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Abstract: The exact traveling wave solutions to coupled KdV equations with variable coefficients
are obtained via the use of quadratic Jacobi’s elliptic function expansion. The presented coupled
KdV equations have a more general form than those studied in the literature. Nine couples of
quadratic Jacobi’s elliptic function solutions are found. Each couple of traveling wave solutions is
symmetric in mathematical form. In the limit cases m→ 1 , these periodic solutions degenerate as the
corresponding soliton solutions. After the simple parameter substitution, the trigonometric function
solutions are also obtained.

Keywords: coupled KdV equations; variable coefficients; quadratic Jacobi’s elliptic function; soliton;
traveling wave solution

1. Introduction

Constructing exact solutions to nonlinear evolution equations has attracted great
research interest because they can be used to explain the evolution of complex nonlinear
processes in different areas, such as fluid dynamics, physics, economics, and finance.
Among the variety of nonlinear evolution equations, the most famous, the Korteweg–de
Vries (KdV) equation, represents many nonlinear systems. To date, extensive research has
been carried out on the complex nonlinear waves of KdV equations. Many methods have
been developed to solve these equations, such as inverse scattering transformation [1],
Darboux–Bäcklund transformation [2,3], Hirota’s bilinear method [4,5], the first integral
method [6], the homogeneous balance principle [7,8], the F-expansion method [9–11], the
Wronskian method [12], the variational method [13], and Painlevé analysis [14]. On the
other hand, KdV equations have different forms in different models, and the relevant
methods were developed to study different types of KdV equations. In 2016, a simplified
version of Hirota’s method was used to investigate three extended higher-order KdV-type
equations [15]. Later, various solutions were constructed for a new integrable nonlocal
modified KdV equation with distinct physical structures [16,17]. In Ref. [18], multiple
soliton solutions ranging from king type, single soliton and double soliton to multiple
solitons were offered for space–time fractional modified KdV equations. These methods
can also be used to obtain soliton, periodical, and rogue wave solutions for the Ivancevic
equation [19–22], which defines the option-pricing wave function in terms of the stock price
and time.

In recent years, the variable coefficient KdV equations were found to be more realistic
models than their constant coefficient counterparts for describing the physical phenomena
and physical properties behind them. Therefore, research on the variable coefficient KdV
equation has become a much discussed topic in recent years. Usually, the variable coefficient
KdV equations are much more complicated and difficult to solve. Fortunately, these
methods for studying the constant coefficient KdV equation are also effective for solving
the variable coefficient KdV equation. In the past, the Hirota bilinear method was used
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to represent multi-soliton solutions of the variable coefficient coupled KdV equation and
analyze the dynamic characteristics [23,24]. In Ref. [25], a modified sine–cosine method
was used to construct the exact periodic solutions and soliton solutions for two families of
fifth-order KdV equations with variable coefficients and linear damping terms. In Ref. [26],
the bell polynomial method was proved to be a powerful mathematical tool for solving
the KdV equation with variable coefficients to reach the N-soliton solutions. Additionally,
the periodic wave solutions were obtained by using the Riemann function method. In
Refs. [27,28], new multi-soliton solutions were obtained by using bilinearization on a new
modified KdV with time-dependent coefficients. Recently, the multivariate transformation
technique was used to construct periodic and decay mode solutions for the generalized
variable-coefficient KdV equation [29]. In 2019, the inverse scattering transform was
extended to a super KdV equation with an arbitrary variable coefficient by using Kulish
and Zeitlin’s approach [30]. A symbolic computational method, the simplified Hirota’s
method, and a long-wave method can also be used to reach various exact solutions for the
KdV equation with the extension of time-dependent coefficients [31]. Very recently, Liu
and his coworkers used an auxiliary equation method to solve the coupled KdV equations
with variable coefficients [32]. They obtained a series of new exact solutions under the
condition that only variable coefficients are integrals. A question then naturally arises: can
exact solutions be obtained for the variable coefficient coupled KdV equations with a more
general form? In this paper, variable coefficient KdV equations with more general forms
are solved by using the quadratic Jacobi’s elliptic function expansion method. Several
new families of exact solutions, i.e., Jacobi’s elliptic function solutions and trigonometric
function solutions, are obtained for the variable coefficient coupled KdV equations in
a more general form. The existence condition and characteristics of these solutions are
also presented.

