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Abstract: Spontaneous pattern formation by a large number of dislocations is commonly observed
during the initial stages of metal fatigue under cyclic straining. It was experimentally found that the
geometry of the dislocation pattern undergoes a crossover from a 2D spot-scattered pattern to a 1D
ladder-shaped pattern as the amplitude of external shear strain increases. However, the physical
mechanism that causes the crossover between different dislocation patterns remains unclear. In this
study, we theorized a bifurcation diagram that explains the crossover between the two dislocation
patterns. The proposed theory is based on a weakly nonlinear stability analysis that considers the
mutual interaction of dislocations as a nonlinearity. It was found that the selection rule among the two
dislocation patterns, “spotted” and “ladder-shaped”, can be described by inequalities with respect to
nonlinearity parameters contained in the governing equations.

Keywords: pattern formation; metal fatigue; bifurcation theory; turing instability; reaction–diffusion
dynamics

1. Introduction

Diffusion usually homogenizes a system. This intuitive idea is consistent with the
observation that a drop of ink placed in a glass of water spreads out with time, eventually
making the whole body of water cloudy. Surprisingly, however, diffusion can make the
system non-homogenous under certain conditions through self-organization of spatial
patterns with local or global symmetry. This counterintuitive property is called diffusion-
induced instability [1]. The spatial patterns created by this property are called Turing
patterns, named after the pioneering individual who first theoretically predicted this
phenomenon [2,3].

Turing theory, which explains the spontaneous formation of patterns by diffusion, is
based on the following three hypotheses [4]: (i) The system consists of two components: the
activator and inhibitor. The former promotes its own local production whereas the latter
decelerates its own production. (ii) The two components act to change each other’s local
concentration. Specifically, the substrate depletion model [5] was adopted in this work,
wherein the activator (inhibitor) is assumed to deplete (enhance) the local growth of the
other component. (iii) The inhibitor diffuses over the system sufficiently faster than the
activator. Under these assumptions, the local concentration of the activator tends to increase
when it is elevated by a small local perturbation; this is true even though the system starts
in a homogeneous state. The resulting local maximum of activator population decreases
the inhibitor population nearby, causing a downward peak of inhibitor population. As time
passes, the width of the inhibitor’s downward peak rapidly broadens, while the narrow
width of the activator’s upward peak is maintained, because of the higher (lower) mobility
of inhibitor (activator). At this stage, an aggregate of activators forms, which is surrounded
by a decreasing inhibitor population within the characteristic length of inhibitor diffusion.
Owing to a decrease in local density, the inhibitor cannot promote another aggregate of the
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activator within a close neighborhood of the first maximum. Nevertheless, when there is
sufficient distance, a sufficient population of inhibitors remains so that another aggregate
of activators can be formed by following the aforementioned mechanism. By repeating this
process, a spatially periodic pattern of the activator aggregate develops [6]. This scenario is
based on the premise that diffusion can destabilize a homogeneous state.

Existing studies on diffusion-induced instability have focused primarily on soft matter,
including biological [7–11] and chemical [7,12–15] systems, in which the typical periodicity
in length ranges from cm to mm or slightly less. Conversely, Turing patterns that emerge in
“hard” matter show far smaller length scales [16–19]. A well-known example of such Turing
patterns in hard matter is the dislocation patterning that occurs inside plastically deformed
metal [20,21]. Dislocations are linear-shaped crystalline defects, and are responsible for the
mechanical strength and plastic deformation of crystalline materials [22–24]. Dislocations
are uniformly distributed inside the metal in a pristine state; however, when the metal
sample is repeatedly loaded, diffusive motion of individual dislocations followed by
reactions that occur between them results in the spontaneous formation of dislocation
patterns [25]. These patterns are composed of dense aggregates of dislocation multipoles
separated by relatively dislocation-poor regions. In particular, in face-centered cubic (fcc)
metals (e.g., Cu, Ni, and Ag), an increase in the amplitude of plastic shear strain during
cyclic loading experiments leads to successive transitions in pattern morphology, from
two-dimensional (2D) spotted or vein structures at low strains (see Figure 1a,b) and one-
dimensional (1D) ladder structures at medium strain (Figure 1c) to more complex structures
at higher values. However, the physical mechanism of switching across different patterns
has not yet been fully elucidated, despite considerable efforts in the past [26].

(a) Spotted pattern (b) Vein pattern (c) Ladder pattern 

Figure 1. Drawings of the three types of dislocation patterns observed at the cross-section of fatigued
metals: (a) spotted pattern, (b) vein pattern, (c) ladder pattern that appears between two parallel
dashed lines. Dislocations are densely distributed in the grey area, but are sparse in the white area. In
material science, the ladder pattern shown in panel (c) is commonly called the “persistent slip band
(PSB) ladder” structure.

In the present study, the production–annihilation rate equation which theoretically
reproduces crossover across spot- and ladder-pattern formations in correlated dislocation
systems was formulated. In the formulation, the atomic-scale discrete distribution of
dislocations was replaced by a continuous distribution of dislocation density. Under
the continuum approximation, the nonlinear parameters describing mutual interaction
between nearby dislocations were deduced from a few physically plausible assumptions.
An approximate analysis based on nonlinear rate equations led to the following conclusion:
the threshold for crossover from the 2D spotted pattern to the 1D ladder pattern can
be expressed by a combination of the nonlinear terms defined in the formulation. The
qualitative consistency of the theoretical results with experimental observations supported
the validity of our rate equation approach for the formation of dislocation patterns.
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2. Dislocation Patterning and Its Microscopic View

We begin with a brief summary of the initial process of metal fatigue that gives rise to
the spontaneous formation of dislocation patterns.

