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Abstract: In recent works by Wu and Wang a class of explicit symplectic integrators in curved
spacetimes was presented. Different splitting forms or appropriate choices of time-transformed
Hamiltonians are determined based on specific Hamiltonian problems. As its application, we
constructed a suitable explicit symplectic integrator for surveying the dynamics of test particles in
a magnetized Reissner–Nordström spacetime. In addition to computational efficiency, the scheme
exhibits good stability and high precision for long-term integration. From the global phase-space
structure of Poincaré sections, the extent of chaos can be strengthened when energy E, magnetic
parameter B, or the charge q become larger. On the contrary, the occurrence of chaoticity is weakened
with an increase of electric parameter Q and angular momentum L. The conclusion can also be
supported by fast Lyapunov indicators.
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1. Introduction

In recent years, Einstein’s theory of general relativity has been confirmed by a number
of detections, such as the gravitational wave event [1], images from supermassive black
holes (M87* [2,3], and SgrA* [4]). The highly nonlinear systems in curved spacetime
enrich the content of chaotic dynamics [5–8]. However, not all relativistic gravitational
systems are non-integrable and chaotic. Classical black holes, including Schwarzschild [9],
Reissner–Nordström [10,11], and Kerr [12], are integrable. This integrability is due to the
existence of four conserved quantities [13,14]. Chaos may occur when the black holes
are embedded in an external magnetic field [15–20]. Moreover, there is chaos found in
relativistic systems [21,22].

However, detecting chaotic behavior requires a reliable result. To conserve the physi-
cal and geometric properties, symplectic algorithms are regarded as the most appropriate
solvers for long-time evolution. Unlike the manifold correction methods [23–27] that ex-
actly preserve the energy, symplectic algorithms not only achieve good long-term stability,
but also the structural features, including symplecticity, volume preservation, time sym-
metry, and conservation of first integrals. If a Hamiltonian can separate into two parts,
with analytical solutions as explicit functions of time, explicit symplectic schemes can
be established [28,29]. The general second-order leapfrog methods are also applied to
multi-part splits [30,31], and higher-order integrators can be easily constructed according
to the Yoshida method [32]. Furthermore, other composition methods of high-order ex-
plicit operators were designed for many problems [33,34] In general, not all Hamiltonian
systems, such as the compact binary Hamiltonian system [35], can be decomposed onto
explicitly integrable pieces. Instead, implicit symplectic methods [36,37], or implicit and
explicit mixed symplectic methods [38–40], are always available. Of course, they are more
expensive in computations than same-order explicit integrators.

To take advantage of the higher computational efficiency of explicit methods,
Pihajoki [41] proposed a symplectic-like method for inseparable Hamiltonian systems.
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After variables are doubled in the phase space, explicit symplectic methods are applied to
the two sub-Hamiltonians. Namely, similar operations of symplectic methods are repeated
during the integrating processes. Many references [6,42,43] proved that extended phase-
space methods can maintain long-term stability in energy errors. Unfortunately, mixing
or projecting maps, such as midpoint permutations [44], inevitably destroy the symplectic
properties. The canonical relationship is artificially missed because one sub-Hamiltonian is
combined with old coordinates mixing new momenta and the other is combined with new
coordinates mixing old momenta. The expanded phase-space method is not symplectic in
the original phase space and extended phase space.

Recently, Wang et al. [45–47] designed a class of explicit symplectic schemes by divid-
ing Hamiltonians of non-rotating black holes into multiple parts, where analytical solutions
can be expressed as explicit functions of proper time. Zhou et al. [48] found that there are
various choices for specific problems, and the best integrator construction and splitting
method are not universal. Furthermore, to deal with the dragging effects caused by a
rotating black hole, Wu et al. [14] provided a time-transformed method [49] to the Kerr
spacetime and successfully obtained the explicit symplectic integrators. Undoubtedly, Wu
et al. [50] brought a great extension to the application of explicit symplectic integrators in
curved spacetimes. Such explicit symplectic integrators with fixed or adaptive time steps
have been used widely in many curved spacetimes [8,14,16–20].

One of the main purposes of this paper was to construct a suitable explicit symplectic
integrator for the Reissner–Nordström spacetime. The rest of this paper is organized
as follows. A Hamiltonian system of test particles moving in the magnetized Reissner–
Nordström spacetime is introduced in Section 2. With the time-transformed method, we
propose two fourth-order explicit symplectic integrators for this Hamiltonian system. The
symplectic integrator S4 achieves the best performance in long-term evolution. In Section 3,
two useful techniques, the Poincaré section and the fast Lyapunov indicators [51,52], are
employed to investigate how the chaotic dynamics depend on the responding parameters.
Finally, the main results are presented in Section 4.

2. Construction of Explicit Symplectic Integrators in a Magnetized
Reissner–Nordström Spacetime

In this section, we introduce a Hamiltonian to a magnetized Reissner–Nordström
black hole. Then explicit symplectic integrators are constructed.

