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Abstract: The study of the mechanical behaviour of fibre-reinforced electroactive polymers (EAPs)
with bending stiffness is beneficial in engineering for mechanical design and problem solving.
However, constitutive models of fibre-reinforced EAPs with fibre bending stiffness do not exist in the
literature. Hence, to enhance the understanding of the mechanical behaviour of fibre-reinforced EAPs
with fibre bending stiffness, the development of a relevant constitutive equation is paramount. In this
paper, we develop a constitutive equation for a nonlinear nonpolar EAP, reinforced by embedded
fibres, in which the elastic resistance of the fibres to bending is modelled via the classical branches
of continuum mechanics without using the second gradient theory, which assumes the existence of
contact torques. In view of this, the proposed model is simple and somewhat more realistic, in the
sense that contact torques do not exist in nonpolar EAPs.

Keywords: fibre-reinforced electroactive polymers; bending stiffness; spectral invariant; nonpolar;
hyperelasticity

1. Introduction

Recent research in various fields of science and engineering has led to the development
of new materials and technologies. For instance, the effect of dielectric relaxation of epoxy
resin on the dielectric loss of medium-frequency transformers was investigated in [1].
In [2], a novel one-dimensional V3S4@NC nanofibre for sodium-ion batteries was proposed.
Meanwhile, the physical layer security of uplink NOMA via energy-harvesting jammers
was improved in [3]. In another study, the structures and stabilities of carbon chain clusters
influenced by atomic antimony was examined in [4]. Furthermore, Shi et al. integrated
redox-active polymer with MXene for ultrastable and fast aqueous proton storage [5]. In [6],
an analytical model for the nonlinear buckling responses of confined polyhedral FGP-GPL
lining subjected to crown point loading in engineering structures was developed.

In this paper, we are interested in the mechanical behaviour of fibre-reinforced elec-
troactive polymers (EAPs) with bending stiffness, which is an important issue in engineer-
ing. EAPs are multifunctional materials that are innovative and smart, as they can adapt
their physical and mechanical properties as a result of external stimuli. EAPs deform under
the application of an electric field, and have recently attracted growing interest because of
their potential for use, for example, in biomedical applications, artificial muscles in robotics
and actuators [7].

Fibre-reinforced composite materials have often been used in recent engineering
applications. The rapid growth in manufacturing industries has led to the need for the im-
provement of materials in terms of strength, stiffness, density and lower cost with improved
sustainability. Fibre-reinforced composite materials have emerged as one of the materials
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possessing such improvement in properties serving their potential in a variety of appli-
cations [8–11]. The infusion of synthetic or natural fibres in the fabrication of composite
materials has revealed significant applications in a variety of fields, such as the biomedical,
automobile, mechanical, construction, marine and aerospace fields [12–15]. In biomechan-
ics, some soft tissues can be modelled as fibre-reinforced composite materials [16–18]. In
modern heavy engineering, heavy traditional materials are gradually being replaced by
fibre-reinforced polymer composite structures of lower weight and higher strength. These
structures, such as railroads and bridges, are always under the action of dynamic moving
loads caused by the moving vehicular traffic.

Constitutive equations for fibre-reinforced EAPs have recently been developed [19,20].
However, fibre-reinforced EAP models that appear in the literature do not consider fibres
that resist bending. Hence, the understanding of the mechanics of fibre-reinforced EAPs
where the fibres resist bending is an important issue in engineering. The mechanical
behaviour of fibre-reinforced EAPs with stiff bending fibres is significantly different from
those that are perfectly flexible [21]. Hence, in view of the above, a rigorous construction of
a mechanical constitutive model, based on the sound theory of continuum mechanics, for
nonpolar fibre-reinforced solids is paramount, and is of valuable interest in engineering
designs and would find many practical applications.