Suppose that a well-annealed single-crystalline metal oriented for a single slip is
fatigued in a push–pull cyclic loading experiment [27]. The experiment is conducted by
controlling the amplitude of resolved plastic shear strain, maintained at a given constant,
(see ref. [20] for precise definitions of terminology). During the first few cycles, the system
exhibits work hardening (i.e., a rapid increase in the flow stress with an increasing number
of cycles), which is a hallmark characteristic of plastic deformation. With continued cyclic
loading, the increment in hardening per cycle gradually decreases and a quasi-steady state
of deformation (i.e., saturation) is achieved [28]. Once saturation occurs, the variation in
stress as a response to the applied strain halts by further cycling and a certain dislocation
pattern emerges [21,29].

In a microscopic view, dislocation patterning is a consequence of diffusive motion
of individual dislocations and their stochastic reactions, as explained below [30,31]. At
the initial pristine state (prior to loading), a small number of dislocations are distributed
almost uniformly throughout the metal sample. Subsequently, the cyclic loading applied
to this sample produces a myriad of dislocations with both positive and negative signs.
Dislocations with opposite signs repeat the to-and-fro motion while exerting attractive
forces on each other. Occasionally, when a pair of edge dislocations with opposite signs
approach each other very closely, the strong attractive forces between them constrain their
motion, thereby creating a dipole of edge dislocations, as shown in Figure 2a. Furthermore,
a dipole can trap another edge dislocation and form a stable configuration called a tripole,
as shown in Figure 2b [32–34]. Unlike the edge type, screw dislocations with opposite
signs do not form a dipole because they can easily cross slip and mutually annihilate
(provided that the stacking fault energy is sufficiently high). Instead, the screw segment of
the dislocation loop generated by external strain undergoes reciprocating motion and pair
annihilation, which promotes mutual trapping of the edge segments of the same dislocation
loop [30,31]. As the process continues, the accumulation of multipoles predominantly
occurs and leads to a periodic arrangement of dense bundles of dislocation multipoles. The
resulting patterns of dislocation multipoles can be regarded as a type of Turing pattern in
fatigue metals caused by the diffusion and reaction of the dislocations inside.

glide plane

glide plane

(a) (b)

Figure 2. (a) Flip-flop motion inside an edge-dislocation dipole between two stable configurations
labeled by P and Q. (b) Four stable configurations of an edge-dislocation tripole. The panels from I
to IV display the four different relative positions of the third edge dislocation to the dipole connected
by the dashed line.

For typical fcc metals, two types of dislocation patterns are observed at low and
medium amplitudes of applied shear strain [20]. At a low strain amplitude, a two-
dimensional spot or vein structure consisting of dense multipoles develops. Each spot is
separated by dislocation-poor regions, called channels; the spatial extent of both the spots
and channels is of the order of a few µm. Deformation within spots (and veins) under cyclic
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straining is believed to be accomplished by a flip-flop motion [29,35] inside each dipole
(see Figure 2a), through which the relative arrangement of the two-edge dislocations flips
reversibly from one stable configuration to another under cyclic strain. At an intermediate
strain amplitude, on the other hand, a one-dimensional ladder structure develops on the
primary slip plane. This structure exhibits a regular striped pattern of alternating dense
bundles of dislocation multipoles and low-density channel regions at regular intervals.
In the ladder pattern, plastic deformation is carried by the bowing out of edge disloca-
tions between ladders [36]. In addition, this ladder pattern is established by the dynamic
equilibrium between dislocation multiplication and annihilation, in which annihilation
occurs by the cross-slip of screw dislocations of opposite signs between two adjacent glide
planes [30]. Furthermore, the annihilation of screw dislocations via cross-slips also occurs
in dislocation-poor channels. Consequently, the local densities of the edge and screw
dislocations remain constant.

A promising approach for describing successive transitions of dislocation patterns
is the derivation of reaction–diffusion equations [37–39] that account for the dynamic
evolution of local dislocation densities [40–42]. The effectiveness of this theoretical approach
has been confirmed from a general perspective based on a series of earlier observations that
many qualitative aspects of Turing pattern formation, as well as their selection rules and
stability conditions, do not depend on microscopic dynamics. Instead, they are primarily
determined by the more general properties of the system, such as the symmetry and
bifurcation class [43–46]. In fact, dislocation patterns are broadly accepted to be the result
of a dynamic equilibrium between different processes, such as generation, annihilation,
trapping, and diffusion of the constituent dislocations. This is reminiscent of the self-
organization phenomenon in general Turing systems, where the competition between
reactivities and diffusivities of the constituents leads to instability in the initial uniform state.
These facts motivated us to develop a minimal theoretical model for the spatial ordering of
dislocation populations in line with the reaction–diffusion-based rate equation approach.

