better liked by the entire
scientific community. Nonlinear partial differential equations (PDEs) have been a popular
subject in the field of nonlinear science and have been used to describe problems in a variety
of areas, including ecology and economic systems, image processing, quantum physics,
and epidemiology. PDEs are frequently utilized in a variety of physical applications, such
as supersonic and turbulent flow, magnetohydrodynamic movement through pipes, wave
dispersion and propagation, computational fluid dynamics, magnetic resonance imaging,
population modeling, medical imaging, electrically signaling nerves, and others [6–8].
To learn more, consider the reference mentioned in [9]. The widespread nature of PDE
has been confirmed by a fairly precise evaluation of the number of COVID patients [10,11].
PDE can be used to predict the shape of COVID-19, as seen in [12]. However, for several
difficult problems in these domains, the fractional PDE is more precise than the integer-
order partial differential equation. Therefore, establishing numerical solutions for fractional
PDEs is important.

The solution of PDEs can be made simpler by using symmetry, which is a fundamental
idea in both mathematics and physics. Particularly, applying symmetry to fractional
PDE solutions can substantially simplify mathematical analysis and provide accurate
or approximative solutions [13,14]. In a fractional PDE, symmetry can be employed to
limit the number of independent variables, which will make the solution process easier.
In addition, solutions that are invariant under specific transformations like translations,
rotations, and scaling can be found using symmetry. This may result in conclusions that
are simpler to understand and have greater physical significance. In general, symmetry
is an effective tool for solving fractional PDEs and can be very helpful in explaining the
underlying physical phenomena [15,16]. A summary of FDEs and their applications may be
found in various significant references. In [17,18], a full review of fractional calculus, FDEs,
and their applications in a variety of domains is covered. In the study of viscoelasticity,
the theory of FDEs and its applications have been examined [19,20].

Due to the complexity of fractional orders, it is difficult to find analytical solutions for
the majority of FDEs. As a result, numerical solutions are found for the aforementioned
FDEs. For this purpose, various numerical algorithms have been developed [21,22]. Spec-
tral methods are numerical methods that use spectral representations of the solution to
approximate the solution of a differential equation. The tau, collocation, and Galerkin
methods are examples of spectral methods that have been used for solving FDEs. The tau
method is a spectral method that uses a shifted Legendre polynomial basis to approximate
the solution of FDEs. This collocation method is a spectral method that uses a basis of
orthogonal polynomials to approximate the solution of FDEs at collocation points. Several
studies have demonstrated the effectiveness of spectral methods for solving FDEs [23–28].
Overall, spectral methods such as the tau, collocation, and Galerkin methods have proven
to be effective for solving FDEs and time-fractional differential equations. These methods
provide accurate solutions with high efficiency, making them valuable tools for modeling
and simulation in various fields.

It is becoming clear that fractional partial differential equations (FPDEs) are an effective
modeling tool for complex multiscale occurrences, including those involving overlapping
microscopic and macroscopic dimensions. The fractional order of the derivatives in FPDEs
can be a function of space and time or even a distribution, in contrast to integer-order
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PDEs. It develops outstanding possibilities for modeling and simulating multi-physics
phenomena, such as the seamless transition from wave propagation to diffusion or from
local to nonlocal dynamics. Numerous well-known scholars have made contributions to
this area due to the importance of analytically solving FPDEs in engineering and science.
Several methods have been investigated in order to investigate approximate solutions to
FPDEs, including the Yang transform decomposition method for fractional-order diffusion
equations [29] and time-fractional phi-four equations [30], the reduced differential trans-
form method for coupled time fractional nonlinear evolution equations [31], and the natural
transform decomposition method for the solution of fractional Caudrey–Dodd–Gibbon
equations [32] and fractional Kuramoto–Sivashinsky equations [33], fractional homotopy
analysis method for solving the fractional epidemic model [34] and fractional KdV–Burgers–
Kuramoto equation [35], homotopy perturbation transform method for solving fractional
Noyes-Field model [36] and time-fractional Fisher’s equation [37], variational iteration
transform method for fractional-order Newell–Whitehead–Segel equations [38] and for
fractional-order Boussinesq equation [39], approximate analytical method for the solution
of time-fractional telegraph equations [40] and the Adams–Bashforth method to study
the time-fractional Tricomi equation with nonlocal and nonsingular kernel [41] and many
more [42–49].

This study described two novel approaches: the Elzaki transform decomposition
method (ETDM) and the homotopy perturbation transform method (HPTM). The Elzaki
transform was introduced by Tarig Elzaki to make solving ordinary and partial differential
equations in the time domain much easier. Since the 1980s, Adomian has developed a
numerical approach for solving functional equations [50,51]. It gives analysis in the form
of a series that converges quickly towards the exact solutions. It is considered a power-
ful method for solving both linear and nonlinear, homogeneous and nonhomogeneous
partial and differential equations of integer and noninteger order. The homotopy per-
turbation method (HPM), which he first suggested in 1998 [52] and later advanced and
enhanced [53,54], leads to a very fast convergence solution in the form of a series. To sum-
marize, the Elzaki transform approach is initially utilized to approximate the Caputo-type
temporal fractional derivative and turn the initial FPDE into its equivalent PDE. The re-
sultant PDE is then solved using the adomian decomposition method and the homotopy
perturbation approach, leading to quick and low-cost methods for solving the original
FPDE. Typically, only one iteration yields high precision in the solution, making it an
effective and valuable mathematical tool for nonlinear equations.

The following is how this study is presented: In Section 2, fractional derivative
definitions and the history of the natural transform method are given. Sections 3 and 4
address the application model of FDEs employing the provided techniques. Section 5 gives
a convergence analysis of the suggested approaches. In Section 6, we solve fractional FDEs.
Our final conclusions are in Section 7.

2. Preliminaries

Here we recall some basic definitions concerned with fractional calculus.