In the case of non-EAP materials, the long history [22–24] of mechanics of nonpolar
fibre-reinforced solids has, in general, significantly enriched and advanced the knowledge
of solid mechanics. A boundary value problem for a nonpolar elastic solid reinforced
by (finite radius) fibres can be solved using the finite element method (FEM), if small
elements are permitted to mesh the fibres. If we treat the fibres as isotropic solids but with
different material properties from the matrix’s (material that is not attributable to the fibres)
properties, we can use an inhomogeneous strain energy function

W(λ1, λ2, λ3) (1)

in solving the FEM problem, where λ1, λ2 and λ3 are the principal stretches. We note that
due to the finite radius of the fibres, bending resistance due to changes in the curvature for
the fibres is observed. However, if the fibre radius is significantly small, meshing the fibres
and the matrix can be troublesome, and hence it may not be possible to seek a boundary
value solution via the FEM. To overcome this significantly small radius problem, a FEM
solution can be obtained using a transversely elastic strain energy function [24]

W(U, a) , (2)

where U is the right stretch tensor and a is the unit preferred vector in the reference
configuration. We note that this transversely isotropic model contains infinitely many
purely flexible fibres with zero radius; hence, this model cannot model elastic resistance
due to changes in the curvature for the fibres. We emphasise that the Cauchy stress in
both isotropic and transversely isotropic non-EAP models is symmetric, and this is actually
observed in a nonpolar solid in the absence of a couple stress. To model the effect of
elastic resistance due to changes in the curvature for the fibres, recent models [25–28]
that are framed in the setting of the nonlinear strain gradient theory or Kirchhoff rod
theory [29], were developed. We note that these second-gradient models characterise
the mechanical behaviour of (polar) transversely isotropic solids with infinitely many
purely flexible fibres with zero radius. However, in order to simulate the effect of fibre
bending stiffness on purely flexible fibres with zero radius, the second-gradient non-EAP
models introduce the existence of a couple stress and a nonsymmetric Cauchy stress in
the constitutive equations; we must emphasise that both of these stresses are not present
on deformations of actual nonpolar EAP elastic solids reinforced by finite-radius fibres.
In general, higher-gradient elasticity models are used to describe mechanical structures
at the micro- and nanoscale or to regularise certain ill-posed problems by means of these
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higher-gradient contributions. Discussion on the effectiveness of higher-gradient elasticity
models to mechanically describe continuum solids is still ongoing [30–32].

Hence, the objective of this paper is to propose a model to simulate the mechanical
behaviour of actual nonpolar EAP reinforced by finite-radius fibres, where the contact
torque is absent and fibre bending resistance is caused by changes in curvature of the fibres.
We focus on changes in fibre curvature, since in composite solids, these changes play an
important role in the mechanical behaviour of solids. Since our simulated model contains
infinitely many fibres with zero radius, we exclude the effects due to fibre ’twist’. In fact,
Spencer and Soldatos [28] stated that

“In doing this, we exclude effects due to fibre ’splay’ and fibre ’twist’, both of which feature
in liquid crystal theory, but it is plausible that in fibre composite solids the major factor is
fibre curvature.”

Please note that our model does not:

(1) Require the existence of contact torques (which are not observed in actual nonpolar
elastic solids reinforced by finite-radius fibres).

(2) Introduce higher-order differential equations in the corresponding boundary value
problem.

Both (1) and (2) complicate the solving of boundary value problems, which is discussed
in references [30–32]. Since our model does not involve (1) and (2), solving EAP boundary
value problems is much easier, analytically and numerically, compared to solving boundary
value problems of second-gradient models that are associated with (1) and (2).

A spectral approach [25,33] is used in the modelling, and this is preliminary described
in Sections 2 and 4, where in Section 4, a total energy function contains an electric field and
a vector that governs the changes in the fibre curvature. A prototype of the strain energy
is given in Section 5, and boundary value problems to study the effect of fibre bending
resistance are presented in Section 6.

2. Preliminaries
2.1. Deformation

Unless stated otherwise, all subscripts i, j and k assume the values of 1 or 2 or 3, and
we do not use the summation convention. Let y and x denote the position vectors of a solid
body particle, respectively, in the current and reference configurations. The deformation
gradient F is spectrally [23] described as follows:

F(λi, vi, ui) =
∂y
∂x

=
3

∑
i=1

λivi ⊗ ui , (3)

where λi is a principal stretch, ui is an eigenvector of the right stretch tensor U = F(λi, ui, ui)
and vi is an eigenvector of the left stretch tensor V = F(λi, vi, vi). We can spectrally
express the rotation tensor R = F(λi = 1, vi, ui) and the right Cauchy–Green tensor
C = F(λ2

i , ui, ui), where F = RU. In this article, we assume that the effect of mechanical
body forces is negligible, and only incompressible elastic solids are considered. Hence,
det F = 1, where det indicates the tensor determinant. We only consider time-independent
fields and quasi-static deformations.