3. Linear Stability Analysis
3.1. Reaction–Diffusion Dynamics

In the rate equation approach [47–51], the discrete distribution of dislocations in
fatigued metals is approximately represented by continuous fields of local density, ρ(r, t),
which are a function of space r and time t. The oscillatory motion of dislocations under
cyclic stress is modeled as a diffusion phenomenon with a flux term D∇2ρ, where D
denotes the effective diffusion coefficient.

It is worth explaining why the distribution of dislocations can be approximated as
spatially “continuous”, although dislocations should be “discrete” structural disturbances
at the atomic scale. Following the existing experiments, the density of dislocation dipoles
in the densely distributed regions (i.e., the gray regions depicted in Figure 1) has been
estimated to be about 1011 or 1012 per square centimeter, while the mobile dislocation
density in the sparsely distributed regions (i.e., the white regions depicted in Figure 1) has
been estimated to be two orders of magnitude smaller. These measurement values imply
sufficiently high numbers of dislocations per square micron, ca. 1000–10, 000 and 10–100 in
the grey and white regions, respectively. Here, the “micron” scale is what corresponds to the
length scale of the dislocation pattern. In fact, the radius of the spots and the width of the
stripes, depicted in Figure 1, are on the order of 1 micron and 0.1 micron, respectively. These
arguments support our assumption that the distribution of dislocations can be considered
spatially continuous on length scales where dislocation patterns can be identified.

We further assume that the dislocation population can be divided into two families.
One is composed of slowly moving dislocations of local density ρs. This class of dislocations
include those occupying the spots (veins) and ladders (stripes). Their individual motions
are constrained owing to mutually attractive interactions that form dislocation multipoles.
The other family is built by fast mobile dislocations of local density ρm, which represent
those moving almost freely within dislocation-poor channels.
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The spatio-temporal dynamics of the slow and mobile dislocation densities are de-
scribed by coupled rate equations in two dimensions [48]:

∂tρs =
(

Dsx∂2
x + Dsy∂2

y

)
ρs + f (ρs, ρm),

∂tρm =
(

Dmx∂2
x + Dmy∂2

y

)
ρm + g(ρs, ρm), (1)

where the subscripts s and m denote quantities corresponding to slow and mobile dis-
locations, respectively. The functions f and g serve as reaction terms (see Section 4.1),
whose explicit forms are determined by considering the microscopic details of dislocation,
multiplication, and annihilation caused by mutual interaction between them and the effect
of external stress during cyclic loading.

3.2. Occurrence Condition for Diffusion-Induced Instability

To proceed with analytic arguments, we expand the reaction terms f (ρs, ρm) and
g(ρs, ρm) in Equation (1) around the stationary state ρs0 and ρm0 up to the first order. We
then collect the zero-th and first terms only. Subsequently, it follows that the deviations
ρ∗s = ρs − ρs0 and ρ∗m = ρm − ρm0 obey the linear equation

∂t

[
ρ∗s
ρ∗m

]
= ∂2

x

[
Dsxρ∗s
Dmxρ∗m

]
+ ∂2

y

[
Dsyρ∗s
Dmyρ∗m

]
+

[
fs fm
gs gm

][
ρ∗s
ρ∗m

]
, (2)

where the matrix elements in the last term of Equation (2) indicate the following partial
derivative in the stationary state:

fs ≡
∂ f
∂ρs

∣∣∣∣
ρs=ρs0, ρm=ρm0

, gs ≡
∂g
∂ρs

∣∣∣∣
ρs=ρs0, ρm=ρm0

,

fm ≡
∂ f

∂ρm

∣∣∣∣
ρs=ρs0, ρm=ρm0

, gm ≡
∂g

∂ρm

∣∣∣∣
ρs=ρs0, ρm=ρm0

. (3)

Suppose that the spatiotemporal dependencies of both ρ∗j (j = s, m) can be expressed as

ρ∗j (x, y, t) ∝ eκte−iq·r , (4)

where q = (qx, qy) and r = (x, y). By substituting Equation (4) into Equation (2), the
following secular equation is obtained:

det[J(q)− κI] = 0, J(q) =

[
−Dsxq2

x − Dsyq2
y + fs fm

gs −Dmxq2
x − Dmyq2

y + gm

]
, (5)

where I denotes the identity matrix. The secular equation is alternatively expressed
as follows:

κ2 − tr[J(q)]κ + det[J(q)] = 0. (6)

Equation (6) implies that the two eigenvalues, κ = κ1, κ2, are determined using the values
of tr[J(q)] and det[J(q)]. These two J(q)-dependent quantities are the functions of the
the parameters involved in the reaction terms f and g and the diffusion constants Dij
(ij = sx, sy, mx, my), as seen from Equation (5).

If the real parts of eigenvalues κ1 and κ2 are both negative, deviation, ρ∗j (j = s, m),
from the stationary state decays with time (see Equation (4)). This decay means that even
with density perturbations, the system returns to a stationary state. However, if at least
one of the two eigenvalues has a positive real component, say Re(κ1) > 0, the deviation
grows over time and may develop into a pattern with spatial periodicity. That is, the
system exhibits diffusion-induced instability if the sign of the eigenvalue with the larger
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real part in Equation (6) changes from negative to positive by changing the values of the
diffusion coefficients Dij (ij = sx, sy, mx, my) from all zero to at least one of them having a
non-zero value.