The organization of the paper is as follows. In Section 2, the theoretical model, i.e., the
coupled variable coefficient KdV equations in general forms, is presented. By using the
method of quadratic Jacobi’s elliptic function expansion, traveling wave elliptic function
solutions are obtained. In Section 3, a specific example is used to obtain nine types of
exact Jacobi’s elliptic function solutions. We also show that these exact solutions can
be transformed into trigonometric function solutions by simple parameter substitution.
Section 4 gives a discussion of the results, and Section 5 presents a conclusion to the paper.

2. Theoretical Model and Methods

We consider the coupled variable coefficient KdV equations in the following form:

Ut + α(t)UUx + β(t)VVx + γ(t)Uxxx = 0, (1)

Vt + δ(t)UVx + ε(t)VUx + γ(t)Vxxx = 0, (2)

where U and V are the amplitudes of two waves counter-propagating on shallow water
surfaces, α and β are nonlinear coefficients, δ and ε are the coupled nonlinear coefficients
and γ is the dispersion coefficient. All the coefficients are time-dependent, and they satisfy
δ + ε − α = βσ2, where σ is a constant. It should be noted that the coupled variable
coefficient KdV Equations (1) and (2) have more general forms than those studied in
Ref. [32].

We search for traveling wave elliptic function solutions to Equations (1) and (2) in
the form:

(x, t) = f (ξ) = a0 + a1F(ξ) + a2F2(ξ), (3)

V(x, t) = g(ξ) = b0 + b1F(ξ) + b2F2(ξ), (4)

where ai(i = 0, 1, 2) and bi(i = 0, 1, 2) are constants which are to be determined later, F(ξ)
is a Jacobi’s elliptic solution of ξ, which satisfies F′2(ξ) = q0 + q2F

(
ξ)2 + q4F

(
ξ)4 , and



Symmetry 2023, 15, 1021 3 of 10

ξ = ω
∫ t

0 δ(τ)dτ + λx, where λ(λ 6= 0) is an arbitrary constant. Substituting (3), (4) with
(1), (2), we have

ωδ f ′ + λα f f ′ + λβgg′ + γλ3 f ′′′ = 0, (5)

ωδg′ + λδ f g′ + γλ3g′′′ + ελg f ′ = 0. (6)

Substituting the properties of Jacobi’s elliptic function F′′ (ζ) = q2F(ζ) + 2q4F
(
ζ)3

with Equations (5) and (6), we have

2λ
(
12γλ2a2q4 + βb2

2 + αa2
2
)

F3 + 3λ
(
αa1a2 + βb1b2 + 2γλ2a1q4

)
F2 +

(
2ωδa2 + λαa2

1 + 2λαa0a2 + λβb2
1

+2λβb0b2 + 8γλ3a2q2
)

F + ωδa1 + λαa0a1 + λβb0b1 + γλ3a1q2 = 0

2λb2
(
δa2 + εa2 + 12q4γλ2)F3 +

[
(λδ + ελ)(a2b1 + 2a1b2) + 6γλ3b1q4

]
F2 + [2ωδb2 + λδ(a1b1 + 2a0b2)

+ελ(a1b1 + 2a2b0) + 8γλ3b2q2
]
F + ωδb1 + λδa0b1 + γλ3b1q2 + ελa1b0 = 0

When all the coefficients of Fk(k = 0, 1, 2, 3) are set to zero, the following equations
should be satisfied:

12γλ2a2q4 + βb2
2 + αa2

2 = 0, (7)

αa1a2 + βb1b2 + 2γλ2a1q4 = 0, (8)

2ωδa2 + λαa2
1 + 2λαa0a2 + λβb2

1 + 2λβb0b2 + 8γλ3a2q2 = 0, (9)

ωδa1 + λαa0a1 + λβb0b1 + γλ3a1q2 = 0, (10)

b2

(
δa2 + εa2 + 12q4γλ2

)
= 0, (11)