2.2. Electrostatics

In the absence of the distribution of free charges, the simplified forms of the Maxwell
equations are [34]

div(d) = 0 , curl(e) = 0 , (4)

where d is the current-configuration electric displacement; e is the current-configuration
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electric field; and curl and div are, respectively, the curl and divergence operators with
respect to y. The relation between d and e in a vacuum is

d = ε0e , (5)

where ε0 = 8.85× 10−12 F/m is the vacuum electric permittivity. The condensed matter
relation is

d = ε0e + p , (6)

where p is the electric polarisation.
Let T be the total symmetric Cauchy stress defined in [35]. We assume surface electric

charges are absent, and hence, we have the continuity equations [36,37]

n · [[d]] = 0, n× [[e]] = 0, Tn = t̂ + TMn, (7)

where n is the unit outward normal vector to the boundary of the deformed body, t̂ is the
external mechanical traction, [[ ]] denotes the difference of a quantity from outside and inside
a body and TM is the Maxwell stress tensor outside the body in a vacuum, defined as

TM = d⊗ e− 1
2
(d · e)I. (8)

3. Embedded Fibres

We assume the material body consists of a matrix material and fibres. We model
this material by considering a transversely elastic solid with the referential preferred unit
direction a(x), and it becomes the vector

b = Fa = $ f , $ =
√

a · Ca > 0 , (9)

in the current configuration, where f is a unit vector. In our proposed model, the directional
derivative of the fibre unit vector in the fibre direction, i.e.,

c =
∂ f
∂x

a , (10)

plays an important role in modelling elastic resistance due to changes in curvature for the
fibres. In view of this, we endow a vector m associated with c (we will make the association
clear later) in (10), which is independent of F, i.e., [25,26,38]

m =
1
ι

Λa− 1
ι3
(a ·Λa)C̄a , ι =

√
a · C̄a , (11)

where

C̄ = F̄T F̄ , Λ = F̄TG− ∂a
∂x

, G =
∂F̄a
∂x

, (12)

F̄(x) is a deformation tensor independent of F, i.e., m is not embedded in the matrix,
and so in general, its image F̄−Tm in the current configuration is not directly connected
to the deformation of the matrix. Clearly, from (11), we have m · a = 0. If we let F̄ = F,
we then have the association c = F−Tm [25,26]. To facilitate the process of modelling, we
express the vector

m = ρk , ρ =
√

m ·m , (13)

where k is a unit vector with the property a · k = 0.
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4. Total Energy Function

Let W be the total energy. Following the work of [35,37], we have

W = Ŵ(a)(U, a, m, eL) = W(a)(U, a, k, g, ρ, e) , (14)

where

g =
1
e

eL , e = |eL| > 0 . (15)

and the Lagrangian electric field eL is defined as eL = FTe [35].
For an incompressible body, the total symmetric Cauchy stress is [35]

T = F
∂Ω
∂F
− pI = 2F

∂Ω
∂C

FT − pI (16)

and the Eulerian electric displacement is

d = −F
∂Ω
∂eL

. (17)

The Lagrangian electric displacement is given as [35]

dL = − ∂Ω
∂eL

, (18)

where dL = F−1d. The Lagrangian fields must satisfy the relations [35]

Curl(eL) = 0 and Div(dL) = 0 , (19)

where Div and Curl are, respectively, the divergence and curl operators with respect to x,
associated with the undeformed configuration.