Figure 3 shows the schematic diagram of the occurrence condition of diffusion-induced
instability. The horizontal and vertical axes represent the values of tr[J(q)] and det[J(q)],
respectively. Suppose that when Dij ≡ 0, the system is positioned in the second quadrant
labeled by the“stable” region, where Re(κ2) < Re(κ1) < 0 such that the initial stationary
state is stable. Once the diffusion effect becomes active, the system moves away from this
position. If it moves downward in the phase diagram and crosses the horizontal axis, then
the larger eigenvalue κ1 is positive. Hence, the system undergoes Turing bifurcation. In
equation form, diffusion-induced instability occurs if

tr[J(q)] < 0 and det[J(q)] < 0 for certain q 6= 0, (7)

while
tr[J(q = 0)] < 0 and det[J(q = 0)] > 0. (8)

When the two conditions given in Equations (7) and (8) are satisfied, the eigenmodes
of matrix J(q) with a positive real part can grow over time with the help of diffusion
and reaction of the components in the system. This eventually leads to the formation
of a Turing pattern with a periodicity corresponding to the wave vector q, which makes
det[J(q)] negative.

stable unstable
parabola:

det J =

tr J( ) 4

det J( )

tr J( )

Re 1,2 < 0

Im 1,2 0

Re 1,2 > 0

Im 1,2 0

1,2 > 0

1 > 0, 2 < 0

1,2 < 0

Stationary

& Uniform

Figure 3. Diagram for the occurrence conditions of diffusion-induced instability (i.e., Turing bifur-
cation). The six small downward parabolas embedded in the diagram illustrate the sign of the real
part of the eigenvalues κ1 and κ2 in each region as well as the presence/absence of the imaginary
part. The initial stationary state is stable with time if it is located in the second quadrant, otherwise
it is unstable. A Turing pattern may start to grow if the system transitions from the second to third
quadrant by changing the parameter involved in the matrix J(q) defined by Equation (5). Transit
from the second to first quadrant triggers another class of bifurcation (temporally oscillating), called
the Hopf bifurcation, which is beyond the scope of this work.

Figure 4 also schematically helps in understanding Turing bifurcation. Panel (a)
presents the variation in det[J(q)] as a function of q; a one-dimensional system was con-
sidered for simplicity. In the initial stationary state, det[J(q)] is permanently positive
regardless of whether q is (see curve (i) in Figure 4a). At the Turing bifurcation point (curve
(ii)), the minimum value of det[J(q)] becomes zero at a certain q. Beyond bifurcation (curve
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(iii)), det[J(q)] takes a negative value in region q with a finite width. Within this region, the
initial stationary state becomes unstable, so that the eigenmode with a positive real part
can grow with time. The panel in Figure 4b shows the dispersion curves for cases (i), (ii),
and (iii). On the right (left) side of the vertical thin line in the figure, eigenvalues κ1, κ2 are
real (complex) numbers. It follows from Figure 4b that beyond the bifurcation, the larger
eigenvalue κ1 becomes positive within the limited “unstable” region where det[J(q)] < 0.
Specifically, q that maximizes κ1(> 0) is denoted by q0. In principle, a spatial pattern with
periodicity characterized by q0 should grow the fastest because κ1 is the largest. In a subse-
quent discussion (Section 4.3), we consider the growth of the periodic pattern characterized
by q0 in correlated dislocation systems.

det[ ]J

0

,

: complex
: real

unstable

unstable

(a) (b)

0

i) ii)

iii)

i)

ii)

iii)

Figure 4. (a) Variation in det[J(q)] for three cases: (i) at the initial stationary state; (ii) on the Turing
bifurcation point; (iii) beyond the bifurcation. The closed region at which det[J(q)] < 0 is an unstable
region, where the stationary state becomes unstable so that a certain periodic pattern may take place.
(b) Dispersion curves that relate the eigenvalues κ of the matrix J(q) and the wavevector q. κ is
complex (real) valued to the left (right) of the vertical thin line. The specific q that maximizes κ1(> 0)
within the unstable region of (iii) is labeled by q0, characterizing the fastest growing eigenmode.

4. Weakly Nonlinear Analysis
4.1. Defining the Reaction Terms for Dislocation Systems

We are now ready to address dislocation patterning from the perspective of Turing
bifurcation. In order to analytically deal with the reaction–diffusion dynamics of individual
dislocations under cyclic straining, we introduce the explicit forms of the reaction terms f
and g given in [42] as

f (ρs, ρm) = ξ(ρs)− βρs + γρ2
s ρm − bρ2

s − 2cρ3
s , (9)

g(ρs, ρm) = βρs − γρ2
s ρm + cρ3

s , (10)

where the terms to the powers of ρs and ρm as well as the function ξ(ρs) (which is a
polynomial of ρs, see below) represent the reactions between dislocations that occur under
cyclic loading. The physical meaning of each term is explained in turn in the subsequent
paragraphs and Figure 5.