Definition 1. The Riemann–Liouville’s arbitrary order operator is defined by [55–57]

DσK(ρ) =


dς

dρςK(ρ), σ = ς,
1

Γ(ς−σ)
d

dρς

∫ ρ
0

K(ρ)
(ρ−ψ)σ−ς+1 dψ, ς− 1 < σ < ς,

where ς ∈ Z+, σ ∈ R+ and

D−σK(ρ) = 1
Γ(σ)

∫ ρ

0
(ρ− ψ)σ−1K(ψ)dψ, 0 < σ ≤ 1.
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Definition 2. The Riemann–Liouville’s arbitrary order integral operator is defined by [55–57]

JσK(ρ) = 1
Γ(σ)

∫ ρ

0
(ρ− ψ)σ−1K(ρ)dρ, ρ > 0, σ > 0.

with the following properties

Jσρς =
Γ(ς + 1)

Γ(ς + σ + 1)
ρς+ψ,

Dσρς =
Γ(ς + 1)

Γ(ς− σ + 1)
ρς−ψ,

Definition 3. The Caputo’s arbitrary order derivative is defined by [55–57]

DσK(ρ) =


1

Γ(ς−σ)

∫ ρ
0

Kς(ψ)
(ρ−ψ)σ−ς+1 dψ, ς− 1 < σ < ς,

dς

dρςK(ρ), ς = σ.
(1)

having the following properties

Jσ
ρ Dσ

ρK(ρ) = g(ρ)−
m

∑
k=0

gk(0+)
ρk

k!
, f or ρ > 0, and ς− 1 < σ ≤ ς, ς ∈ N.

Dσ
ρ Jσ

ρK(ρ) = g(ρ).

(2)

Definition 4. The Elzaki transform (ET) of the function K(ζ) is taken as [58]

E{K(ζ)} = M(u) = u
∫ ∞

u
e
−ζ
u K(ζ)dζ, ζ > 0. (3)

Definition 5. The ET of fractional Caputo operator is defined by [59]

E[Dσ
ρK(ρ)] = u−σE[K(ρ)]−

n−1

∑
i=0

u2−σ+iK(i)(0), where n− 1 < σ < n.

The transformation of Elzaki is a very useful and powerful method for solving the
integral equation that cannot be solved by the Sumudu transformation method.

In order to obtain ET of partial derivatives, integration by parts may be used in
Equation (2) as given.

1. E[ζn] = n!un+2.

2. E[K′] = M(u)
u
− uK(0).

3. E[K′′] = M(u)
u2 −K(0)− uK′(0).

4. E[Kn] =
M(u)

u2 −
n−1

∑
i=0

u2−n+iK(i)(0).

3. Formulation of HPTM

In this part, we construct the general methodology of HPTM for solving the FPDEs:

Dσ
ζK(ρ, ζ) = [F1 + G1]K(ρ, ζ), ρ, ζ > 0 0 < σ ≤ 1, (4)

having the initial condition
K(ρ, 0) = ϑ(ρ).

with Dσ
ζ = ∂σ

∂ζσ representing the Caputo derivative of order σ, and F1(ρ, ζ), F1(ρ, ζ) are
linear and nonlinear operators.
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By utilizing Definition 5 when n = 1, we obtain

1
uσ
{M(u)− u2K(ρ, 0)} = E[[F1 + G1]K(ρ, ζ)], (5)

then, we obtain
M(u) = u2K(ρ, 0) + uσE[[F1 + G1]K(ρ, ζ)], (6)

where M(u) = E[K(ρ, ζ)].
By using inverse ET, we have

K(ρ, ζ) = K(ρ, 0) + E−1[uσE[[F1 + G1]K(ρ, ζ)]]. (7)

Thus by using HPM, we obtain

K(ρ, ζ) =
∞

∑
m=0

εmKm(ρ, ζ). (8)

where ε ∈ [0, 1] is homotopy parameter and the Ki(ρ, ζ), i = 0, 1, 2, · · · are function yet to
be determined.

The nonlinear term is taken as

G1[K(ρ, ζ)] =
∞

∑
n=0

εnHn(ρ, ζ), (9)

in terms of homotopy polynomial and is calculated as

Hn(ρ, ζ) =
1

Γ(n + 1)
Dk

ε

[
G1

(
∞

∑
n=0

εnKn

)]
ε=0

, (10)

with Dn
ε = ∂n

∂εn .
By putting (8) and (9) in (7), we have

∞

∑
n=0

εnKn(ρ, ζ) = K(ρ, 0) + ε×
(
E−1

[
uσE{F1

∞

∑
n=0

εnKn(ρ, ζ) +
∞

∑
n=0

εn Hn(ρ, ζ)}
])

. (11)

By equating the ε coefficient with both sides

ε0 : K0(ρ, ζ) = K(ρ, 0),

ε1 : K1(ρ, ζ) = E−1[uσE(F1(K0(ρ, ζ)) + H0(ρ, ζ))],

ε2 : K2(ρ, ζ) = E−1[uσE(F1(K1(ρ, ζ)) + H1(ρ, ζ))],
...

εn : Kn(ρ, ζ) = E−1[uσE(F1(Kn−1(ρ, ζ)) + Hn−1(ρ, ζ))], n > 0, n ∈ N.

(12)

Finally, our analytical solution behaves in terms of series as

K(ρ, ζ) = lim
M→∞

M

∑
n=1
Kn(ρ, ζ). (13)

4. Formulation of ETDM

In this part, we construct the general methodology of ETDM for solving the FPDEs:

Dσ
ζK(ρ, ζ) = [F1 + G1]K(ρ, ζ), ρ, ζ > 0 0 < σ ≤ 1, (14)
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having the initial condition
K(ρ, 0) = ϑ(ρ).

with Dσ
ζ = ∂σ

∂ζσ representing the Caputo derivative of order σ, and F1, G1 are linear and
nonlinear operators.