4.1. Spectral Invariants

The total energy function requires the restriction

W = W(a)(U, a, k, g, ρ, e) = W(a)(QUQT , Qa, Qk, Qg, ρ, e) , (20)

for every rotation tensor Q, hence it must depend on invariants with respect to the rotation
tensor Q. Recently, attractive, useful and successful spectral invariants have been used in
modelling anisotropic bodies (see, for example, references [17,19,20,23,25,26,33,39]) and in
view of this, we characterise W by the spectral invariants [40]

λi ai = a · ui, bi = k · ui , ci = g · ui ,
3

∑
i=1

a2
i = 1 ,

3

∑
i=1

b2
i = 1 ,

3

∑
i=1

c2
i = 1 . (21)

and the scalers ρ and e. Hence, we can express

W = W(a)(λi, ai, bi, ci, ρ, e) , (22)

taking note that the W(a) must satisfy the P-property described in [39] associated with the
coalescence of principal stretches λi. In view of the 3 constraints in (21), only 11 of the
invariants in (22) are independent; in the case of an incompressible material, only 10 of the
invariants are independent due to the constraint λ1λ2λ3 = 1. In our current model, W is
independent of the sign of a, k and g, hence we express

W = W(s)(λi, αi, βi, γi, ρ, e) , αi = a2
i , βi = b2

i , γi = c2
i . (23)
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4.2. Spectral Derivative Components

The evaluation of stress tensors requires the Lagrangian spectral tensor components

of
∂W
∂C

, i.e.,

(
∂W
∂C

)
ii
=

1
2λi

∂W(s)

∂λi
, (24)

(
∂W
∂C

)
ij
=

1
(λ2

i − λ2
j )

{(
∂W(s)

∂αi
−

∂W(s)

∂αj

)
aiaj +

(
∂W(s)

∂βi
−

∂W(s)

∂β j

)
bibj +

(
∂W(s)

∂γi
−

∂W(s)

∂γj

)
cicj

}
,

i 6= j . (25)

The Eulerian description of the total Cauchy stress T for an incompressible body is

T =
3

∑
i,j=1

tijvi ⊗ vj , (26)

where

τii = λi
∂W(s)

∂λi
− p , τij = 2λiλj

(
∂W
∂C

)
ij

, i 6= j . (27)

The Lagrangian spectral components for the electric displacement d are

dL = −∂W
∂eL

= −
3

∑
k=1

(dL · uk)uk , (28)

where

∂W
∂eL

=
∂W
∂e

g +
1
e

(
[I − (g ⊗ g)]T

∂W
∂g

)
. (29)

The electric field in the deformed configuration can simply be expressed by

d = −
3

∑
k=1

λk(dL · uk)vk . (30)

5. Strain Energy Prototype

In this section, a prototype total energy function W is proposed. A more general
but complex form of the total energy function can be constructed following the work of
Shariff [33], if required. We propose

W = W(T) + W(Λ) + W(E) , (31)

where

W(T) = µ
3

∑
i=1

r2
1(λi) + 2µ1

3

∑
i=1

αir2
2(λi) +

κ1

2

(
3

∑
i=1

αir3(λi)

)2

, (32)

W(Λ) = 2µ2ρ2
3

∑
i=1

βir2
4(λi) +

κ2

2
ρ4

(
3

∑
i=1

βir5(λi)

)2

+ κ3ρ2

[
3

∑
i=1

αir6(λi)

][
3

∑
i=1

βir7(λi)

]
, (33)
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and [33]

W(E) =
3

∑
i=1

γic0(e)r2
8(λi)− ε0γi

e2

2λ2
i

, (34)

with the properties [33]

c0(0) = 0 , rα(1) = 0 , r′α(1) = 1 , α = 1, 2, . . . 8 . (35)

We note that µ, µ1, µ2, κ1, κ2, κ3 and c0(e) are ground-state constants, and their re-
strictions are given in Appendix A. We could also include the following property, when
appropriate: rα, to represent physical strain measures with the extreme deformation values

rα(λi → ∞) = ∞ , rα(λ→ 0) = −∞ . (36)

The energy functions (31) to (34) can be easily extended to construct a more general
strain energy function (see, for example, [33]), but the total energy function proposed in
this section should suffice to illustrate our model. From the above and Equation (17), it is
clear that

d = ε0e− F
∂W(F)

∂eL
, p = −F

∂W(F)

∂eL
, W(F) =

3

∑
i=1

γic0(e)r2
8(λi) . (37)

In a vacuum, W(F) = 0, and we recover the relation

d = ε0e . (38)

6. Boundary Value Problem

To illustrate our theory, we consider two simple deformations: pure bending and finite
torsion of a right circular cylinder, where their displacements are known. For boundary
value problems, where the displacements are unknown, the construction of solutions is
described in Appendix B.

