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Abstract: It is known that the fundamental Lifshitz theory, which is based on the first principles of
thermal quantum field theory, experiences difficulties when compared with precise measurements of
the Casimir force. We analyzed the nonconventional fit of the response functions of many materials
along the imaginary frequency axis to the empirical model of “modified” oscillators, which was
recently proposed in the literature. According to our results, this model is unacceptable because at
high frequencies it leads to the asymptotic behavior of the response functions, which is in contra-
diction with that following from the fundamental physical principles. We calculated the Casimir
interaction in the configurations of several precise experiments using the Lifshitz theory and the
response functions to the quantized electromagnetic field expressed in terms of modified oscillators
and demonstrated that the obtained results are excluded by the measurement data. This invali-
dated a claim made in the literature that the Casimir–van der Waals forces calculated using these
response functions are in remarkable agreement with the experimental values. Possible reasons for a
disagreement between experiment and theory are discussed, and the way to improve the situation
is indicated.

Keywords: Casimir interaction; response functions to the electromagnetic field; Lorentz oscillators;
precise measurements of the Casimir force

1. Introduction

The physical nature of the Casimir (van der Waals in the nonrelativistic limit) forces
determined by the zero-point and thermal fluctuations of the quantized electromagnetic
field is widely covered in the literature (see the monographs [1–9] and the references therein).
The fundamental theoretical description of these forces, which is based on thermal quantum
field theory in the Matsubara formulation, was developed by E. M. Lifshitz [10,11]. It
expresses the force value as a functional of the frequency-dependent response functions
(dielectric permittivities) of the interacting bodies defined along the imaginary frequency
axis. In the last few years, many experiments on measuring the Casimir–van der Waals force
were performed, and their results were compared with theory (see the reviews [12–15]). For
symmetric configurations (e.g., for two parallel plates or a sphere above a plate), the Casimir
force acts perpendicular to the surfaces. If, however, the rotational symmetry is violated
(e.g., for the plates covered with longitudinal coaxial corrugations), the lateral Casimir force
may arise as well [8].

Currently, the Casimir–van der Waals forces are not only actively investigated in elemen-
tary particle physics, gravitation, cosmology, fundamental atomic, molecular, and condensed
matter physics [1–9], but find application in micromechanics, microelectronics and nano-
electronics including organic electronics, various sensors, microswitches, analog integrated
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circuits, analog-to-digital and thermoelectric converters, etc. (see, e.g., [16–33]). Therefore, the
possibility to reliably predict the force value on the basis of the fundamental Lifshitz theory
is of the utmost importance. This, however, turned out to be a challenge. The point is that,
to perform reliable computations using the Lifshitz theory, one needs to have at hand the
response functions of the interacting bodies to the quantized electromagnetic field over rather
wide frequency regions. Even when this information seems to be available, it happens that
the computational results are in conflict with the measurement data [8,12,15,34,35].

Recently [36], the “self-consistent” (by the authors’ terminology) response functions
for 55 materials over the full region of imaginary frequencies necessary for the calculation
of Casimir–van der Waals forces were determined including common metals, organic and
inorganic semiconductors, and insulators. According to [36], the Casimir–van der Waals
forces calculated using these response functions “are in remarkable agreement with the
experimental values reported over the span of the past half-century”.

The imaginary parts of the response functions of materials studied in [36] were com-
piled from the measured complex indices of refraction in different experiments. Thereafter,
the response functions along the imaginary frequency axis have been obtained using the
principle of causality expressed in the form of the Kramers–Kronig relations, which is the
generally recognized way of calculations [6–9,12–15]. However, the article [36] claimed
that the obtained response functions along the imaginary frequency axis are better fit not
to the conventional Lorentz oscillators [5,8,37–39], but to the model of nonconventional
“modified” oscillators. The latter model predicts that at high frequencies ω the response
functions approach unity within the term decreasing as ω−α, where 0 < α < 2, in place of
the standard term decreasing as ω−2.

In this paper, we call the reader’s attention to the fact that the high-frequency behavior
of the response functions suggested by the model of modified oscillators is in contradiction
with fundamental physical principles. Using the data of the most precise experiments on
measuring the Casimir interaction between metallic surfaces, we also show that theoretical
predictions of the Lifshitz theory found with the model of modified oscillators are excluded
at a high confidence level. Thus, the conclusion of [36] about a remarkable agreement
between the theoretical results obtained using the “self-consistent” response functions and
the experimental values is invalidated. The reason why an unjustified conclusion has been
made is that [36] did not use the data of the most precise experiments when performing the
theory–experiment comparison.