By utilizing the Definition 5 when n = 1, we obtain

1
uσ
{M(u)− u2K(ρ, 0)} = E[[F1 + G1]K(ρ, ζ)], (15)

then, we obtain
M(u) = uK(ρ, 0) + uσE[[F1 + G1]K(ρ, ζ)], (16)

where M(u) = E[K(ρ, ζ)].
By using inverse ET, we have

K(ρ, ζ) = K(ρ, 0) + E−1[uσE[[F1 + G1]K(ρ, ζ)]. (17)

Thus, the series form solution is as

K(ρ, ζ) =
∞

∑
n=0
Kn(ρ, ζ). (18)

The illustration of a nonlinear term is as

G1[K(ρ, ζ)] =
∞

∑
n=0
An(ρ, ζ). (19)

with

An(ρ, ζ) =
1
n!

[
∂n

∂`n

{
G1

(
∞

∑
n=0

`nKn

)}]
`=0

, n = 0, 1, 2, · · · (20)

By putting (18) and (19) in (17), we obtain

∞

∑
n=0
Kn(ρ, ζ) = K(ρ, 0) + E−1uσ

[
E

{
F1

(
∞

∑
n=0
Kn(ρ, ζ)

)
+

∞

∑
n=0
An(ρ, ζ)

}]
. (21)

By equating both sides
K0(ρ, ζ) = K(ρ, 0), (22)

K1(ρ, ζ) = E−1[uσE{F1(K0(ρ, ζ)) +A0(ρ, ζ)}].

Finally, our general solution for m ≥ 1 is illustrated as

Km+1(ρ, ζ) = E−1[uσE{F1(Km(ρ, ζ)) +Am(ρ, ζ)}].

5. Convergence Analysis

In this part, the suggested techniques for convergence analysis are discussed.

Theorem 1. Suppose the exact solution of (4) is G(ρ, ζ) and let G(ρ, ζ), Gn(ρ, ζ) ∈ H and
α ∈ (0, 1), where H represents the Hilbert space. The solution obtained ∑∞

q=0 Gq(ρ, ζ) will
converge G(ρ, ζ) if Gq(ρ, ζ) ≤ Gq−1(ρ, ζ) ∀q > A, i.e., for any ω > 0∃A > 0, such that
||Gq+n(ρ, ζ)|| ≤ β, ∀m, n ∈ N.
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Proof. We take a sequence of ∑∞
q=0 Gq(ρ, ζ).

C0(ρ, ζ) =G0(ρ, ζ),

C1(ρ, ζ) =G0(ρ, ζ) + G1(ρ, ζ),

C2(ρ, ζ) =G0(ρ, ζ) + G1(ρ, ζ) + G2(ρ, ζ),

C3(ρ, ζ) =G0(ρ, ζ) + G1(ρ, ζ) + G2(ρ, ζ) + G3(ρ, ζ),
...

Cq(ρ, ζ) =G0(ρ, ζ) + G1(ρ, ζ) + G2(ρ, ζ) + · · ·+ Gq(ρ, ζ).

(23)

We must demonstrate that Cq(ρ, ζ) forms a “Cauchy sequence” in order to achieve the
desired outcome. Additionally, let us take

||Cq+1(ρ, ζ)− Cq(ρ, ζ)|| = ||Gq+1(ρ, ζ)|| ≤ α||Gq(ρ, ζ)|| ≤ α2||Gq−1(ρ, ζ)|| ≤ α3||Gq−2(ρ, ζ)|| · · ·
≤ αq+1||G0(ρ, ζ)||.

(24)

For q, n ∈ N, we have

||Cq(ρ, ζ)− Cn(ρ, ζ)|| =||Gq+n(ρ, ζ)|| = ||Cq(ρ, ζ)− Cq−1(ρ, ζ) + (Cq−1(ρ, ζ)− Cq−2(ρ, ζ))

+ (Cq−2(ρ, ζ)− Cq−3(ρ, ζ)) + · · ·+ (Cn+1(ρ, ζ)− Cn(ρ, ζ))||
≤||Cq(ρ, ζ)− Cq−1(ρ, ζ)||+ ||(Cq−1(ρ, ζ)− Cq−2(ρ, ζ))||
+ ||(Cq−2(ρ, ζ)− Cq−3(ρ, ζ))||+ · · ·+ ||(Cn+1(ρ, ζ)− Cn(ρ, ζ))||
≤αq||G0(ρ, ζ)||+ αq−1||G0(ρ, ζ)||+ · · ·+ αq+1||G0(ρ, ζ)||
=||G0(ρ, ζ)||(αq + αq−1 + αq+1)

=||G0(ρ, ζ)||1− αq−n

1− αq+1 αn+1.

(25)

As 0 < α < 1, and G0(ρ, ζ) are bound, so take β = 1− α/(1− αq−n)αn+1||G0(ρ, ζ)||,
and we obtain

||Gq+n(ρ, ζ)|| ≤ β, ∀q, n ∈ N. (26)

Hence, {Gq(ρ, ζ)}∞
q=0 makes a “Cauchy sequence” in H. It proves that the sequence

{Gq(ρ, ζ)}∞
q=0 is a convergent sequence with the limit limq→∞ Gq(ρ, ζ) = G(ρ, ζ) for

∃G(ρ, ζ) ∈ H which complete the proof.

Theorem 2. Let us assume that ∑k
h=0 Gh(ρ, ζ) is finite and G(ρ, ζ) reflect the series solution that

was found. Assuming α > 0 such that ||Gh+1(ρ, ζ)|| ≤ ||Gh(ρ, ζ)||, the maximum absolute error
is given by the following relation.

||G(ρ, ζ)−
k

∑
h=0

Gh(ρ, ζ)|| < αk+1

1− α
||G0(ρ, ζ)||. (27)

Proof. Suppose ∑k
h=0 Gh(ρ, ζ) is finite which implies that ∑k

h=0 Gh(ρ, ζ) < ∞.
Let us consider
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||G(ρ, ζ)−
k

∑
h=0

Gh(ρ, ζ)|| =||
∞

∑
h=k+1

Gh(ρ, ζ)||

≤
∞

∑
h=k+1

||Gh(ρ, ζ)||

≤
∞

∑
h=k+1

αh||G0(ρ, ζ)||

≤αk+1(1 + α + α2 + · · · )||G0(ρ, ζ)||

≤ αk+1

1− α
||G0(ρ, ζ)||.