The function ξ(ρs) given in Equation (9) represents the generation of slow dislocations
from dislocation sources such as the Frank–Read type [52]. In this study, it is expressed
using a polynomial expansion with respect to ρs to the first order as

ξ(ρs) ' ξ(ρs0)− α(ρs − ρs0), α = − dξ(ρs)

dρs

∣∣∣∣
ρs=ρs0

, (11)

where ξ(ρs0) ≡ 0 satisfies the stationary condition at ρs = ρs0.
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(b) Capture(a) Liberation

increases

decreases

decreases

increases

(c) Pair-annihilation

decreases

climb glide annihilattion

Figure 5. Interaction between dislocations presumed to occur inside metals undergoing fatigue.
(a) Cyclic-loading-induced liberation of slow dislocations (e.g., dipoles) into mobile ones. (b) Cap-
turing of mobile dislocation by a dipole through the attractive force. (c) Annihilation of paired
dislocations within a multipole.

The parameter β in Equations (9) and (10) represents the probability that the two dislo-
cations consisting of a dipole are dissociated by a strong external shear stress and transform
into two mobile dislocations (Figure 5a) [47–49]. Here, the number of dipole dissociations
that occur per unit area per unit time is thought to be proportional to the number of dipoles
included in the unit area. Owing to the separation of dipoles by the external shear stress,
the density of slow dislocations decreases locally as expressed by the negative term of−βρs
in Equation (9); in contrast, the density of mobile dislocations increased locally is written by
the positive term βρs in Equation (10). Essentially, β becomes operative when the external
stress exceeds the attractive interactions between the constituent dislocations. During the
cyclic loading experiment, a change in the dislocation pattern is observed by gradually
increasing the externally applied shear stress. Following this observation, the parameter β
is regarded as the control parameter for the Turing bifurcation such that the change in the
dislocation pattern is correlated with variation in the magnitude of β.

The parameter γ in Equations (9) and (10) represents the probability of reaction in
which one mobile dislocation is trapped by one dipole due to the three-body interaction
between dislocations (Figure 5b). As mentioned in Section 2, a dipole generates a strain
field around it, which can trap a mobile dislocation that approaches sufficiently close to the
dipole from a particular direction [32]. The probability that this reaction occurs per unit
time per unit area is proportional to the probability that one mobile dislocation and one
dipole exist simultaneously in the unit area, thus being expressed by γρ2

s ρm.
The parameters b and c imply the annihilation of slow dislocations contained in dipoles

and tripoles, respectively. The annihilations are thought to occur owing to the thermally
induced clime and glide motion of edge dislocations (Figure 5c); namely, dislocations that
constitute a dipole (or tripole) can annihilate when external stress or thermal disturbance
bring the distance between them much closer than the stable distance.

If the expansion of reaction terms f and g is truncated to the first order with respect to
ρ∗s and ρ∗m, the following linear matrix equation is obtained as

∂tρ
∗ = J(q)ρ∗, (12)

where ρ∗ = (ρ∗s , ρ∗m)
T and J(q) is a matrix defined by Equation (5), with eigenvalues

κ = κ1, κ2, where Re(κ1) > Re(κ2). Hereafter, we denote the normalized eigenvectors
corresponding to the eigenvalues as w1 and w2, respectively. Equation (12) implies that once
Re(κ1) becomes positive by tuning the control parameters (such as β), the eigenmode of w1
grows permanently and eventually diverges to infinity. Therefore, if a linear approximation
is used, then it is not possible to correctly describe the system after a long period.
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4.2. Defining the Nonlinear Vector–Matrix Equation

In the following discussion, we examine the contribution of the nonlinear terms
included in the reaction terms for the dislocation patterns. To this end, we expand the two
reaction terms to the third order. In the case of f , for instance, we obtain

f (ρs, ρm) ' f (ρs0, ρm0) +
3

∑
p=1

1
p!

(
ρ∗s

∂

∂ρs
+ ρ∗m

∂

∂ρm

)p
f (ρs, ρm)

∣∣∣∣
ρj=ρj0

, (13)

where |ρj=ρj0 denotes the partial derivative in the stationary state of ρj = ρj0 (j = s, m). A
similar third-order expansion applies to g(ρs, ρm). Then, we obtain the following nonlinear
vector–matrix equation:

∂tρ
∗ = J(q)ρ∗ +N30(ρ

∗) +N21(ρ
∗) +N20(ρ

∗) +N11(ρ
∗), (14)

where

N30(ρ
∗) = c

(
−2(ρ∗s )3

(ρ∗s )
3

)
, N21(ρ

∗) = −γ

(
−(ρ∗s )2ρ∗m
(ρ∗s )

2ρ∗m

)
,

N20(ρ
∗) = −γρm0

(
−(ρ∗s )2

(ρ∗s )
2

)
+ b
(
−(ρ∗s )2

0

)
+ 3cρs0

(
−2(ρ∗s )2

(ρ∗s )
2

)
, (15)

N11(ρ
∗) = −2γρs0

(
−ρ∗s ρ∗m
ρ∗s ρ∗m

)
.

The paired subscripts mn attached to Nmn given in Equation (16) indicate that its vector
components are associated with the partial differentiation in Equation (13) of the mth order
with respect to ρs and the nth order with respect to ρm.