2.1. Magnetized Reissner–Nordström Black Hole

Ernst obtained an axisymmetric and static solution in the specific Ernst-potential
framework [53]. In spherical-like coordinates (t, r, θ, φ), the magnetized
Reissner–Nordström black hole can be written as

ds2 = gµνdxµdxν

= |Λ|2
[
−(1− 2M/r + Q2/r2)dt2 + (1− 2M/r + Q2/r2)−1dr2 + r2dθ2

]
(1)

+ |Λ|−2r2 sin2 θ(dφ−ωdt)2

= −dτ2,

where M and Q are the mass and charge of the black hole, respectively, and geometric units
are given to the speed of light and the constant of gravity, i.e., c = G = 1. Obviously, the
metric has covariant nonzero components

gtt = −|Λ|2(1− 2M/r + Q2/r2) + ω2r2 sin2 θ/|Λ|2,

gtφ = −ωr2 sin2 θ/|Λ|2 = gφt,

grr = |Λ|2/(1− 2M/r + Q2/r2),

gθθ = |Λ|2r2,

gφφ = r2 sin2 θ/|Λ|2.
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Moreover, the functions in the metric assume the following expressions:

Λ = 1 +
1
4

B2(r2 sin2 θ + Q2 cos2 θ)− iBQ cos θ, (2)

ω = −2BQ/r + B3Qr +
1
2

B3Q3/r− 1
2

B3Q/r(r2 − 2Mr + Q2) sin2 θ + const. (3)

Parameter B is the strength of the external magnetic field, where the vacuum solution
of Einstein’s field equations is immersed in. When the parameter in Equation (3) takes
the value of B = 0, the metric refers to a classical Reissner–Nordström black hole if it is
satisfied as const = 0. After taking the following operations: τ → τM, t → tM, r → rM,
Q→ QM, and B→ B/M, we obtain a dimensionless Lagrangian to describe the motion of
a test particle around the magnetized Reissner–Nordström black hole

L =
1
2

(
ds
dτ

)2
=

1
2

gµν ẋµ ẋν. (4)

For a time-like particle, the four-velocity ẋµ = (ṫ, ṙ, θ̇, φ̇) satisfies the identical relation
as follows

gµν ẋµ ẋν = −1. (5)

We define a covariant generalized momentum as

Pµ = ∂L/∂ẋµ = gµν ẋν. (6)

According to the classical mechanics, we have the Hamiltonian of a neutral particle

H = Pµ ẋµ −L =
1
2

gµνPµPν, (7)

where the nonzero components of contravariant metric gµν are

gtt =
gφφ

gttgφφ − g2
tφ

,

gtφ = −
gtφ

gttgφφ − g2
tφ

= gφt,

grr =
1

grr
,

gθθ =
1

gθθ
,

gφφ =
gtt

gttgφφ − g2
tφ

.

The Hamiltonian does not explicitly contain the coordinates t and φ; therefore, the axi-
ally symmetric system has two conserved quantities, i.e., energy E and angular momentum L:

Pt = gtt ṫ + gtφφ̇ = −E,

Pφ = gφφφ̇ + gtφ ṫ = L. (8)

In terms of the two constants, the Hamiltonian can be simplified as

H =
1
2

gttE2 +
1
2

gφφL2 − gtφEL +
1
2

grr p2
r +

1
2

gθθ p2
θ . (9)
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In addition, this Hamiltonian strictly equals the Lagrangian. That means that the
Hamiltonian itself also remains at

H = −1
2

. (10)

The authors of [54] have provided an expression for the four-vector potential for a black
hole immersed in an external uniform magnetic field. This magnetized Reissner–Nordström
black hole has two nonzero covariant components:

At =
B
2

gtφ −
Q
2

gtt −
Q
2

, Aφ =
B
2

gφφ −
Q
2

gtφ. (11)

If a test particle with a charge q moves around this magnetized black hole, it should
have the momentum pµ = Pµ + qAµ. Therefore, the Hamiltonian for the charged particle
motion is determined by

H =
1
2

gµν(pµ − qAµ)(pν − qAν). (12)

Two conserved quantities, energy E and angular momentum L, are also contained in
the axially symmetric system:

pt = Pt + qAt = −E,

pφ = Pφ + qAφ = L. (13)

In terms of the two constants, the Hamiltonian can be simplified as

H =
1
2

gtt(E + qAt)
2 +

1
2

gφφ(L− qAφ)
2 − gtφ(E + qAt)(L− qAφ) +

1
2

grr p2
r +

1
2

gθθ p2
θ . (14)

To make the system (14) dimensionless, we take the scale transformations of H→ m2H,
E→ mE, pr → mpr, pθ → mMpθ , L→ mML, and q→ mq, where m is the mass of the test
particle. Due to the four-velocity or rest mass condition, the Hamiltonian also remains at

H = −1
2

. (15)

2.2. Construction of Explicit Symplectic Integrators

In the section above, we introduced a Hamiltonian to a magnetized Reissner–Nordström
black hole. This Hamiltonian system has four phase-space variables (r, θ; pr, pθ). Since
four Hamilton canonical equations can be acquired correspondingly, the Hamiltonian
system is solvable. However, it is difficult to give an analytic solution to such a nonlinear
system. Numerical methods are still necessary and useful to study the dynamics of the
particles in a relativistic spacetime. For a long-term evolution in curved geometry, sym-
plectic integrators are always prior choices. In addition to the conservation properties,
explicit symplectic methods also have better computational efficiency than same-order
implicit ones. Wang et al. [45–47] successfully constructed explicit symplectic integrators
by splitting the Hamiltonians into several parts. However, they are not suited for this
Hamiltonian system. Fortunately, following the previous works of Wu et al. [14,50], we use
a time transformation

dτ = g(r, θ)dw, (16)

g(r, θ) = |Λ|2. (17)

where the proper time τ and new coordinate time w are different from the original coordi-
nate time t. As a new coordinate q0 = τ, it has a corresponding momentum p0 = −H = 1/2.
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Therefore, the four phase-space variables (r, θ; pr, pθ) of the Hamiltonian (14) are extended
to (r, θ, q0; pr, pθ , p0). Then, we obtain an extended phase-space Hamiltonian:

H = g(r, θ)(H+ p0)

= |Λ|2[1
2

gtt(E + qAt)
2 +

1
2

gφφ(L− qAφ)
2 − gtφ(E + qAt)(L− qAφ) + p0] (18)

+
1
2

p2
r −

1
r

p2
r +

Q2

2r2 p2
r +

1
2r2 p2

θ .