(28)

which completes the proof of the theorem.

Theorem 3. The result of (14) is unique when 0 < (ϕ1 + ϕ2)(
ζσ

Γ(σ+1) ) < 1.

Proof. Let H = (C[J], ||.||) with the norm ||φ(ζ)|| = maxζ∈J |φ(ζ)| is Banach space, ∀
continuous function on J. Let I : H → H is a nonlinear mapping, where

KC
l+1 = KC

0 + E−1[uσE[F1(Kl(ρ, ζ)) + G1(Kl(ρ, ζ))]], l ≥ 0.

Suppose that |F1(K) − F1(K∗)| < ϕ1|K − K∗| and |G1(K) − G1(K∗)| < ϕ2|K − K∗|,
where K := K(ρ, ζ) and K∗ := K∗(ρ, ζ) are are two different function values and ϕ1,ϕ2 are
Lipschitz constants.

||IK− IK∗|| ≤ maxt∈J |E−1
[
uσE[F1(K)−F1(K∗)]

+ uσE[G1(K)− G1(K∗)]|
]

≤ maxζ∈J

[
ϕ1E
−1[uσE[|K −K∗|]]

+ ϕ2E−1[uσE[|K −K∗|]]
]

≤ maxt∈J(ϕ1 + ϕ2)
[
E−1[uσE|K −K∗|]

]
≤ (ϕ1 + ϕ2)

[
E−1[uσE||K −K∗||]

]
= (ϕ1 + ϕ2)(

ζσ

Γ(σ + 1)
)||K −K∗||

(29)

I is a contraction as 0 < (ϕ1 + ϕ2)(
ζσ

Γ(σ+1) ) < 1. From the Banach fixed-point theorem
the result of (14) is unique.

Theorem 4. The result of (14) is convergent.

Proof. Let Km = ∑m
r=0Kr(ρ, ζ). To show that Km is a Cauchy sequence in H. Let
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||Km −Kn|| = maxζ∈J |
m

∑
r=n+1

Kr|, n = 1, 2, 3, · · ·

≤ maxζ∈J

∣∣∣∣∣E−1

[
uσE

[
m

∑
r=n+1

(F1(Kr−1) + G1(Kr−1))

]]∣∣∣∣∣
= maxζ∈J

∣∣∣∣∣E−1

[
uσE

[
m−1

∑
r=n+1

(F1(Kr) + G1(Kr))

]]∣∣∣∣∣
≤ maxζ∈J |E−1[uσE[(F1(Km−1)−F1(Kn−1) + G1(Km−1)− G1(Kn−1))]]|
≤ ϕ1maxζ∈J |E−1[uσE[(F1(Km−1)−F1(Kn−1))]]|
+ ϕ2maxζ∈J |E−1[uσE[(G1(Km−1)− G1(Kn−1))]]|

= (ϕ1 + ϕ2)(
ζσ

Γ(σ + 1)
)||Km−1 −Kn−1||

(30)

Let m = n + 1, then

||Kn+1 −Kn|| ≤ ϕ||Kn −Kn−1|| ≤ ϕ2||Kn−1Kn−2|| ≤ · · · ≤ ϕn||K1 −K0||, (31)

where ϕ = (ϕ1 + ϕ2)(
ζσ

Γ(σ+1) ). Similarly, we have

||Km −Kn|| ≤ ||Kn+1 −Kn||+ ||Kn+2Kn+1||+ · · ·+ ||Km −Km−1||,
(ϕn + ϕn+1 + · · ·+ ϕm−1)||K1 −K0||

≤ ϕn
(

1− ϕm−n

1− ϕ

)
||K1||,

(32)

As 0 < ϕ < 1, we get 1− ϕm−n < 1. Therefore,

||Km −Kn|| ≤
ϕn

1− ϕ
maxζ∈J ||K1||. (33)

Since ||K1|| < ∞, ||Km − Kn|| → 0 when n → ∞. As a result, Km is a Cauchy
sequence in H, implying that the series Km is convergent.

6. Applications

Problem 1. Consider the nonlinear FDE as [60]

Dσ
ζK(ζ) +K2(ζ) = 2K(ζ) + 1, ζ > 0, 0 < σ ≤ 1, (34)

having the initial condition
K(0) = 0.

By utilizing the Definition 5 when n=1, we obtain

E
(

∂σK
∂ζσ

)
= E

[
2K(ζ)−K2(ζ) + 1

]
, (35)

then, we obtain
1

uσ
{M(u)− u2K(0)} = E

[
2K(ζ)−K2(ζ) + 1

]
, (36)

M(u) = uK(0) + uσE
[
2K(ζ)−K2(ζ) + 1

]
. (37)
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By using inverse ET, we have

K(ζ) = K(0) + E−1

[
uσ

{
E

[
2K(ζ)−K2(ζ) + 1

]}]
,

K(ζ) = E−1[uσE(1)] + E−1

[
uσ

{
E

[
2K(ζ)−K2(ζ) + 1

]}]
.

(38)

Thus by using HPM, we obtain

∞

∑
m=0

εmKm(ζ) = E−1[uσE(1)] +

(
E−1

[
uσE

[
2

(
∞

∑
m=0

εmKm(ζ)

)
−
(

∞

∑
m=0

εm Hm(K)
)]])

. (39)

The nonlinear term in terms of homotopy polynomial and is calculated as

∞

∑
m=0

εmHm(K) = K2(ζ) (40)

The initial terms are defined as

H0(K) = K2
0,

H1(K) = 2K0K1,

H2(K) = 2K0K2 + (K1)
2.