Since Equation (14) is nonlinear, the exact solution cannot be analytically determined.
Hence, we proceed with the following two steps. First, the state vector ρ∗ is assumed to
be a scalar multiplication of w1. This is justified because after a sufficiently long time has
passed, the w2 mode with a negative κ2 decays, and only the w1 mode with a positive κ1
survives. Second, we represent all four vectors Nmn(ρ∗) using a linear combination of the
eigenvectors w1 and w2 and investigate the contribution of the w1 component with the
time evolution of ρ∗. In this way, we focus only on the fastest growing w1 mode and the
contribution of the nonlinear terms to the w1 mode to approximately address the nonlinear
effects of dislocation pattern formation.

4.3. Nonlinearity Effect on the Growth in Amplitude

The effect of the nonlinear component vectors Nmn(ρ∗), listed in Equation (16), in-
creases as the system departs from the Turing bifurcation point drawn in Figure 3. To
investigate the effect on pattern formation, we focus on the fastest growing mode with
the wave vector q0 that maximizes the eigenvalue κ1(q0) > 0, which is located within the
unstable region depicted in Figure 4.

After a sufficiently long time period, the w2 mode with a negative κ2 decays and
eventually disappears, while the w1 mode with a positive κ1 survives. Under these circum-
stances, ρ∗ can be approximated as as a scalar multiple of w1 as:

ρ∗(x, y, t) = σ(x, y, t)w1, σ(x, y, t) =
3

∑
j=1

aj(t) cos
[
qj · r(x, y)

]
, (16)

where r(x, y) is the position vector. In Equation (16), the amplitude σ of the state ρ∗ is set
to be the linear combination of the three allowed sinusoidal waves, labeled by j (j = 1, 2, 3).
Figure 6 illustrates the relative configurations of three wave vectors qj; they are assumed to
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have the same magnitude as q0 of the fastest growing mode but have different directions
satisfying the three-fold rotational symmetry such that

3

∑
j=1

qj = 0, |qj| = |q0| ≡ q0 for any j. (17)

The amplitude σ is thus explicitly written as

σ(x, y, t) = a1(t) cos(q0x)

+ a2(t) cos

(
−1

2
q0x +

√
3

2
q0y

)

+ a3(t) cos

(
−1

2
q0x−

√
3

2
q0y

)
. (18)

Note that the spatial distribution of ρ∗ as defined by Equation (16) corresponds to a 1D
uniaxial ladder pattern if a1 6= 0 and a2 = a3 = 0, whereas it corresponds to a 2D spotted
pattern with hexagonal symmetry if a1 = a2 = a3 6= 0.

Further mathematical preparation for the subsequent discussion is the evaluation of
the constants Sj and Tj (j = 1, 2) (see Appendix A) that satisfy the following relationship:

N20(w1) +N11(w1) = S1w1 + S2w2, (19)

N30(w1) +N21(w1) = T1w1 + T2w2. (20)

The coefficients S1 and T1 represent the degrees of contribution from the second- and
third-order partial derivatives in Equation (13) to the fastest growing w1 mode. The same
explanation applies to S2 and T2. Using Equations (16), (19), and (20) and the definitions of
Nmn given by Equation (16), we obtain

N20(ρ
∗) +N11(ρ

∗) = σ2
(

S1w1 + S2w2

)
, (21)

N30(ρ
∗) +N21(ρ

∗) = σ3
(

T1w1 + T2w2

)
. (22)

As w2 decays rapidly with time, it suffices to only consider the contribution from w1; this
approximation enables us to rewrite the right sides of Equations (21) and (22) as

N20(ρ
∗) +N11(ρ

∗) ∼ σ2S1w1, (23)

N30(ρ
∗) +N21(ρ

∗) ∼ σ3T1w1. (24)

By substituting these function terms into Equation (14), we obtain

∂t

(
σ1w1

)
∼ κ1σw1 + σ2S1w1 + σ3T1w1. (25)

By equating the coefficients on both sides of Equation (25), we obtain

∂tσ ∼ κ1σ + S1σ2 + T1σ3. (26)

Equation (26) determines the time evolution of the amplitude of the fastest growing mode
w1. If we set S1 = T1 = 0, Equation (26) becomes a linear problem which implies that σ
grows permanently and diverges to infinity. The presence of S1 and T1 may suppress this
divergence and, consequently, the amplitude converges to a finite value after sufficient
time has passed. It also follows that for this suppression effect to occur, either S or T must
be negative.
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Figure 6. Schematic definition of the wave vectors qj (j = 1, 2, 3) given by Equation (16). The unit
vectors ex and ey are also drawn.

4.4. Time Evolution of the Amplitude

To determine the condition for the time-evolving amplitude σ to converge to a constant
value, we substitute the expression for σ given by Equation (16) with Equation (26). We
then apply the trigonometric formulas (see Appendix B) and the symmetry relation with
respect to qj (see Equation (17)) to the cosine functions involved in the right-hand side of
Equation (26). After that, we multiply both sides of Equation (26) by cos(qn · r) with an
integer n (1 ≤ n ≤ 3) and integrate on both sides with respect to r, which allows only the
terms with satisfying n = j to survive. Repeating this calculation while varying the n value
from 1 to 3, we obtain the following set of three time-evolution equations [43,44]:

da1

dt
= κ1a1 + S1a2a3 +

3
4

T1

[
a3

1 + 2a1(a2
2 + a2

3)
]
, (27)

da2

dt
= κ1a2 + S1a3a1 +

3
4

T1

[
a3

2 + 2a2(a2
3 + a2

1)
]
, (28)

da3

dt
= κ1a3 + S1a1a2 +

3
4

T1

[
a2

3 + 2a3(a2
1 + a2

2)
]
. (29)