Now, we can split the time-transformed Hamiltonian into multiple parts in the
following way:

H = H1 +H2 +H3 +H4 +H5, (19)

where sub-Hamiltonians are

H1 = |Λ|2[1
2

gtt(E + qAt)
2 +

1
2

gφφ(L− qAφ)
2 − gtφ(E + qAt)(L− qAφ) + p0], (20)

H2 =
1
2

p2
r , (21)

H3 = −1
r

p2
r , (22)

H4 =
Q2

2r2 p2
r , (23)

H5 =
1

2r2 p2
θ . (24)

For the sub-Hamiltonian H1, the equations of motion can be written with the new
coordinate time as

dτ

dw
= g(r, θ),

dr
dw

=
dH1

dpr
= 0,

dθ

dw
=

dH1

dpθ
= 0,

dp0

dw
= 0, (25)

dpr

dw
= −dH1

dr
= <(r, θ),

dpθ

dw
= −dH1

dθ
= Θ(r, θ).

Similarly, we can obtain the equations of motion for the other sub-Hamiltonians

H2 :
dr
dw

= pr; (26)

H3 :
dr
dw

= −2pr

r
,

dpr

dw
= − p2

r
r2 ; (27)

H4 :
dr
dw

=
Q2

r2 pr,
dpr

dw
=

Q2

r3 p2
r ; (28)

H5 :
dθ

dw
=

1
r2 pθ ,

dpθ

dw
=

p2
θ

r3 . (29)
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where h is a time step. When the coordinate time goes from w0 to w = w0 + h, the values
of phase-space variables (r0, θ0, τ0, pr0, pθ0) turn out to be (r, θ, τ, pr, pθ). The operators for
these canonical equations correspond to explicit solutions

ehH1 : τ = τ0 + g(r, θ)h,

pr = pr0 + h<(r0, θ0), (30)

pθ = pθ0 + hΘ(r0, θ0);

ehH2 : r = r0 + hpr0; (31)

ehH3 : r = [(r2
0 − 3hpr0)

2/r0]
1/3,

pr = pr0(1− 3hpr0/r2
0)

1/3; (32)

ehH4 : r = (r2
0 +

2hQ2 pr0

r0
)1/2,

pr = pr0(1 +
2hQ2 pr0

r3
0

)1/2; (33)

ehH5 : θ = θ0 + hpθ0/r2
0,

pr = pr0 + hp2
θ0/r3

0. (34)

All of the analytical solutions are indeed explicit functions of the coordinate time step h.
With the aid of a combination of these solutions, we obtain two first-order approximations
to the Hamiltonian

χh = ehH5 × ehH4 × ehH3 × ehH2 × ehH1 , (35)

χ∗h = ehH1 × ehH2 × ehH3 × ehH4 × ehH5 . (36)

Usually, a general second-order symplectic integrator can be constructed as

S2(h) = χh/2 × χ∗h/2. (37)

According to Yoshida [32], we can easily obtain a fourth-order symplectic integrator

S4(h) = S2(z1h)× S2(z2h)× S2(z1h), (38)

where z1 = 1
1−21/3 and z2 = 1− 2z1. Unlike the extended phase-space method EP4 [45,46],

this integrator is symplectic. Using both maps, χh and χ∗h, we can also yield a fourth-order
optimal explicit symplectic PRK method:

PRK64 = χβ12h × χ∗β11h × χβ10h × χ∗β9h × χβ8h × χ∗β7h

×χβ6h × χ∗β5h × χβ4h × χ∗β3h × χβ2h × χ∗β1h, (39)

where the coefficients are β1 = β12 = 0.079203696431196, β2 = β11 = 0.130311410182166,
β3 = β10 = 0.222861495867608, β4 = β9 = −0.366713268047426,
β5 = β8 = 0.324648188689706, β6 = β7 = 0.109688477876750 [33,48]. They are also
exactly symmetric.

2.3. Investigation Methods

Clearly, the Hamiltonian is a conservative system with two degrees of freedom, i.e., r
and θ. To describe the phase-space structure vividly, Poincaré sections can be employed.
When an orbit crosses a two-dimensional surface in the phase space, a point on the surface
is obtained each time. These points form a Poincaré section. A smooth curve on the surface,
which is known as the Kolmogorov–Arnold–Moser (KAM) torus, indicates a regular quasi-
periodic orbit. If an area is densely and randomly filled with discrete points, it can be
regarded as the characteristic of chaos.
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Unlike the Poincaré section, the fast Lyapunov indicator (FLI) is widely used and
suitable for any dimension. With the distance evolution of two nearby orbits [8,51,52], the
FLI is defined as follows:

FLI = log10
d(τ)
d(0)

. (40)

where d(0) is the proper distance of the phase space (r, θ; pr, pθ) between two nearby orbits
at the beginning of the proper time, and d(τ) is the distance at the proper time τ. The FLI
increases in an exponential law with time, indicating that the bounded orbit is chaotic. A
power law growth of FLI is consistent with a regular orbit. In general, all FLIs that are no
less than 4.5 correspond to the appearance of chaotic motion. Moreover. chaos becomes
stronger as the value of the FLI increases. It is an effective method to distinguish chaos
from order.