To plot the results in this section, for simplicity, we use

rα(x) = ln(x) , α = 1, 2, . . . 8 , (39)

and the ground-state values

µ = 5 kPa , µ1 = 80 kPa , (40)

are those associated with skeletal muscle tissue [18,41]. Since our model is new, and
there are no experimental values for the following ground-state constants, we use the ad
hoc values

µ2 = 10.0 kPa , κ1 = κ2 = 0 , κ3 = −100 kPa , c0(e) = 0.1ε0e2 , (41)

to plot the graphs. Take note that the above values satisfy the restrictions given in
Appendix A.

6.1. Pure Bending

A deformation of pure bending in plane strain is depicted in Figure 1, where a sector
of a circular annulus defined by

r = r(x1) , θ = θ(x2) , z = x3 , 0 ≤ x1 ≤ B , − L ≤ x2 ≤ L , − H ≤ x3 ≤ H (42)
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is obtained via bending a rectangular slab of incompressible material: Note that (r, θ, z) is
the cylindrical polar coordinate for the current configuration and (x1, x2, x3) is the Cartesian
referential coordinate with the basis {g1, g2, g3 = ez}.

x1

x2

x1

x2

r

θ

Figure 1. Bending of a rectangular block into a sector of a cylindrical tube.

The formula employed here could be used to compare our theory with experiments
(for example, a three-point bending test experiment described in reference [42]).

In this case,

F = r′er ⊗ g1 + rθ′eθ ⊗ g2 + ez ⊗ g3 . (43)

In view of det F = 1 and the conditions θ(0) = 0 and r(A) = a at the boundary,
we obtain

r2 − a2 = 2χx1 , θ =
x2

χ
, χ =

b2 − a2

2B
> 0 , (44)

where r(B) = b. Hence, in view of (3), (43) and (44), we have

λ1 =
χ

r
, λ2 =

r
χ

, λ3 = 1 (45)

and the spectral basis vectors are ui = gi, v1 = er, v2 = eθ and v3 = ez.

We only study the case a = g2 and e =
e0

r
eθ . Hence, eL =

e0

χ
g2, a1 = a3 = 0, a2 = 1

c1 = c3 = 0 and c2 = 1, and clearly CurleL = 0 is satisfied. If we let F̄ = F, we obtain

k = −g1 , ρ =
1
r

, b1 = −1 , b2 = b3 = 0 . (46)

The strain energy function is simplified, i.e.,

W(T) = µ
3

∑
i=1

r2
1(λi) + 2µ1r2

2(λ2) +
κ1

2
r2

3(λ2) ,

W(Λ) = 2ρ2µ2r2
4(λ1) + ρ4 κ2

2
r2

5(λ1) + ρ2κ3r6(λ2)r7(λ1) ,

W(E) = c0(e)r2
8(λ2)−

ε0e2

2λ2
2

, W = W(T) + W(Λ) + W(E) . (47)

The nonzero Cauchy stress components simply become

σi = λi
∂W
∂λi
− p , (48)

where σ1 = σrr, σ2 = σθθ and σ3 = σzz are cylindrical components of the Cauchy stress.



Symmetry 2023, 15, 1065 9 of 17

The Maxwell stress simply becomes

T M =
ε0e2

2r2 (−er ⊗ er + eθ ⊗ eθ − ez ⊗ ez) . (49)

Since σi depends only on r, the equilibrium equation simply becomes

dσrr

dr
+

1
r
(σrr − σθθ) = 0 . (50)

We note that in view of the Maxwell stress in (49), σrr = −
ε0e2

2b2 at r = b, we then have

σrr = −
∫ b

r
G(y) dy +

ε0e2

2b2 , rG(r) = λ2
∂W
∂λ2
− λ1

∂W
∂λ1

. (51)

Hence, we can evaluate

p = λ1
∂W
∂λ1

+
∫ b

r
G(y) dy− ε0e2

2b2 . (52)

The stress–strain relations for σθθ and σzz can now be obtained using the above p. The
bending moment is

M =
∫ b

a
rσθθ dr (53)

and the normal force is

N =
∫ b

a
σθθdr . (54)

BothM andN are derived per unit length in the x3 direction, and applied to a section
of constant θ.