The stability of the vector a = (a1, a2, a3)
T can be examined by considering the linear

vector–matrix equation of

d
dt

a = Aa, A =


∂h1
∂a1

∣∣∣
a=a∗

∂h1
∂a2

∣∣∣
a=a∗

∂h1
∂a3

∣∣∣
a=a∗

∂h2
∂a1

∣∣∣
a=a∗

∂h2
∂a2

∣∣∣
a=a∗

∂h2
∂a3

∣∣∣
a=a∗

∂h3
∂a1

∣∣∣
a=a∗

∂h3
∂a2

∣∣∣
a=a∗

∂h3
∂a3

∣∣∣
a=a∗

, hj ≡
daj

dt
, (30)

where a∗ denotes the stationary state with respect to a. If all three eigenvalues of the matrix
A are negative, the states located near a∗ will remain the same over time, which indicates
growth saturation of the w1 mode owing to nonlinear effects. Section 5 demonstrates the
two cases in which the magnitude of a does not diverge, but converges to a constant. Each
of the two cases occur with the the emergence of 1D ladder-shaped and 2D spotted patterns.

5. Spot–Ladder Selection Rule
5.1. Condition for a “Ladder” Pattern to Appear

The appearance of a ladder pattern implies that the amplitudes of the three cosine
terms converge to

a1 6= 0 and a2 = a3 = 0. (31)

Hence, it follows from Equation (27) that

da1

dt
= κ1a1 +

3
4

T1a3
1 = 0, (32)
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which implies

a1

(
κ1 +

3
4

T1a2
1

)
= 0. (33)

As a1 6= 0, the convergence value of the amplitude a1 is determined by

a1 = ±

√
4κ1

−3T1
. (34)

This indicates that T1 must be negative for a1 to converge to a constant value. In the
following sections, we rewrite T′1 ≡ −T1 > 0 for simplicity. Then, if the system prefers to
enter a ladder pattern, a converges to

a∗ =

 ±
√

4κ1
3T′1

0
0

. (35)

Substituting the results of Equation (35) into Equation (30), the matrix A becomes

A =


−2κ1 0 0

0 −κ1 ±2S1
√

κ1
3T′1

0 ±2S1
√

κ1
3T′1

−κ1

, (36)

whose eigenvalues are

−2κ2, −κ1 ± 2S1

√
κ1

3T′1
. (37)

Therefore, the condition for all three eigenvalues of A to be negative is given by

|S1| <

√
3T′1κ1

2
, (38)

or equivalently,

κ1 >
4S2

1
3T′1

. (39)

The inequality (39) serves as the condition for the 1D ladder pattern.

5.2. Condition for a “Spotted” Pattern to Appear

In the case of the emergence of the spotted pattern, the amplitudes of the three cosine
terms converge to the same magnitude, represented by a, such that

a1 = a2 = a3 = a( 6= 0). (40)

It then follows from Equation (27) that

da
dt

= κ1a + S1a2 +
15
4

T1a3 = 0, (41)

which implies

a
(

κ1 + S1a +
15
4

T1a2
)
= 0. (42)
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As a 6= 0, we have

a =
2

15T1

(
S1 ±

√
S2

1 − 15T1κ1

)
and thus a∗ =

 a
a
a

. (43)

In this case, the matrix A becomes diagonal and its elements, denoted by Aij (i, j = 1, 2, 3),
are given by

Aij =


κ1 +

21
4

T1a2, if i = j,

S1a + 3T1a2, otherwise.

(44)

The 3× 3 diagonal matrix A defined by Equation (44) is composed of all equal on-diagonal
terms Aii and all equal off-diagonal terms Aij (j 6= i). Therefore, it has one doubly multiple
root and another remaining root. The two roots, denoted by z∗∗ and z∗, are expressed as

z∗∗ = A11 − A12 (doubly multiple), z∗ = A11 + 2A12. (45)

Their explicit forms are given by

z∗∗ = κ1 − S1a +
9
4

T1a2, z∗ = κ1 + 2S1a +
45
4

T1a2, (46)

where a denotes the value given in Equation (43).
The remaining task is to determine the appropriate conditions for both z∗∗ and z∗ to

be negative. This task can be accomplished by eliminating a from Equation (46). Using the
expression for a in Equation (43), we regard z∗∗ and z∗ as functions of S1 with the positive
constants κ1 and T′1 ≡ −T1. After mathematical manipulation, we obtain

z∗∗ < 0 if |S1| >

√
3T′1κ1

4
, (47)

z∗ < 0 at arbitrary S1. (48)

In summary, all the eigenvalues of matrix A are negative if

|S1| >

√
3T′1κ1

4
, (49)

or equivalently

κ1 <
16S2

1
3T′1

. (50)

Inequality (50) serves as the condition for the 2D spotted pattern.