2.4. Performance Evaluation of the Explicit Symplectic Integrators

Taking the parameters E = 0.9900, Q = 1× 10−4, B = 1× 10−3, L = 4.0, and time
step h = 1, we choose a test orbit with initial conditions r = 20, θ = π/2, pr = 0, and
the starting value of pθ(> 0) determined by Equations (9) and (10). Hamiltonian errors
∆H = H − (−1/2) are obtained after the integration time 108. As described in Figure 1a,
Hamiltonian errors of the fourth order Runge–Kutta method accumulate fast with time. It
is generally believed that the Runge–Kutta method is not suitable for long-time evolution.
An explicit symplectic method PRK64 has good stability and can reach an order of 10−8,
as plotted in Figure 1b. However, it is still several orders of magnitude larger than the
other explicit symplectic integrator S4, whose Hamiltonian errors can remain bounded
in an order of 10−11, as listed in Table 1. It can be attributed to different constructions of
the methods. The number of calculation steps should be as small as possible to reduce
round-off errors. As far as the CPU times in Table 1 are concerned, S4 yields the best
computational efficiency and is slightly better than the extended phase-space method
EP4. Figure 1c describes the evolution of r with time for massive particles. The blue line
corresponds to the evolution of r with proper time τ, obtained from method EP4 by solving
the original Hamiltonian system. The red dot corresponds to the evolution of r with the
new coordinate time w, provided by the algorithm S4 integrating the time-transformed
Hamiltonian. It shows that they fit in well with each other. However, the symplectic-like
method (EP4) has no advantage in terms of counting steps. Moreover, mixing or projecting
maps may also destroy the flow of a relativistic system. To construct a symplectic method,
it is not unique for a Hamiltonian system to choose a time-transformation function. This
has been demonstrated in many research studies [14,16,17,20]. From Figure 1d, we can
realize the relationship between the new coordinate time w and proper time τ for S4 is
g(r, θ)

.
= 1 over the whole integration time. This guarantees the conservation of physical

and geometric properties, as well as Hamiltonians. Poincaré sections of a chaotic orbit, with
the same initial parameters E = 0.9920, L = 3.7, Q = 1× 10−4, B = 9× 10−4, q = 0, and
r = 10, are plotted in Figure 1e. The points obtained by the non-symplectic algorithm RK4
are less than those of the S4 method, although at first, they coincide with each other. From
the different FLI growths in Figure 1f, we can see that the symplectic method S4 remains
bounded until the integration time 106. However, the computing process of RK4 has to
be interrupted because the data gradually become divergent. Based on the computational
accuracy and symplectic conservation, the symplectic method S4 is an appropriate design
for the long-time evolution in the curved spacetime.
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Figure 1. Numerical test performance. (a,b) Hamiltonian errors ∆H = H − (−1/2) of the system for
different algorithms. (c) Evolution of r with time for massive particles. The blue line corresponds
to the evolution of r with proper time τ, obtained from the EP4 method by solving the original
Hamiltonian system. The red dot relates to the evolution of r with the new coordinate time w,
provided by algorithm S4 integrating the time-transformed Hamiltonian. (d) The relation between
the new coordinate time w and proper time τ for S4. It is clear that the relation is g(r, θ)

.
= 1 over the

whole integration time. (e) Poincaré sections for RK4 and S4. (f) FLIs of RK4 and S4. The two panels
indicate that the S4 method has good computational accuracy and symplectic conservation.

Table 1. Performances for all algorithms in Figure 1. The maximum Hamiltonian errors and compu-
tational costs of the algorithms are considered for the same time step h = 1. The test orbit is orderly,
and the integration time of each algorithm reaches τ = 108.

Algorithm S4 RK4 PRK64 EP4

Hamiltonian errors 0.5× 10−11 1.4× 10−8 4× 10−8 0.7× 10−11

CPU times (seconds) 4278 4002 5118 5127

3. Investigations of the Orbital Dynamics

Considering the excellent performance, we select S4 as a numerical tool in our later
discussions and provide some insight into the orbital dynamics of orbits in system (9)
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for neutral particles and system (14) for charged particles. In what follows, two useful
techniques, the Poincaré section and the fast Lyapunov indicator (FLI), are provided to
investigate how chaotic behaviors depend on different parameters.

3.1. Order or Chaotic Motion of Orbits

Firstly, let us focus on how the orbital dynamics of the neutral particle depend
on the parameters. In Figure 2, Poincaré sections are plotted to explore the order or
chaotic motion influenced by different values of the external magnetic parameter B. The
same parameters are E = 0.9920, L = 4.0, Q = 1 × 10−4 and q = 0. Initial orbits are
r = 5, 10, 30, 50, 60, 70, respectively. When the positive values of the external magnetic
field are given as B = 5× 10−4, all Kolmogorov–Arnold–Moser (KAM) tori in Figure 2a
prove the regularity of the orbits. If the magnetic parameter becomes a little large, e.g.,
B = 9× 10−4, many discrete points become densely and randomly distributed. This in-
dicates that two orbits turn out to be chaotic in panel (b). With a further increase in the
magnetic parameter, many more orbits become chaotic, as shown in panels (c) and (d). Cer-
tainly, the extent of chaos can also be strengthened. Although an increase in the magnetic
parameter brings more orbits with stronger chaoticity, it does not mean that a given orbit
always remains chaotic.