In Figures 2 and 3, the behaviours of, respectively, the radial and hoop stresses are

depicted using
χ

B
= 1, and the material is deformed to

a
B
= 1. It is clear from these figures

that the magnitude of the stresses is affected by bending fibre resistance and by the presence
of an electric field.

Figure 2. Radial behaviour of stress σrr. (a) Elastic solid with fibre bending resistance. e0 = 0 V/m.
(b) Elastic solid with no fibre bending resistance. e0 = 0 V/m. (c) Elastic solid with fibre bending
resistance. e0 = 5× 106 V/m. (d) Elastic solid with no fibre bending resistance. e0 = 5× 106 V/m.
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Figure 3. Radial behaviour of stress σθθ . (a) Elastic solid with fibre bending resistance. e0 = 0 V/m.
(b) Elastic solid with no fibre bending resistance. e0 = 0 V/m. (c) Elastic solid with fibre bending
resistance. e0 = 5× 106 V/m. (d) Elastic solid with no fibre bending resistance. e0 = 5× 106 V/m.

The bending momentM values are

107.8388439 kPam2 , with fibre bending resistance, e0 = 0 V/m ;

80.72073233 kPam2 , without fibre bending resistance, e0 = 0 V/m ;

252.8614021 kPam2 , with fibre bending resistance, e0 = 5× 106 V/m ;

225.7432905 kPam2 , without fibre bending resistance, e0 = 5× 106 V/m . (55)

The normal force N values are

69.32308513 kPam , with fibre bending resistance, e0 = 0 V/m ;

51.29533089 kPam , without fibre bending resistance, e0 = 0 V/m ;

176.7433952 kPam , with fibre bending resistance, e0 = 5× 106 V/m ;

158.7156409 kPam , without fibre bending resistance, e0 = 5× 106 V/m . (56)

Hence, the presence of fibre bending stiffness and an electric field increases the magni-
tude ofM and N .

We note that

dL = d1(x1)g2 , d1(x1) =
ε0e
λ2

2
− c′0(e)r

2
8(λ2) (57)

which implies that DivdL = 0, since the component of dL depends on the variable x1 only.

6.2. Torsion and Extension of a Cylinder

The initial geometry of an incompressible thick-walled circular cylindrical annulus is
described by

0 ≤ R ≤ A, 0 ≤ Θ ≤ 2π, 0 ≤ Z ≤ L, (58)

where R, Θ and Z are reference polar coordinates with the corresponding basis BR = {ER, EΘ, EZ}.
The boundary value problem illustrated here could be used in an experiment (see, for ex-
ample, reference [43]) to verify our theoretical predictions.
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The deformation is depicted in Figure 4 and is described by

r = λ
− 1

2
z R, θ = Θ + λzτZ, z = λzZ, (59)

where τ is the amount of torsional twist per unit deformed length and λz is the axial stretch.
In the above formulation, r, θ and z are cylindrical polar coordinates in the deformed
configuration with the corresponding basis BC = {er, eθ , ez}. Here, we have allowed
er = ER, eθ = EΘ and ez = EZ. The deformation gradient is

F = λ−1/2
z er ⊗ ER + λ−1/2

z eθ ⊗ EΘ + λzγeθ ⊗ EZ + λzez ⊗ EZ , (60)

where γ = rτ, and in this paper, we only consider λz ≥ 1. The Lagrangian principal
directions are

u1 = ER , u2 = cEΘ + sEZ , u3 = −sEΘ + cEZ , (61)

where

c = cos(φ) =
2√

2(γ̂2 + 4) + 2γ̂
√

γ̂2 + 4
, s = sin(φ) =

γ̂ +
√

γ̂2 + 4√
2(γ̂2 + 4) + 2γ̂

√
γ̂2 + 4

, (62)

with

π

4
≤

π − tan−1
(

1√
λ3

z−1

)
2

≤ φ <
π

2
, γ̂ =

λ3
zγ2 + λ3

z − 1

λ
3
2
z γ

≥ 0 , c2 − s2 = −γ̂cs . (63)

Z

R
Θ

z

r
θ

Figure 4. Torsion and extension of a cylinder.