(λδ + ελ)(a2b1 + 2a1b2) + 6γλ3b1q4 = 0, (12)

2ωδb2 + λδ(a1b1 + 2a0b2) + ελ(a1b1 + 2a2b0) + 8γλ3b2q2 = 0, (13)

ωδb1 + λδa0b1 + γλ3b1q2 + ελa1b0 = 0 (14)

To obtain the exact solutions of the coupled KdV equations, we assume that a2 6= 0,
b2 6= 0, and ω 6= 0. With these assumptions, Equation (11) can be reduced to

a2 =
−12q4λ4γ

(δ + ε)
= −12kq4λ2, (15)

where k = γ/(δ + ε) is a constant.
Substituting the condition that δ + ε− α = βσ2 with Equation (7), we have

b2 = 12kσλ2q4. (16)

Equations (8), (10) and (12) can be satisfied simultaneously only when a1 and b1 are
both zero. Therefore, we can obtain from Equation (9) that

ω =
λ
(

βb0σ− αa0 − 4γλ2q2
)

δ
. (17)
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Inserting Equation (17) into Equation (13), we obtain

(δ− α)b0 = (ασ− δ)a0. (18)

Finally, we obtain explicit solutions to coupled KdV equations:

U(x, t) = f (ξ) = a0 − 12kq4λ2F2(ξ), (19)

V(x, t) = g(ξ) =
(ασ− δ)

(δ− α)
a0 + 12kλ2q4

(
δ + ε− α

β

) 1
2

F2(ξ), (20)

where

ξ =
λ
(

βb0σ− αa0 − 4γλ2q2
)

δ

∫ t

0
δ(τ)dτ + λx. (21)

We then illustrate the Jacobi’s elliptic function solutions of the coupled KdV equations
with variable coefficients. For proper values of the parameters q0, q2 and q4, the ordinary
differential equation F′2(ζ) = q0 + q2F

(
ξ)2 + q4F

(
ξ)4 can be easily solved, and the corre-

sponding Jacobi’s elliptic function solutions are summarized in Table 1. Equations (19) and
(20) admit 12 different kinds of Jacobi’s elliptic functions. In the real financial markets or
the physical world, the amplitude of the wave function should be finite; thus, those elliptic
functions ending with ”s” (ns, cs, ds) are not the candidates to be the amplitude functions.
All those functions ending with ”n” (sn, cn, dn) can definitely be chosen as the amplitude
function in any order, and all those ending with ”d” or ”c” can be the amplitude function
in some orders. By substituting the values of q0, q2 and q4 and the corresponding Jacobi’s
elliptic function solutions with the equation, a series of wave solutions will be obtained.

Table 1. Values of (q0, q2, q4) and corresponding Jacobi’s elliptic function F(ξ).

q0 q2 q4 F’2=q0+q2F2+q4F4 F(ξ)

1 −
(
1 + m2) m2 F′2 =

(
1− F2)(1−m2F2) snξ,cdξ = cnξ

dnξ

1−m2 2m2 − 1 −m2 F′2 =
(
1− F2)(m2F2 + 1−m2) cnξ

m2 − 1 2−m2 −1 F′2 =
(
1− F2)(F2 + m2 − 1

)
dnξ

m2 −
(
1 + m2) 1 F′2 =

(
1− F2)(m2 − F2) nsξ,dcξ = dnξ

cnξ

−m2 2m2 − 1 1−m2 F′2 =
(
1− F2)[(m2 − 1

)
F2 −m2] ncξ = 1

cnξ

−1 2−m2 m2 − 1 F′2 =
(
1− F2)[(1−m2)F2 − 1

]
ndξ = 1

dnξ

1 2−m2 1−m2 F′2 =
(
1 + F2)[(1−m2)F2 + 1

]
scξ = snξ

cnξ

1 2m2 − 1 −m2(1−m2) F′2 =
(
1 + m2F2)[1 + (m2 − 1

)
F2] sdξ = snξ

dnξ

1−m2 2−m2 1 F′2 =
(
1 + F2)[F2 + 1−m2] csξ = cnξ

snξ

−m2 + m4 2m2 − 1 1 F′2 =
(

F2 + m2)[F2 + m2 − 1
]

dsξ = dnξ
snξ

In the following, we provide a specific example to illustrate the properties of the
Jacobi’s function solutions of the coupled KdV equations.