Figure 2. Poincaré sections for different values of the external magnetic parameter B. The same
parameters are E = 0.9920, L = 4.0, Q = 1 × 10−4, and q = 0, and different positive values of
electromagnetic parameter Q are given. The orbits are r = 5, 10, 30, 50, 60, 70, respectively. When the
external magnetic field B increases, the chaotic motions are strengthened.

Regarding the effect of the electric parameter on the orbital dynamics, we will fix the
parameters E = 0.9945, L = 4.0, B = 4.5× 10−4, q = 0. Initial orbits are r = 5, 10, 30, 60, 90.
Figure 3a–d indicate that the cases respond to the electric parameters Q = 1× 10−4, 5 × 10−4,
1 × 10−2, and 1× 10−1. It has been found that three chaotic orbits always survive. A closer
look reveals that chaotic motions are slightly weakened as the charge Q of the black
hole increases.
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Figure 3. Poincaré sections for different values of the charge Q of the black hole. The same parameters
are E = 0.9945, L = 4.0, B = 4.5× 10−4, and q = 0, and different positive values of the charge Q are
given. The orbits are r = 5, 10, 30, 60, 90, respectively. The chaotic properties weaken slightly as the
charge Q of the black hole increases.

Many references [6,15–20] have shown that chaos can become more popular in some
circumstances when there is a minor increase in energy E. Figure 4a–d describe that
chaos is strengthened when the energy gradually increases from E = 0.9935 to 0.9950.
The fixed parameters are Q = 1× 10−4, B = 5× 10−4, q = 0, and L = 4.0. The initial
orbits are the same as those in Figure 3. Obviously, chaotic motion is enhanced as energy
increases. This conclusion can also be supported by Figure 5. Here, the FLI for a given
orbit r = 5 is obtained after the integration time w = 1× 106. By scanning two-parameter
spaces, e.g., (B, Q), under different energy circumstances, we can clearly understand how
small changes in multiple parameters act on the dynamics of test particles. Chaos is
strengthened as the magnetic field parameter B increases. A similar result is also suitable
when the particle energy E increases. However, it seems that electric parameters bring little
perturbations to the distributions of FLIs.

In Figure 6a–d, the dependence of chaos on the particle angular momentum is dis-
cussed. The fixed parameters are E = 0.9920, Q = 1× 10−4, B = 5× 10−4, q = 0, and
the initial orbits are r = 10, 30, 50, 60, 70. With an increase in the angular momentum
from L = 3.7, 3.8, 4.0 to 4.2, chaotic motion is somewhat weakened. Taking a given orbit
r = 10, for instance, we can obtain similar results in Figure 7. This is consistent with some
conclusions shown in Figure 5.

Finally, let us investigate the chaotic motion of the charged particle influenced by the
charge q. The same parameters are given as E = 0.9920, Q = 1 × 10−4,
B = 9× 10−4, L = 3.8, and the charge of the test particle increases from q = 0 (neutral
particle) to 1× 10−3, 2× 10−3, and 5× 10−3. The orbits are r = 10, 30, 50, 55, 70, respectively.
The Poincaré sections in Figure 8a–d show that chaos is slightly strengthened as the charge
Q increases. By scanning some different initial orbits, order and chaotic motions can also
be distinguished with the distribution of FLIs, as plotted in Figure 9a–d. They fit well with
Figure 8.
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Figure 4. Poincaré sections for different values of the energy E. The same parameters Q = 1× 10−4,
B = 5× 10−4, q = 0, and L = 4.0, and different positive values of the electromagnetic parameter E
are given. The orbits are r = 5, 10, 30, 60, 90, respectively. Chaos is enhanced as E increases.

Figure 5. Distributions of two parameters corresponding to order and chaos in terms of FLIs. The
initial radius is r = 5, and different positive values of E are given to the neutral particle with the same
angular momentum L = 4.0. These figures show that chaos becomes stronger as B and E increase,
but the increase of electric parameter Q may have little effect on the chaotic motions.
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Figure 6. Dependence of the orbital dynamics on angular momentum L. Poincaré sections with the
same parameters E = 0.9920, Q = 1× 10−4, q = 0, B = 9× 10−4, and different positive values of
angular momentum L are given. The orbits are r = 10, 30, 50, 60, 70, respectively. The strength of
chaos is weakened with increasing angular momentum L.

Figure 7. Distributions of two parameters corresponding to order and chaos in terms of FLIs. The
initial radius is r = 10, and different positive values of L are given to the neutral particle with the same
energy E = 0.9920. These figures show that chaos becomes stronger as B increases or L decreases.
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Figure 8. Dependence of the orbital dynamics on the charge q of the test particle. Poincaré sections
with the same parameters E = 0.9920, Q = 1× 10−4, B = 9× 10−4, L = 3.8, and different positive
values of the charge Q are given. The orbits are r = 10, 30, 50, 55, 70, respectively. The chaotic motion
is slightly strengthened as the charge Q of the test particle increases.

Figure 9. Dependence of FLI on the charge q. The other parameters are the same as those in Figure 8.
The chaotic motion is strengthened as the value of q increases.
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3.2. Dependence of the Orbital Dynamics

Such a general relative system is highly nonlinear. It is suitable to study the chaotic
dynamics. How to explore the chaotic motion depends on the parameters mentioned above.
The effective potential can provide important insight into dynamical information, such as
stable circular orbits on the equatorial plane θ = π/2 [17–19,55]. Different types of motion
near a weakly magnetized Schwarzschild black hole are illustrated in [56]. The authors
of [57] studied quasi-harmonic oscillatory motion. They found that the Larmor frequency is
related exclusively to the magnetic field. Reference [58] suggests that the chaotic character
increases with the inclination angle of the magnetic field lines to the Keplerian disk. The
charged particle dynamics in a combined gravo-magnetic field were discussed in [59]. Due
to the chaotic scattering, accelerated motion can be allowed.