In the case of pure torsion, λz = 1 and we have γ̂ = γ. The principal stretches for a
combined extension and torsion deformation are

λ1 =
1

λ
1
2
z

, λ2 =

√
1

λz
+

sγ
√

λz

c
, λ3 =

√
1

λz
− cγ

√
λz

s
. (64)
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In this section, for simplicity, we only consider the cases when a = Ez and eL = eER,
where e is a constant. Hence, a1 = 0, a2 = s, a3 = c, c2 = c3 = 0 and c1 = 1. Clearly, the
relation CurleL = 0 is satisfied. If we let F̄ = F, and using

Gradb =
∂b
∂R
⊗ ER +

1
R

∂b
∂Θ
⊗ EΘ +

∂b
∂Z
⊗ EZ , (65)

we obtain

k = −ER , ρ =
λ3

zγτ√
λ2

z(1 + γ2)
, b1 = −1 , b2 = b3 = 0 . (66)

The strain energy function then takes the form

W(T) = µ
3

∑
i=1

r2
1(λi) + 2µ1[s2r2

2(λ2) + c2r2
2(λ3)] +

κ1

2
[s2r3(λ2) + c2r3(λ3)]

2 ,

W(Λ) = 2ρ2µ2r2
4(λ1) + ρ4 κ2

2
r2

5(λ1) + ρ2κ3[s2r6(λ2) + c2r6(λ3)]r7(λ1) ,

W(E) = c0(e)r2
8(λ1)−

ε0e2

2λ2
1

. (67)

The Maxwell stress is

T M =
ε0λze2

2
(er ⊗ er − eθ ⊗ eθ + ez ⊗ ez) . (68)

The total Cauchy stress is

T = 2F
∂W
∂C

FT − pI . (69)

In view of a ≡ [0, 0, 1]T , we have a1 = 0, a2 = s and a3 = c and

T = σrrer ⊗ er + σθθeθ ⊗ eθ + σzzez ⊗ ez + σzθ(ez ⊗ eθ + eθ ⊗ ez) , (70)

where

σθθ = 2
[

l2c2 + l3s2 − 2l4cs
λz

+ 2
√

λzγ((l2 − l3)cs + l4(c2 − s2)) + λ2
zγ2(l2s2 + l3c2 + 2l4cs)

]
− p,

σzθ = 2
[√

λz((l2 − l3)cs + l4(c2 − s2)) + λ2
zγ(l2s2 + l3c2 + 2l4cs)

]
,

σzz = 2λ2
z

(
l2s2 + l3c2 + 2l4cs

)
− p , σrr =

2l1
λz
− p , (71)

where

li =
(

∂W
∂C

)
ii

, i = 1, 2, 3 , l4 =

(
∂W
∂C

)
23

. (72)

The normal force per unit deformed area N and the torque per unit deformed areaM
applied at the ends of the cylinder are as follows:

N =
2
a2

∫ a

0
σzzr dr , M =

2
a2

∫ a

0
σzθr2 dr , a =

A√
λz

. (73)

To remove p in (73), we use the equilibrium relation

σrr + σθθ =
1
r

d(r2σrr)

dr
. (74)
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and re-express (73) as

N =
1
a2

∫ a

0
(2σzz − σrr − σθθ)r dr +

ε0λze2

2
. (75)

It is clear from Figure 5 that for an axial stretch λz = 1.5, we require more torque to
twist an elastic solid cylinder with fibre bending stiffness, and the torque is independent
of the electric field eL = eER. However, in the case of the normal force (see Figure 6),
the presence of an electric field and fibre bending stiffness increases the magnitude of the
normal force and changes its behaviour.

Figure 5. Torque,M vs τ. (a) Elastic solid with fibre bending stiffness. (b) Elastic solid with no fibre
bending stiffness. λz = 1.5. The torque is independent of the electric field eL = eER.

Figure 6. Force per unit area N vs τ. (a) Elastic solid without fibre bending resistance. e = 0 V/m.
(b) Elastic solid without fibre bending resistance. e = 5× 106 V/m. (c) Elastic solid with fibre bending
resistance. e = 0 V/m. (d) Elastic solid with fibre bending resistance. e = 5× 106 V/m. λz = 1.5.
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Since W(E) depends only on the constant principal stretch λ1 (see Equation (67)), it is
clear that the property DivdL = 0 is satisfied.