3. Results

To provide a specific example, we discuss the case α(t) = 4− 2cos t, β(t) = 5− cos t,
γ = 3− cos t, and δ(t) = 6− 2cos t, ε(t) = 3− cos t. In this case, k = 1/3 and σ = 1.

3.1. Jacobi-sn Function and Jacobi-cd Function Solutions

First, we discuss the case q0 = 1, q2 = −1 − m2 and q4 = m2. In this case, the
Jacobi’s elliptical function can be chosen as the m-order sn-function or cd-function, i.e.,
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F(ξ) = sn(ξ, m) or F(ξ) = cd(ξ, m) = cn(ξ, m)/dn(ξ, m). Substituting these expressions
with Equations (19)–(21), we have

U1(x, t) = f (ξ) = a0 − 12km2λ2sn2(ξ), (22)

V1(x, t) = g(ξ) =
(ασ− δ)

(δ− α)
a0 + 12kλ2m2

(
δ + ε− α

β

) 1
2
sn2(ξ), (23)

and
U2(x, t) = a0 − 12km2λ2cd2(ξ), (24)

V2(x, t) =
(ασ− δ)

(δ− α)
a0 + 12kλ2m2

(
δ + ε− α

β

) 1
2
cd2(ξ), (25)

where

ξ =
λ
(

βb0σ− αa0 + 4γλ2(1 + m2))
δ

∫ t

0
δ(τ)dτ + λx. (26)

When m = 0, a coupled constant solution is obtained. In the limit case when m = 1,
sn(ξ)→ tanh(ξ) . Therefore, Equations (22) and (23) can be read as

U1(x, t) = f (ξ) = a0 − 12kλ2tanh2(ξ), (27)

V1(x, t) = g(ξ) =
(ασ− δ)

(δ− α)
a0 + 12kλ2

(
δ + ε− α

β

) 1
2
tanh2(ξ). (28)

3.2. Jacobi-cn Function Solutions

In the following, we consider the case wherein q0 = 1 − m2, q2 = 2m2 − 1, and
q4 = −m2. In this case, the Jacobi’s elliptical function is the m-order cn function, i.e.,
F(ξ) = cn(ξ, m). Substituting these forms into Equations (19)–(21), we have

U3(x, t) = a0 + 12km2λ2cn2(ξ), (29)

V3(x, t) =
(ασ− δ)

(δ− α)
a0 − 12kλ2m2

(
δ + ε− α

β

) 1
2
cn2(ξ), (30)

where

ξ =
λ
[
βb0σ− αa0 − 4γλ2(2m2 − 1

)]
δ

∫ t

0
δ(τ)dτ + λx. (31)

Similarly with the counterparts of Jacobi sn-function solutions, the Jacobi cn-function
solutions of U and V also reduce to constant solutions when m→ 0 . Furthermore, a family
of periodical wave solutions can be obtained when 0 < m < 1. When m = 1, a family of
secant solutions can be obtained, and they read as

U3(x, t) = a0 + 12kλ2sech2(ξ), (32)

V3(x, t) =
(ασ− δ)

(δ− α)
a0 − 12kλ2

(
δ + ε− α

β

) 1
2
sech2(ξ). (33)
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3.3. Jacobi-dn Function Solutions

If q0 = m2 − 1, q2 = 2− m2, and q4 = −1, the Jacobi’s elliptical function is the m-
order dn function, i.e., F(ξ) = dn(ξ, m). Substituting these forms with Equations (19)–(21),
we have

U4(x, t) = f (ξ) = a0 + 12kλ2dn2(ξ), (34)

V4(x, t) = g(ξ) =
(ασ− δ)