Let pr = pθ = 0; we can easily obtain the effective potential, i.e., the expression of
energy from Equations (14) and (15):

V = E =
gtφ(L− qAφ)−

√
[gtφ(L− qAφ)]2 − gtt[gφφ(L− qAφ)2 + 1]

gtt − qAt. (41)

Then we can study the effect of a small change in different parameters on the effective
potential. Figure 10a shows that the shape of the effective potential shifts toward the
observer with an increase in the magnetic parameter. Namely, the radius of the circular
orbit, corresponding with the local extremum value of the effective potential, becomes
large when the magnetic parameter B increases. The magnetic parameter appearing in
the metric can bring a tiny change to the space-time structure. As a result, it should stand
for an outward gravitational-like force acting on the neutral particle; thus, the effective
potential for a larger value of B is always over that of a smaller one. Therefore, the magnetic
parameter can considerably affect the motion of the test particle and induce the occurrence
of chaos. Similar cases are presented when the electric parameter Q or angular momentum
L increase, as shown in Figure 10b,c. The electric parameter Q should be described as a
gravitationally repulsive force, which can directly act on the neutral particles (so does the
centrifugal force responding to angular momentum L). Undeniably, the effect of angular
momentum L is more explicit than that of electric parameter Q. How will the effective
potential vary if the test particle is charged? The effective potential plotted in Figure 10d
becomes lower as the particle charge q increases. This case is more complicated than that
of a neutral particle. Now the charged particle suffers from two external forces. Different
from the repulsive Coulomb force, the Lorenz force is attractive toward the black hole.
Precisely speaking, a slight change in those parameters can bring about a small additional
perturbation to the gravitational attraction of the central object, and induce a substantial
effect on the chaotic behavior.

Figure 10. Cont.
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Figure 10. Radial effective potentials. (a) Effective potentials for several external magnetic parameters.
The other parameters are the same as those in Figure 2. (b) Effective potentials for several electric
parameters. The other parameters are the same as those in Figure 3. (c) Effective potentials for
different angular momenta. The parameters are given in Figure 6. (d) Effective potentials for different
charge test particles. The parameters are given in Figure 8.

4. Summary

Calculations are useful as they can help us to trace the orbital dynamical evolution
of the nonlinear general relativistic system. Symplectic integrators are more suitable for
long-term integrations. Generally, explicit symplectic integrators should be developed
as much as possible. The construction of such integrators requires the time-transformed
Hamiltonian to be separated into five explicitly integrable pieces. Numerical tests show that
the explicit symplectic integrator S4, yielded with a fourth-order construction of Yoshida,
has the best computational accuracy and efficiency.

Therefore, the explicit symplectic integrator S4 is applied to investigate the dynamics
of test particles moving around the magnetized Reissner–Nordström black hole. The
Poincaré section and FLIs are used to show how chaos depends on the parameters. Chaotic
motion occurs easily when the charged particle is given higher energy E. The extent of
chaos can also be strengthened when the magnetic parameter B or the charge q increases.
On the contrary, the chaoticity of orbit weakens with the increase of electric parameter Q
and angular momentum L. With the aid of effective potentials, we can understand how
the parameters affect the orbital dynamics. That is, a slight change in these parameters can
correspond to an influence of the force acting on the test particles. The chaotic behavior
can be changed by a small additional perturbation to the gravitational attraction of the
central object.

Author Contributions: Conceptualization, methodology, and supervision, G.-Q.H.; software and
writing—original draft, A.-R.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China (grant
nos. 11533004 and 11663005) and the Natural Science Foundation of Jiangxi province (grant no.
2016BAB201015).

Data Availability Statement: Not applicable.

Acknowledgments: The authors are very grateful to Wu Xin for the valuable comments and
useful suggestions.

Conflicts of Interest: The authors declare no conflict of interest.



Symmetry 2023, 15, 1094 16 of 17

References
1. Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;

Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102.
[CrossRef] [PubMed]

2. The Event Horizon Telescope Collaboration. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive
Black Hole. Astrophys. J. Lett. 2019, 875, L1. [CrossRef]

3. The Event Horizon Telescope Collaboration. First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. Astrophys.
J. Lett. 2021, 910, L12. [CrossRef]

4. The Event Horizon Telescope Collaboration. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the
Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett. 2022, 930, L12. [CrossRef]

5. Karas, V.; Vokrouhlicky, D. Chaotic motion of test particles in the Ernst space-time. Univ. Gen. Relativ. Gravit. 1992, 24, 729.
[CrossRef]

6. Li, D.; Wu, X. Chaotic motion of neutral and charged particles in a magnetized Ernst-Schwarzschild spacetime. Eur. Phys. J. Plus.
2019, 134, 96. [CrossRef]

7. Lukes-Gerakopoulos, G. The non-integrability of the Zipoy-Voorhees metric. Phys. Rev. D 2012, 86, 044013. [CrossRef]
8. Yang, D.Q.; Cao, W.F.; Zhou, N.Y.; Zhang, H.X.; Liu, W.F.; Wu, X. Chaos in a Magnetized Modified Gravity Schwarzschild

Spacetime. Universe 2022, 8, 320. [CrossRef]
9. Schwarzschild, K. On the Gravitational Field of a Mass Point according to Einstein’s Theory. Gen. Relativ. Gravitat. 1916, 35, 5.
10. Reissner, H. On the Eigengravitation of the electric Fields according to the Einstein Theory. Annalen Physik. 1916, 50, 106.