7. Conclusions

We have modelled bending resistance of EAPs due to changes in the curvature of the
fibres without using the second gradient theory. In view of this, our proposed constitutive
equation is simpler (as shown in Sections 4 and 5) than the second-gradient constitutive
equations given in the literature; solving boundary value problems using our model is also
simpler, as exemplified in Section 6. Our model does not contain contact torques (which
is required in a second-gradient model), and hence, the proposed model is more realistic
in the sense that contact torques do not exist in deformations of nonpolar carbon fibre-
reinforced EAPs. Our constitutive equation uses recently developed spectral invariants (see
Section 4.1) that are attractive and useful for experimental designs. The boundary value
problem results in Section 6 indicate that our model manages to simulate fibre bending
stiffness. In the near future, stable numerical decoupling strategies will be developed,
whereas a level set description can be used to model the fibre direction [44–46]. FEM
solutions of the proposed model will be obtained, and we will extend this model to EAPs
that are reinforced with a family of two fibres.
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Appendix A

The importance of strong ellipticity is explained in [47]. In this paper, we restrict the
material constants given in Section 5 using the following strong ellipticity condition in the
incompressible reference configuration (F = I) [47]:

Let m and n be unit vectors with the condition m · n = 0 [47]. The strong ellipticity
condition is

m · [Q(n)m] > 0 , (A1)

where the Cartesian components of Q(n) are

(Q(n))ij =
3

∑
p,q=1

(
∂2W
∂F2

)
piqj

npnq , (A2)

and ni is a Cartesian component of n. Following the work of Shariff et al. [19], in view of
(A2) and (31), we obtain

Q(n) = Q1(n) + Q2(n) + Q3(n) + Q4(n) + Q5(n) , (A3)

where

Q1(n) = µ(I + n⊗ n) + k1 An⊗ An + µ1(An⊗ n + n⊗ An + (n · An)I + A) ,

Q2(n) = k2ρ2(Kn⊗ Kn) + k3ρ2(An⊗ Kn + Kn⊗ An) ,

Q3(n) = µ2ρ2(Kn⊗ n + n⊗ Kn + (n · Kn)I + K) ,

Q4(n) =
c0(e)

2
[Gn⊗ n + n⊗Gn + (n ·Gn))I + G] ,

Q5(n) = −ε0e2(n⊗Gn + Gn⊗ n + G) , (A4)
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A = a⊗ a , K = k⊗ k , G = g ⊗ g . (A5)

We only consider the case for m and n in a plane, since in Section 6, the boundary value
problems can be considered as two-dimensional. In view that at F = I, ui is arbitrary, we
assume ui = gi.

If we consider a material where k1 = k2 = k3 = 0, the necessary and sufficient
condition for (A1) is

b1 > 0 and 4b1b2 > b3 , (A6)

where

b1 = µ + µ1(α1 + α2) + µ2ρ2(β1 + β2) +
c0(e)

2
(γ1 + γ2)− ε0e2γ2 ,

b2 = µ + µ1(α1 + α2) + µ2ρ2(β1 + β2) +
c0(e)

2
(γ1 + γ2)− ε0e2γ1 ,

b3 = 2ε0e2c1c2 . (A7)

In the case where k1, k2 and k3 have nonzero values, the inequalities

k1 > 0 , k1k2ρ2 − k2
3ρ4 > 0 (A8)

and those given (A6) ensure that (A1) is satisfied.

Appendix B

Let dα, α = 0, 1, . . . be approximate values of d that are obtained via the description
below. If the deformation is not known, as a first iteration, we first solve the boundary
value problem (BVP) using

W = W(T) + W(E) (A9)

and this boundary value problem solution is used to evaluate the first approximation d0.
We then solve the BVP via the following iteration:
For i = 0, 1, . . .
Solve the BVP using di and

W = W(T) + W(Λ) + W(E) . (A10)

Obtain di+1 from the solution of the BVP.
If ‖di+1 − di‖ < tolerance. Stop. We consider this is the final solution,
else
Continue with the iteration
endif
Note that ‖ • ‖ is the Euclidean norm, and we assume that the above iteration con-

verges.
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