By equating the ε coefficient with both sides

ε0 : K0(ζ) =
ζσ

Γ(ζ + 1)
,

ε1 : K1(ζ) = E−1

(
uσE

[
2(K0)− H0(K)

])
=

2ζ2σ

Γ(2ζ + 1)
− Γ(2ζ + 1)ζ3σ

Γ(3ζ + 1)(Γ(ζ + 1))2 ,

ε2 : K2(ζ) = E−1

(
uσE

[
2(K1)− H1(K)

])
=

4ζ3σ

Γ(3ζ + 1)
−
[

2Γ(2σ + 1)
(Γ(ζ + 1))2 +

4Γ(3σ + 1)
Γ(ζ + 1)Γ(2ζ + 1)

]
ζ4σ

Γ(4ζ + 1)
− 2Γ(2ζ + 1)Γ(4ζ + 1)ζ5σ

(Γ(ζ + 1))3Γ(3ζ + 1)Γ(5ζ + 1)
,

...

Finally, our analytical solution behaves in terms of series as

K(ζ) = K0(ζ) +K1(ζ) +K2(ζ) + · · ·

K(ζ) = ζσ

Γ(ζ + 1)
+

2ζ2σ

Γ(2ζ + 1)
− Γ(2ζ + 1)ζ3σ

Γ(3ζ + 1)(Γ(ζ + 1))2 +
4ζ3σ

Γ(3ζ + 1)
−
[

2Γ(2σ + 1)
(Γ(ζ + 1))2 +

4Γ(3σ + 1)
Γ(ζ + 1)Γ(2ζ + 1)

]
ζ4σ

Γ(4ζ + 1)
− 2Γ(2ζ + 1)Γ(4ζ + 1)ζ5σ

(Γ(ζ + 1))3Γ(3ζ + 1)Γ(5ζ + 1)
+ · · ·
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By using the ETDM
By utilizing the Definition 5 when n = 1, we obtain

E
{

∂σK
∂ζσ

}
= E

[
2K(ζ)−K2(ζ) + 1

]
. (41)

then, we obtain
1

uσ
{M(u)− u2K(0)} = E

[
2K(ζ)−K2(ζ) + 1

]
, (42)

M(u) = u2K(0) + uσE
[
2K(ζ)−K2(ζ) + 1

]
. (43)

By using inverse ET, we have

K(ζ) = K(0) + E−1

[
uσ

{
E

[
2K(ζ)−K2(ζ) + 1

]}]
,

K(ζ) = E−1[uσE(1)] + E−1

[
uσ

{
E

[
2K(ζ)−K2(ζ) + 1

]}]
.

(44)

Thus, the series-form solution is as

K(ρ, ζ) =
∞

∑
m=0
Km(ζ) (45)

The nonlinear term is represented as K2(ζ) = ∑∞
m=0Am. So, we have

∞

∑
m=0
Km(ζ) = E−1[uσE(1)] + E−1

[
uσ

{
E

[
2K(ζ) +

∞

∑
m=0
Am

]}]
,

∞

∑
m=0
Km(ζ) = E−1[uσE(1)] + E−1

[
uσ

{
E

[
2K(ζ) +

∞

∑
m=0
Am

]}]
.

(46)

The initial terms are defined as

A0 = K2
0,

A1 = 2K0K1,

A2 = 2K0K2 + (K1)
2.

By equating both sides

K0(ζ) =
ζσ

Γ(ζ + 1)
.

On m = 0,

K1(ζ) =
2ζ2σ

Γ(2ζ + 1)
− Γ(2ζ + 1)ζ3σ

Γ(3ζ + 1)(Γ(ζ + 1))2 .

On m = 1

K2(ζ) =
4ζ3σ

Γ(3ζ + 1)
−
[

2Γ(2σ + 1)
(Γ(ζ + 1))2 +

4Γ(3σ + 1)
Γ(ζ + 1)Γ(2ζ + 1)

]
ζ4σ

Γ(4ζ + 1)
− 2Γ(2ζ + 1)Γ(4ζ + 1)ζ5σ

(Γ(ζ + 1))3Γ(3ζ + 1)Γ(5ζ + 1)
.

Finally, our analytical solution in series form is as

K(ζ) =
∞

∑
m=0
Km(ζ) = K0(ζ) +K1(ζ) +K2(ζ) + · · ·
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K(ζ) = ζσ

Γ(ζ + 1)
+

2ζ2σ

Γ(2ζ + 1)
− Γ(2ζ + 1)ζ3σ

Γ(3ζ + 1)(Γ(ζ + 1))2 +
4ζ3σ

Γ(3ζ + 1)
−
[

2Γ(2σ + 1)
(Γ(ζ + 1))2 +

4Γ(3σ + 1)
Γ(ζ + 1)Γ(2ζ + 1)

]
ζ4σ

Γ(4ζ + 1)
− 2Γ(2ζ + 1)Γ(4ζ + 1)ζ5σ

(Γ(ζ + 1))3Γ(3ζ + 1)Γ(5ζ + 1)
+ · · ·

By taking σ = 1 we obtain

K(ζ) = 1 +
√

2 tanh

(
√

2ζ +
1
2

log

(√
2− 1√
2 + 1

))
. (47)

Problem 2. Consider the diffusion FDE as [60]

Dσ
ζK(ρ, ζ) = Kρρ(ρ, ζ) +K(ρ, ζ), 0 < σ ≤ 1, (48)

having the initial condition
K(ρ, 0) = cos(πρ).