[CrossRef]
11. Nordström, G. On the energy of the gravitation field in Einstein’s theory. Proc. Kon. Ned. Akad. Wet. 1918, 20, 1238.
12. Kerr, R.P. Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 1963, 11, 5.

[CrossRef]
13. Carter, B. Global Structure of the Kerr Family of Gravitational Fields. Phys. Rev. 1968, 174, 1559. [CrossRef]
14. Wu, X.; Wang, Y.; Sun, W.; Liu, F.Y. Construction of Explicit Symplectic Integrators in General Relativity. IV. Kerr Black Holes.

Astrophys. J. 2021, 914, 63. [CrossRef]
15. Takahashi, M.; Koyama, H. Chaotic motion of charged particles in an electromagnetic field surrounding a rotating black hole.

Astrophys. J. 2009, 693, 472. [CrossRef]
16. Sun, W.; Wang, Y.; Liu, Y.F.; Wu, X. Applying explicit symplectic integrator to study chaos of charged particles around magnetized

Kerr black hole. Eur. Phys. J. C 2021, 81, 785. [CrossRef]
17. Sun, X.; Wu, X.; Wang, Y.; Deng, C.; Liu, B.R.; Liang, E.W. Dynamics of Charged Particles Moving around Kerr Black Hole with

Inductive Charge and External Magnetic Field. Universe 2021, 7, 410. [CrossRef]
18. Hu, A.R.; Huang, G.Q. Dynamics of charged particles in the magnetized γ spacetime. Eur. Phys. J. Plus 2021, 136, 1210. [CrossRef]
19. Yi, M.; Wu, X. Dynamics of charged particles around a magnetically deformed Schwarzschild black hole. Phys. Scr. 2020,

95, 085008. [CrossRef]
20. Zhang, H.X.; Zhou, N.Y.; Liu, W.F.; Wu. X. Charged Particle Motions near Non-Schwarzschild Black Holes with External Magnetic

Fields in Modified Theories of Gravity. Universe 2021, 7, 488. [CrossRef]
21. Polcar, L.; Semerák, O. Free motion around black holes with discs or rings: Between integrability and chaos. VI. The Melnikov

method. Phys. Rev. D 2019, 100, 103013. [CrossRef]
22. Wu, X.; Zhang, H. Chaotic dynamics in a superposed Weyl spacetime. Astrophys. J. 2006, 652, 1466. [CrossRef]
23. Nacozy, P.E. The use of integrals in numerical integrations of the N-body problem. Astrophys. Space Sci. 1971, 14, 40. [CrossRef]
24. Fukushima, T. Efficient orbit integration by dual scaling for consistency of Kepler energy and Laplace integral. Astron. J. 2003,

126, 2567. [CrossRef]
25. Ma, D.Z.; Wu, X.; Zhu, J.F. Velocity scaling method to correct individual Kepler energies. New Astron. 2008, 13, 216. [CrossRef]
26. Wang, S.C.; Wu, X.; Liu, F.Y. Implementation of the velocity scaling method for elliptic restricted three-body problems. Mon. Not.

R. Astron. Soc. 2016, 463, 1352. [CrossRef]
27. Wang, S.C.; Huang, G.Q.; Wu, X. Simulations of dissipative circular restricted three-body problems using the velocity-scaling

correction method. Astron. J. 2018, 155, 67. [CrossRef]
28. Wisdom, J.; Holman, M. Symplectic maps for the n-body problem. Astron. J. 1991, 102, 1528. [CrossRef]
29. Forest, E.; Ruth, R.D. Fourth-order symplectic integration. Phys. D Nonlinear Phenom. 1990, 43, 105. [CrossRef]
30. Duncan, M.J.; Levision, H.F.; Lee, M.H. A mutilple time step symplectic algorithm for intergating close encounters. Astron. J.

1998, 116, 2067. [CrossRef]
31. Wu, X.; Huang, T.Y.; Zhang, H.; Wan, X.S. A note on the algorithm of symplectic integrators. Astrophys. Space Sci. 2003, 283, 53.

[CrossRef]
32. Yoshida, H. Construction of higher order symplectic integrators. Phys. Lett. A 1990, 150, 262. [CrossRef]
33. Blanes, S.; Casas, F.; Murua, A. Splitting methods with complex coefficients. Bol. Soc. Esp. Math. Apl. 2010, 50, 47. [CrossRef]
34. Blanes, S.; Casas, F.; Murua, A.; Ragni, S. Splitting and composition methods for explicit time dependence in separable dynamical

systems. J. Comput. Appl. Math. 2010, 235, 646. [CrossRef]