6. Selection Rule for “Spot vs. Ladder” Patterns

The types of dislocation patterns formed autonomously in fatigued metals in the small
and medium strain amplitudes can be classified according to the magnitude relationship
between the eigenvalue κ1 and the nonlinear parameters S1 and T′1:

(i) κ1 < 0 ⇒ no pattern grows (51)

(ii) 0 < κ1 <
4S2

1
3T′1

⇒ spotted pattern emerges (52)

(iii)
4S2

1
3T′1

< κ1 <
16S2

1
3T′1

⇒ marginal (both patterns may appear) (53)
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(iv)
16S2

1
3T′1

< κ1 ⇒ ladder pattern emerges (54)

Figure 7 shows a bifurcation diagram that schematically illustrates the type of spatially
periodic pattern preferred for a given parameter. The horizontal axis indicates the eigen-
value κ1, whose magnitude characterizes the strength of the externally applied shear stress,
as mentioned in Section 4.1. This diagram shows the presence of four distinct phases. Each
of these phases corresponds to a dislocation pattern with a different geometric symmetry.

No pattern
Ladder patternSpotted 

pattern

0
4

3

16

3

(Marginal)

X X X

1. No external strain 2. Weak strain 3. Strong strain

Figure 7. Bifurcation diagram of the dislocation pattern. An increase in the eigenvalue κ1 corresponds
to an increase in shear stress in the cyclic loading experiment. See text for the definitions of S1 and T′1.

The bifurcation diagram shown in Figure 7 is of particular interest because it is in qual-
itative agreement with the experimental observations. In the cyclic loading experiments,
it was observed that the shape of the dislocation pattern changed gradually. The pattern
shifted from a spotted pattern to a ladder-like pattern as the applied strain stress increased.
Furthermore, a marginal pattern, in which both patterns were mixed in the same specimen,
was experimentally observed. In this marginal pattern, an increased shear stress leads to a
decrease in the area occupied by the spotted pattern across the entire cross-section of the
specimen, whereas it leads to an increase in the area occupied by the ladder pattern. This
gradual change in the dominant pattern with increasing stress is shown in the bifurcation
diagram presented in Figure 7.

7. Summary

In this study, a bifurcation diagram was derived that explains the crossover from the
2D spotted pattern to the 1D ladder-shaped pattern observed in fatigued metals under
cyclic loading conditions. Thresholds separating the different patterns were formulated as
functions of nonlinearity parameters defined by S1 and T′1, which characterize the degree
of nonlinear effects from the creation and annihilation of dislocations inside the system.
The bifurcation diagram that was developed implies a gradual change in the geometric
characteristics of the patterns with increasing applied shear stress and is consistent with
experimental observations.

It should be emphasized that the model presented provides a conceptual framework
to study the formation of dislocation patterns formed as a result of the competition be-
tween nonlinear interactions of dislocations and stress-enhanced dissociation of multipoles.
Nevertheless, qualitative agreement with experimental results alone is not sufficient for the
model to be accepted as reliable; quantitative agreement between theory and experiment
also needs to be scrutinized using realistic parameter values [53]. In addition, when consid-
ering a realistic metallic specimen of a finite size, it is necessary to consider the attractive
force exerted by the outer surface of the specimen on the dislocations inside [54,55]. To
accomplish these tasks, numerical simulations based on coupled differential equations will
be discussed in future work.
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Appendix A. Derivation of Sj and Tj (j = 1, 2)

This appendix describes how the explicit forms of coefficients Sj and Tj (j = 1, 2)
introduced in Equations (19) and (20) are derived.

We denote the elements of the eigenvectors wj of the matrix J(q) by

wj =

(
ρsj
ρmj

)
(j = 1, 2), (A1)

and the elements of N30(w1) are given by

N30(w1) = c
(
−ρ3

s1
0

)
. (A2)

This can only be obtained by replacing ρ∗s in the elements of N30(ρ
∗) by ρs1. In a similar

manner, all the expressions of N30(w2), N20(wj), N21(wj), and N11(wj) with j = 1, 2 were
obtained.

Next, we introduce the normalized vector n2 as follows:

n2 = (ρm2,−ρs2). (A3)

Since it is normal to have a w2 such that n2 ·w2 = 0, we have

n2 ·
[
N20(wj) +N11(wj)

]
= S1n2 ·w1, (A4)

which implies

S1 =
n2 ·

[
N20(wj) +N11(wj)

]
n2 ·w1

. (A5)

Therefore, the value of S1 can be obtained by substituting the explicit elements into the
numerator vectors N20(wj) and N11(wj) in terms of ρij (ij = s1, s2, m1, m2). The same
scenario applies to S2, T1, and T2.

Appendix B. Trigonometric Formula

In deriving Equations (27)–(29), we used the trigonometric formula

cos θ cos φ =
1
2

[
cos(θ + φ) + cos(θ − φ)

]
, (A6)

cos2 θ cos φ =
1
4

[
cos(2θ − φ) + 2 cos φ + cos(2θ + φ)

]
, (A7)

cos2 θ =
1
2

(
1 + cos 2θ

)
, (A8)

cos3 θ =
1
4

(
3 cos θ + cos 3θ

)
, (A9)
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where θ and φ take arbitrary real values. Note that the latter two relations,
Equations (A8) and (A9), are specific cases of the former two relations, and can be de-
rived by substituting φ = θ.
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