By utilizing the Definition 5 when n = 1, we obtain

E
(

∂σK
∂ζσ

)
= E

[
Kρρ(ρ, ζ) +K(ρ, ζ)

]
. (49)

then, we obtain
1

uσ
{M(u)− u2K(ρ, 0)} = E

[
Kρρ(ρ, ζ) +K(ρ, ζ)

]
, (50)

M(u) = uK(ρ, 0) + uσE
[
Kρρ(ρ, ζ) +K(ρ, ζ)

]
. (51)

By using inverse ET, we have

K(ρ, ζ) = K(ρ, 0) + E−1

[
uσ

{
E

[
Kρρ(ρ, ζ) +K(ρ, ζ)

]}]
,

K(ρ, ζ) = ϕ
1
2 sech(κ(ρ− ρ0)) + E−1

[
uσ

{
E

[
Kρρ(ρ, ζ) +K(ρ, ζ)

]}]
.

(52)

Thus by using HPM, we obtain

∞

∑
k=0

εkKk(ρ, ζ) =

(
cos(πρ)

)
+

(
E−1

[
uσE

[(
∞

∑
k=0

εkKk(ρ, ζ)

)
ρρ

+

(
∞

∑
k=0

εkKk(ρ, ζ)

)]])
. (53)

By equating the ε coefficient with both sides

ε0 : K0(ρ, ζ) = cos(πρ),

ε1 : K1(ρ, ζ) = E−1

(
uσE

[
(K0)ρρ +K0

])
= (1− π2) cos(πρ)

ζσ

Γ(σ + 1)
,

ε2 : K2(ρ, ζ) = E−1

(
uσE

[
(K1)ρρ +K1

])
= (1− π2)2 cos(πρ)

ζ2σ

Γ(2σ + 1)
,

ε3 : K3(ρ, ζ) = E−1

(
uσE

[
(K2)ρρ +K2

])
= (1− π2)3 cos(πρ)

ζ3σ

Γ(3σ + 1)
,

...
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Finally, our analytical solution in series form is as

K(ρ, ζ) = K0(ρ, ζ) +K1(ρ, ζ) +K2(ρ, ζ) +K3(ρ, ζ) + · · ·

K(ρ, ζ) = cos(πρ) + (1− π2) cos(πρ)
ζσ

Γ(σ + 1)
+ (1− π2)2 cos(πρ)

ζ2σ

Γ(2σ + 1)
+ (1− π2)3 cos(πρ)

ζ3σ

Γ(3σ + 1)
+ · · ·

By using the ETDM
By utilizing the Definition 5 when n = 1, we obtain

E
{

∂σK
∂ζσ

}
= E

[
Kρρ(ρ, ζ) +K(ρ, ζ)

]
. (54)

then, we obtain
1

uσ
{M(u)− u2K(ρ, 0)} = E

[
Kρρ(ρ, ζ) +K(ρ, ζ)

]
, (55)

M(u) = u2K(ρ, 0) + uσE
[
Kρρ(ρ, ζ) +K(ρ, ζ)

]
. (56)

By using inverse ET, we have

K(ρ, ζ) = K(ρ, 0) + E−1

[
uσ

{
E

[
Kρρ(ρ, ζ) +K(ρ, ζ)

]}]
,

K(ρ, ζ) = −ϕ
1
2 tanh(ϕ

1
2 (ρ)) + E−1

[
uσ

{
E

[
Kρρ(ρ, ζ) +K(ρ, ζ)

]}]
.

(57)

Thus the series form solution is as

K(ρ, ζ) =
∞

∑
m=0
Km(ρ, ζ)

∞

∑
m=0
Km(ρ, ζ) = K(ρ, 0)− E−1

[
uσ

{
E

[
Kρρ(ρ, ζ) +K(ρ, ζ)

]}]
,

(58)

By equating both sides
K0(ρ, ζ) = cos(πρ).

On m = 0,

K1(ρ, ζ) = (1− π2) cos(πρ)
ζ2σ

Γ(2σ + 1)
.

On m = 1

K2(ρ, ζ) = (1− π2)2 cos(πρ)
ζ2σ

Γ(2σ + 1)
.

On m = 2

K3(ρ, ζ) = (1− π2)3 cos(πρ)
ζ2σ

Γ(2σ + 1)
.

Finally, our analytical solution in series form is as

K(ρ, ζ) =
∞

∑
m=0
Km(ρ, ζ) = K0(ρ, ζ) +K1(ρ, ζ) +K2(ρ, ζ) +K3(ρ, ζ) + · · ·

K(ρ, ζ) = cos(πρ) + (1− π2) cos(πρ)
ζσ

Γ(σ + 1)
+ (1− π2)2 cos(πρ)

ζ2σ

Γ(2σ + 1)
+ (1− π2)3 cos(πρ)

ζ3σ

Γ(3σ + 1)
+ · · ·
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By taking σ = 1 we obtain

K(ρ, ζ) = cos(πρ)e(1−π2)ζ . (59)

Numerical Simulation Studies
The numerical analysis of nonlinear FDEs by implementing the ETDM and the HPTM

is covered in this section of the work. The previously mentioned problems can be examined
in tabular and graphic form with the aid of Maple. By using the suggested approaches, we
demonstrated in Figure 1 the accurate and analytical behavior of the proposed methodolo-
gies at various fractional orders of σ = 1, 0.9, 0.8, 0.7, and 0 < ζ ≤ 0.10. The behavior of the
exact and suggested approach solutions at σ = 1 is depicted by the graphs in Figure 2a,b.
The mathematical illustrations for K(ρ, ζ) at σ = 0.8 and 0.6 are shown in Figure 3a,b.
Figure 4a displays the results of proposed methodologies at various fractional orders of
σ = 1, 0.9, 0.8, 0.7, for problem 2 and Figure 4b at ζ = 0.1, respectively, while Figure 5 shows
the behavior of absolute error for the same equation generated using both techniques within
the domain 0 < ζ ≤ 0.001. The graphical representation shows that our solution converges
quickly to exact solution as fractional order converges to integer order. The accurate and
approximate values of the equation K(ρ, ζ) are shown in Table 1 for various values of ζ in
Problem 1 while the absolute error comparison is shown in Table 2 for different values of ρ
and ζ with σ = 0.97, 0.98, 0.99, 1. The absolute error is calculated by the difference of exact
and our methods solution. Table 3 displays a comparison of the suggested methods with
FDM. The accuracy and approximation to the equation K(ρ, ζ) for various values of ρ and
ζ in problem 2 are shown in Table 4 while the absolute error comparison is shown in Table 5
for different values of ρ and ζ. The absolute error is calculated by the difference of exact and
our methods solution. It should be mentioned that we obtained a good approximation with
the exact solution of the stated problems and that we employed third-order approximate
solutions throughout the computations. If we had increased the order of the approximation,
which would have increased the number of terms in the solution, there would have been
better approximation solutions. Additionally, the graphical depiction demonstrates a good
agreement between the exact solution and the suggested approaches. It is confirmed that
the proposed methods are the best tool for solving FPDEs.