http://doi.org/10.1103/PhysRevLett.116.061102
http://www.ncbi.nlm.nih.gov/pubmed/26918975
http://dx.doi.org/10.3847/2041-8213/ab0ec7
http://dx.doi.org/10.3847/2041-8213/abe71d
http://dx.doi.org/10.3847/2041-8213/ac6674
http://dx.doi.org/10.1007/BF00760079
http://dx.doi.org/10.1140/epjp/i2019-12502-9
http://dx.doi.org/10.1103/PhysRevD.86.044013
http://dx.doi.org/10.3390/universe8060320
http://dx.doi.org/10.1002/andp.19163550905
http://dx.doi.org/10.1103/PhysRevLett.11.237
http://dx.doi.org/10.1103/PhysRev.174.1559
http://dx.doi.org/10.3847/1538-4357/abfc45
http://dx.doi.org/10.1088/0004-637X/693/1/472
http://dx.doi.org/10.1140/epjc/s10052-021-09579-7
http://dx.doi.org/10.3390/universe7110410
http://dx.doi.org/10.1140/epjp/s13360-021-02194-1
http://dx.doi.org/10.1088/1402-4896/aba4c2
http://dx.doi.org/10.3390/universe7120488
http://dx.doi.org/10.1103/PhysRevD.100.103013
http://dx.doi.org/10.1086/508129
http://dx.doi.org/10.1007/BF00649193
http://dx.doi.org/10.1086/378604
http://dx.doi.org/10.1016/j.newast.2007.09.002
http://dx.doi.org/10.1093/mnras/stw1971
http://dx.doi.org/10.3847/1538-3881/aa9ff9
http://dx.doi.org/10.1086/115978
http://dx.doi.org/10.1016/0167-2789(90)90019-L
http://dx.doi.org/10.1086/300541
http://dx.doi.org/10.1023/A:1021268602971
http://dx.doi.org/10.1016/0375-9601(90)90092-3
http://dx.doi.org/10.1007/BF03322541
http://dx.doi.org/10.1016/j.cam.2010.06.018


Symmetry 2023, 15, 1094 17 of 17

35. Wu, X.; Huang, G.Q. Ruling out chaos in comparable mass compact binary systems with one body spinning. Mon. Not. R. Astron.
Soc. 2015, 452, 3167. [CrossRef]

36. Feng, K. Symplectic Geometry and Numerical Methods in Fluid Dynamics; Lecture Notes in Physics; Springer: Cham, Switzerland,
1986; Volume 264, pp. 1–7.

37. Brown, J.D. Midpoint rule as a variational-symplectic integrator: Hamiltonian systems. Phys. Rev. D 2006, 73, 024001. [CrossRef]
38. Liao, X.H. Symplectic integrator for general near-integrable Hamiltonian system. Celest. Mech. Dyn. Astron. 1997, 66, 243.

[CrossRef]
39. Lubich, C.; Walther, B.; Brügmann, B. Symplectic integration of post-Newtonian equations of motion with spin. Phys. Rev. D 2010,

81, 104025. [CrossRef]
40. Zhong, S.Y.; Wu, X.; Liu, S.Q.; Deng, X.F. Global symplectic structure-preserving integrators for spinning compact binaries. Phys.

Rev. D 2010, 82, 124040. [CrossRef]
41. Pihajoki, P. Explicit methods in extended phase space for inseparable Hamiltonian problems. Celest. Mech. Dyn. Astron. 2015,

121, 211. [CrossRef]
42. Wu, Y.L.; Wu, X. An optimized Forest-Ruth-like algorithm in extended phase space. Int. J. Mod. Phys. C 2018, 29, 1850006.

[CrossRef]
43. Pan, G. F.; Wu, X.; Liang, E. W. Extended phase-space symplectic-like integrators for coherent post-Newtonian Euler-Lagrange

equations. Phys. Rev. D 2021, 104, 044055. [CrossRef]
44. Luo, J.J.; Wu, X.; Huang, G.Q.; Liu, F.Y. Explicit symplectic-like integrators with midpoint permutations for spinning compact

binaries. Astrophys. J. 2017, 834, 64. [CrossRef]
45. Wang, Y.; Sun, W.; Liu, F.Y.; Wu, X. Construction of Explicit Symplectic Integrators in General Relativity. I. Schwarzschild Black

Holes. Astrophys. J. 2021, 907, 66. [CrossRef]
46. Wang, Y.; Sun, W.; Liu, F.Y.; Wu, X. Construction of Explicit Symplectic Integrators in General Relativity. II. Reissner-Nordstrom

Black Holes. Astrophys. J. 2021, 909, 22. [CrossRef]
47. Wang, Y.; Sun, W.; Liu, F.Y.; Wu, X. Construction of Explicit Symplectic Integrators in General Relativity. III. Reissner-Nordstrom-

(anti)-de Sitter Black Holes. Astrophys. J. Suppl. Ser. 2021, 254, 8. [CrossRef]
48. Zhou, N.; Zhang, H.; Liu, W.; Wu, X. Note on Construction of Explicit Symplectic Integrators for Schwarzschild Spacetimes.

Astrophys. J. 2022, 927, 160. [CrossRef]
49. Mikkola, S. Practical symplectic methods with time transformation for the few-body problem. Celest. Mech. Dyn. Ast. 1997,

67, 145. [CrossRef]
50. Wu, X.; Wang, Y.; Sun, W.; Liu, F.Y.; Han, W.B. Explicit symplectic methods in black hole spacetimes. Astrophys. J. 2022, 920, 166.

[CrossRef]
51. Froeschlé, C.; Lega, E.; Gonczi, R. Fast Lyapunov indicators. Application to asteroidal motion. Celest. Mech. Dyn. Astron. 1997,

67, 41. [CrossRef]
52. Wu, X.; Huang, T.Y.; Zhang, H. Lyapunov indices with two nearby trajectories in a curved spacetime. Phys. Rev. D 2006,

74, 083001. [CrossRef]
53. Ernst, F.J. Black Holes in a magnetic universe. J. Math. Phys. 1976, 17, 54. [CrossRef]
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