(δ− α)
a0 − 12kλ

(
δ + ε− α

β

) 1
2
dn2(ξ), (35)

where

ξ =
λ
(

βb0σ− αa0 − 8γλ2 + 4γλ2m2)
δ

∫ t

0
δ(τ)dτ + λx. (36)

3.4. Jacobi-dc Function Solutions

If q0 = m2, q2 = −
(
1 + m2), and q4 = 1, the Jacobi’s elliptical function is the m-order

dc function, i.e., F(ξ) = dc(ξ, m) = dn(ξ, m)/cn(ξ, m). Therefore, the family of exact
function reads as

U5(x, t) = f (ξ) = a0 − 12kλ2dc2(ξ), (37)

V5(x, t) = g(ξ) =
(ασ− δ)

(δ− α)
a0 + 12kλ

(
δ + ε− α

β

) 1
2
dc2(ξ), (38)

where

ξ =
λ
(

βb0σ− αa0 − 4γλ2 − 4γλ2m2)
δ

∫ t

0
δ(τ)dτ + λx. (39)

3.5. Jacobi-nc Function Solutions

If q0 = −m2, q2 = 2m2 − 1, and q4 = 1− m2, the Jacobi’s elliptical function should
be the m-order nc function, i.e., F(ξ) = dc(ξ, m) = dn(ξ, m)/cn(ξ, m). Substituting these
latter forms with Equations (19)–(21), we can read the family of the exact function as

U6(x, t) = f (ξ) = a0 − 12k
(

1−m2
)

λ2nc2(ξ), (40)

V6(x, t) = g(ξ) =
(ασ− δ)

(δ− α)
a0 + 12kλ(1−m2)

(
δ + ε− α

β

) 1
2
nc2(ξ), (41)

where

ξ =
λ
(

βb0σ− αa0 − 8γλ2m2 + 4γλ2m2)
δ

∫ t

0
δ(τ)dτ + λx. (42)

3.6. Jacobi-nd Function Solutions

If q0 = −1, q2 = 2−m2, and q4 = m2 − 1, the Jacobi’s elliptical function should be the
m-order nd function, i.e., F(ξ) = nd(ξ, m) = 1/dn(ξ, m). Inserting these latter forms of
F(ξ) into Equations (19)–(21) leads to the following periodical solutions:

U7(x, t) = a0 − 12k
(

m2 − 1
)

λ2nd2(ξ), (43)

V7(x, t) =
(ασ− δ)

(δ− α)
a0 + 12kλ2(m2 − 1)

(
δ + ε− α

β

) 1
2
nd2(ξ), (44)

where

ξ =
λ
(

βb0σ− αa0 − 8γλ2 + 4γλ2m2)
δ

∫ t

0
δ(τ)dτ + λx. (45)
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3.7. Jacobi-sc and Jacobi-sd Function Solutions

By following the same steps as described above, we can also obtain another two
types of periodical traveling solutions, i.e., Jacobi-sc and Jacobi-sd function solutions. The
Jacobi-sc solutions can be read as

U8(x, t) = a0 − 12k(1−m2)λ
2
sc2(ξ), (46)

V8(x, t) =
(ασ− δ)

(δ− α)
a0 + 12k(1−m2)λ

2
(

δ + ε− α

β

) 1
2
sc2(ξ), (47)

where

ξ =
λ
(

βb0σ− αa0 − 8γλ2 + 4γλ2m2
)

δ

∫ t

0
δ(τ)dτ + λx. (48)

The Jacobi-sd solutions are

U(x, t) = f (ξ) = a0 + 12km2(1−m2)λ
2
F2(ξ), (49)

V(x, t) = g(ξ) =
(ασ− δ)

(δ− α)
a0 − 12km2(1−m2)λ

2
(

δ + ε− α

β

) 1
2

F2(ξ), (50)

where

ξ =
λ(βb0σ− αa0 + 4γ(1−2m2)λ

2
)

δ

∫ t

0
δ(τ)dτ + λx. (51)

3.8. Trigonometric Function Solutions

It is worth noting that the trigonometric function solutions can also be obtained by
using the results of this paper. If we let λ = iµ in Equations (27), (28), (32) and (33),
and note the facts that tanh(ix) = i tan(x) and sech(ix) = sec(x), two more families
of periodical traveling solutions will be obtained. For facility of demonstration, we let