Figure 1. Graphical behavior of our method solution at several values of σ for problem 1.
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Figure 2. Graphs demonstrating the precise and our approximate solution for problem 2.

Figure 3. The analytical solution at σ = 0.8, 0.6 for problem 2.

Figure 4. The approximate solution behavior at numerous orders of σ for problem 2.
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Figure 5. The approximate solution behavior in terms of absolute error for problem 2.

Table 1. Solution of our methods at numerous values of σ in comparison with the exact solution for
the problem 1.

ζ σ = 0.97 σ = 0.98 σ = 0.99 σ = 1 (appro) σ = 1 (exact)

0.01 0.0117633 0.0111807 0.0106265 0.0100996 0.0101003

0.02 0.0233010 0.0222901 0.02132284 0.0203973 0.0204026

0.03 0.0349031 0.0335108 0.0321742 0.0308910 0.0309087

0.04 0.0466235 0.0448768 0.0431960 0.0415786 0.0416204

0.05 0.0584848 0.0564017 0.0543938 0.0524583 0.0525394

0.06 0.0704987 0.0680924 0.0657699 0.0635280 0.0636673

0.07 0.0826713 0.0799523 0.0773249 0.0747856 0.0750055

0.08 0.0950063 0.0919829 0.0890584 0.0862293 0.0865554

0.09 0.1075054 0.1041847 0.1009698 0.0978570 0.0983183

0.10 0.1201692 0.1165574 0.1130578 0.1096666 0.1102951

Table 2. Our methods comparison in terms of absolute error at numerous values of σ for problem 1.

ζ σ = 0.97 σ = 0.98 σ = 0.99 σ = 1 (Our Methods)

0.01 1.6630475000× 10−03 1.0803709000× 10−03 5.2626840000× 10−04 6.6320000000× 10−07

0.02 2.8984310000× 10−03 1.8874953000× 10−03 9.2023270000× 10−04 5.2784000000× 10−06

0.03 3.9944519000× 10−03 2.6021760000× 10−03 1.2655523000× 10−03 1.7718500000× 10−05

0.04 5.0031309000× 10−03 3.2563895000× 10−03 1.5756267000× 10−03 4.1764800000× 10−05

0.05 5.9454599000× 10−03 3.8623348000× 10−03 1.8544374000× 10−03 8.1101800000× 10−05

0.06 6.8314089000× 10−03 4.4251796000× 10−03 2.1026386000× 10−03 1.3931020000× 10−04

0.07 7.6658381000× 10−03 4.9468430000× 10−03 2.3193742000× 10−03 2.1986200000× 10−04

0.08 8.4508834000× 10−03 5.4275280000× 10−03 2.5030175000× 10−03 2.1986200000× 10−04

0.09 9.1871024000× 10−03 5.8664606000× 10−03 2.6515311000× 10−03 4.6130060000× 10−04

0.10 9.8740913000× 10−03 6.2622887000× 10−03 2.7626624000× 10−03 6.2853000000× 10−04
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Table 3. Comparison of accurate, our methods and fractional decomposition method (FDM) at
numerous values of σ for problem 1.

ζ σ = 1 (FDM) σ = 1 (Our Solution) σ = 1 (exact)

0.2 0.241863 0.2419356 0.2419768

0.4 0.564371 0.564371 0.564371

0.6 0.926696 0.9473451 0.9535662

0.8 1.2210187 1.3022465 1.3463637

1 1.2555556 1.5464218 1.6894984

Table 4. Solution of our methods at numerous values of σ in comparison with exact solution for
problem 2.

ζ ρ σ = 0.97 σ = 0.98 σ = 0.99 σ = 1 (appro) σ = 1 (exact)

0.2 0.80012960 0.80075271 0.80133290 0.80187306 0.80187306
0.4 0.30562231 0.30586031 0.30608193 0.30628825 0.30628825

0.001 0.6 −0.30562231 −0.30586031 −0.30608193 −0.30628825 −0.30628825
0.8 −0.80012960 −0.80075271 −0.80133290 −0.80187306 −0.80187306
1 −0.98901458 −0.98978478 −0.99050194 −0.99116961 −0.99116961

0.2 0.79170247 0.79279857 0.79382716 0.79479221 0.79479221
0.4 0.30240343 0.30282210 0.30321499 0.30358361 0.30358361

0.002 0.6 −0.30240343 −0.30282210 −0.30321499 −0.30358361 −0.30358361
0.8 −0.79170247 −0.79279857 −0.79382716 −0.79479221 −0.79479221
1 −0.97859807 −0.97995292 −0.98122433 −0.98241720 −0.98241720

0.2 0.78349599 0.78500661 0.78643103 0.78777387 0.78777389
0.4 0.29926883 0.29984584 0.30038992 0.30090284 0.30090285

0.003 0.6 −0.29926883 −0.29984584 −0.30038992 −0.30090284 −0.30090285
0.8 −0.78349599 −0.78500661 −0.78643103 −0.78777387 −0.78777389
1 −0.96845430 −0.97032153 −0.97208222 −0.97374206 −0.97374208