ξ =
µ[βb0σ−αa0+4γµ2(2m2−1)]

δ

∫ t
0 δ(τ)dτ + µx. The solutions of the first family then read as

U1(x, t) = f (ξ) = a0 − 12kµ2 tan2(ς), (52)

V1(x, t) = g(ξ) =
(ασ− δ)

(δ− α)
a0 + 12kµ2

(
δ + ε− α

β

) 1
2

tan2(ς). (53)

The other solution family reads as

U3(x, t) = a0 − 12kµ2 sec2(ς), (54)

V3(x, t) =
(ασ− δ)

(δ− α)
a0 + 12kµ2

(
δ + ε− α

β

) 1
2

sec2(ς). (55)

Following the steps described above, we can also obtain other periodical trigonometric
function solutions for other Jacobi’s elliptic function solutions.

4. Discussion

Figure 1 is the Jacobi sn-function solution (as shown in Equations (22) and (23)) to the
coupled KdV equations when a0 = 3 and λ = 1. When m→ 0, Equations (22) and (23) are
reduced to coupled constant solutions, i.e., U(x, t) = a0 and V(x, t) = −a0, which are shown
in Figures 1a and 1d, respectively. When 0 < m < 1, the Jacobi sn-function is a periodical
function; thus, a family of periodic solutions is obtained for the coupled KdV equations.
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The coupled solutions of a typical example when m = 0.5 are shown in Figure 1b and 1e,
respectively. When m = 1, coupled solitary solutions of U(x, t) and V(x, t) can be obtained
(Equations (27) and (28)), which are shown in Figure 1c and 1f, respectively.
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δ(t) = 6− 2cos t, ε(t) = 3− cos t.

Figure 2 shows the Jacobi cd-function solution of Equations (24) and (25) when a0 = 3,
and λ = 1. Similarly with the counterparts of Jacobi sn-function solutions, the Jacobi
cd-function solutions of U and V also reduce to a coupled constant solution when m→ 0 .
Furthermore, they additionally present a periodical structure when 0 < m < 1. When
m→ 1 , a coupled soliton-like solution can be obtained, as shown in Figure 2c,e. In this
case, the soliton solution travels along a curved orbit.
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From Figures 1 and 2, one can clearly observe that each couple of traveling solutions
is symmetrical in mathematical form. Along the direction of travel, these solutions are also
symmetrical. Other solutions shown in Sections 3.2–3.8 have similar properties. We omit
the detailed discussion for simplicity.

On the other hand, the coupled variable coefficient KdV Equations (1) and (2) can be
reduced to coupled KdV equations with constant coefficients in Ref. [33] if we let α = 6,
and β = −6, γ = 1, δ = 3, and ε = 0. These solutions to the constant-coefficient KdV
equations are included in the results discussed in this paper.

5. Conclusions

The Jacobi’s elliptic function expansion method is used to obtain the exact solutions
to the coupled KdV equations with time-dependent variable coefficients. Several types
of exact traveling wave solutions are obtained when both (δ + ε− α)/β and γ/(δ + ε) are
real constants. There are nine types of quadratic Jacobi’s elliptic function solutions, i.e.,
Jacobi-sn, cn, dn, sd, cd, nd, sc, nc, and dc function solutions. Soliton-like solutions are
also included in these solutions when the elliptic modulus m→ 1 . Trigonometric function
solutions can also be obtained through simple parameter substitution of the obtained
Jacobi’s elliptic function solutions. The result is relevant because there are no studies on
the exact traveling solutions for the generalized coupled KdV equations with variable
coefficients as in Equations (1) and (2). Future investigations could focus on using different
research methods to solve the generalized variable coefficient coupled KdV equations and
obtain different novel exact solutions. Furthermore, the method used in this paper may
be applied to exploring the analytical solutions of other nonlinear partially differential
equations, such as the Kadomtsev–Petviashvili equation with a variable coefficient, the
variable coefficient Schrödinger equation and the variable sine-Gordon equation.
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