0.2 0.77545904 0.77734473 0.77912922 0.78081749 0.78081754
0.4 0.29619899 0.29691926 0.29760088 0.29824574 0.29824576

0.004 0.6 −0.29619899 −0.29691926 −0.29760088 −0.29824574 −0.29824576
0.8 −0.77545904 −0.77734473 −0.77912922 −0.78081749 −0.78081754
1 −0.95852009 −0.96085093 −0.96305669 −0.96514349 −0.96514356

0.2 0.76756672 0.76979715 0.77191401 0.77392249 0.77392262
0.4 0.29318439 0.29403634 0.29484491 0.29561208 0.29561213

0.005 0.6 −0.29318439 −0.29403634 −0.29484491 −0.29561208 −0.29561213
0.8 −0.76756672 −0.76979715 −0.77191401 −0.77392249 −0.77392262
1 −0.94876464 −0.95152160 −0.95413820 −0.95662081 −0.95662097
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Table 5. Our methods comparison in terms of absolute error at numerous values of σ for problem 2.

ζ ρ σ = 0.97 σ = 0.98 σ = 0.99 σ = 1 (our methods)

0.2 1.7434566980× 10−03 1.1203520100× 10−03 5.4015897040× 10−04 2.4887036000× 10−10

0.4 6.6594113380× 10−04 4.2793636670× 10−04 2.0632227420× 10−04 7.1909120000× 10−11

0.001 0.6 6.6594113370× 10−04 4.2793636670× 10−04 2.0632227410× 10−04 7.1889170000× 10−11

0.8 1.7434566980× 10−03 1.1203520100× 10−03 5.4015897040× 10−04 2.4887043000× 10−10

1 2.1550309300× 10−03 1.3848311870× 10−03 6.6767309250× 10−04 2.5398240000× 10−10

0.2 3.0897393450× 10−03 1.9936424780× 10−03 9.6505410690× 10−04 3.3344425000× 10−09

0.4 1.1801754450× 10−03 7.6150373880× 10−04 3.6861785540× 10−04 1.3363029000× 10−09

0.002 0.6 1.1801753450× 10−03 7.6150363870× 10−04 3.6861785530× 10−04 1.2362432000× 10−09

0.8 3.0897393450× 10−03 1.9936424780× 10−03 9.6505410690× 10−04 3.3344432000× 10−09

1 3.8191279000× 10−03 2.4642776790× 10−03 1.1928724030× 10−03 4.0963790000× 10−09

0.2 4.2779009930× 10−03 2.7672817740× 10−03 1.3428544530× 10−03 1.6865120000× 10−08

0.4 1.6340127410× 10−03 1.0570075210× 10−03 5.1292469100× 10−04 6.4161661000× 10−09

0.003 0.6 1.6340127410× 10−03 1.0570075210× 10−03 5.1292469090× 10−04 6.4160675000× 10−09

0.8 4.2779009930× 10−03 2.7672817740× 10−03 1.3428544530× 10−03 1.6865021000× 10−08

1 5.2877764040× 10−03 3.4205484070× 10−03 1.6598593230× 10−03 2.0798005000× 10−08

0.2 5.3585006810× 10−03 3.4728074860× 10−03 1.6883158060× 10−03 5.3049146000× 10−08

0.4 2.0467651110× 10−03 1.3264945210× 10−03 6.4487930270× 10−04 2.0334624000× 10−08

0.004 0.6 2.0467651110× 10−03 1.3264944210× 10−03 6.4487920250× 10−04 2.0234327000× 10−08

0.8 5.3585006810× 10−03 3.4728074860× 10−03 1.6883158060× 10−03 5.3048948000× 10−08

1 6.6234710410× 10−03 4.2926261310× 10−03 2.0868731080× 10−03 6.5529636000× 10−08

0.2 6.3559053610× 10−03 4.1254748570× 10−03 2.0086060680× 10−03 1.2929489000× 10−07

0.4 2.4277398400× 10−03 1.5757912050× 10−03 7.6721922090× 10−04 4.9314639000× 10−08

0.005 0.6 2.4277398400× 10−03 1.5757912040× 10−03 7.6721922050× 10−04 4.9414145000× 10−08

0.8 6.3559053600× 10−03 4.1254748570× 10−03 2.0086060680× 10−03 1.2929490000× 10−07

1 7.8563310430× 10−03 5.0993674070× 10−03 2.4827735950× 10−03 1.5976180000× 10−07

7. Conclusions

The ETDM and the HPTM are two unique methodologies that have been thoroughly
examined in this work for solving various types of fractional PDEs. The suggested ap-
proaches are the combined form of the Elzaki transformation with the Adomian decompo-
sition method and the homotopy perturbation approach. Different dynamics for various
fractional orders of the derivative are provided by the fractional-order solutions. In com-
parison to numerical studies, which require more complex computations, the task can be
completed quite simply and effectively using analytical solutions. After all, the researchers
can now choose the fractional-order issue whose solution is comparable and extremely
close to the experimental results of any physical problem. The identical solutions under
the Caputo operator are seen, confirming the important dynamics of the offered problems.
Numerical simulation and the graphical behavior of the model are presented to show the
reliability of the implemented analytical technique. A comparative analysis of exact and
approximate solutions is also presented. The calculated study results have been displayed
in tables and graphs. The tables and graphs demonstrate that the approximate solution
to the problems converges to the precise solution when the value of σ approaches the
classical value 1 of the problems. The remarkable results show how simple and effective
these approaches are and how they may be applied to other nonlinear problems. Thus,
the expansion will be significantly valued to add other operators and approaches in the
future, especially in light of the advantages of the current operator. The offered strategies
were determined to be suitable to address any physical problem that arises in engineering
and the sciences because of their straightforward operation.
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