The paper is organized as follows. In Section 2, we confront the representations of
response functions using the models of the Lorentz and modified oscillators. Section 3
contains a comparison of the theoretical results computed with the model of modified
oscillators and the measured Casimir interaction between Au surfaces. In Section 4, a
similar comparison is performed with the measured Casimir interaction between magnetic
(Ni) surfaces. In Section 5, the reader will find our discussion of possible reasons for a
disagreement between experiment and theory, and in Section 6 we give our conclusions,
where a line of attack on the problem is directed.

2. Representation of the Dielectric Functions Using the Lorentz Oscillators and the
Nonconventional Modified Oscillators

It is common knowledge that a reasonably accurate and yet simple representation for
the response functions of different insulator materials to the electromagnetic field is given
by the sum of the appropriate number of Lorentz oscillators describing the bound (core)
electrons [5,8,37–39]:

εI(ω) = 1 +
K

∑
j=1

gj

1−
(

ω
ωj

)2
− i

γjω

ω2
j

, (1)

where K is the number of oscillators, ωj 6= 0 are the oscillator frequencies, γj are the relax-
ation parameters, and gj are proportional to the oscillator strengths. The representation (1)
works well for the materials whose molecules do not possess intrinsic dipole moments. For
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the polar dielectrics, the molecules of which possess intrinsic dipole moments oriented in
an electromagnetic field, one more (Debye) term should be added on the right-hand side
of (1).

If the boundary material is metallic, there is also an additional oscillator term in (1)
with zero oscillator frequency, ω0 = 0, describing the conduction (free) electrons. As a
result, the response functions of metallic materials take the form:

εM(ω) = − g0

ω(ω + iγ0)
+ εI(ω), (2)

which is known as the dielectric permittivity of the Drude model. In this case, g0 has the
meaning of the plasma frequency squared, g0 = ω2

p.
The response functions (1) and (2) satisfy the principle of causality, which is expressed

mathematically in the form of the Kramers–Kronig relations connecting their imaginary
and real parts [40]. Substituting ω = iξ, one obtains the response functions of insulators
and metals defined along the imaginary frequency axis:

εI(iξ) = 1 +
K

∑
j=1

gj

1 +
(

ξ
ωj

)2
+

γjξ

ω2
j

,

εM(iξ) =
ω2

p

ξ(ξ + γ0)
+ εI(iξ). (3)

Note that the same expressions result from ImεI,M by using the dispersion relation [40]:

εI,M(iξ) = 1 +
2
π

∫ ∞

0

ω ImεI,M(ω)

ω2 + ξ2 dω. (4)

It should be pointed out that at short separations between the interacting bodies the
major contribution to the Lifshitz formula for the Casimir–van der Waals force is given by
the large ξ � γj. Because of this, (3) can be rewritten in a simpler form:

εI(iξ) ≈ 1 +
K

∑
j=1

gj

1 +
(

ξ
ωj

)2 ,

εM(iξ) ≈ εI(iξ), (5)

which is referred to as the Ninham–Parsegian representation [37,38]. Thus, at short separa-
tions, the force is mostly determined by the core (bound) electrons.

As to the case of large separations, where the major contribution to the force is given
by the zero Matsubara frequency (see the next section), one arrives at

εI(iξ) ≈ εI(0) = 1 +
K

∑
j=1

gj,

εM(iξ) ≈
ω2

p

ξ(ξ + γ0)
. (6)

This means that for metals the force value is determined by the free (conduction) electrons.
For materials that exhibit an electronic polarization only (for Si, for instance), the sum

in (5) may be replaced by one effective oscillator term with a frequency ωUV belonging
to the ultraviolet region. As for materials that also exhibit an ionic polarization (SiO2, for
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instance), their response function may be presented as a sum of one effective oscillator with
a frequency ωUV and another one whose frequency ωIR belongs to the infrared region:

εI(iξ) = 1 +
gUV

1 +
(

ξ
ωUV

)2 +
gIR

1 +
(

ξ
ωIR

)2 . (7)

Equations (3), (5), and (7) have been extensively used in the literature (see, e.g., [39,41])
to fit the measured data for the response functions of many materials. The obtained
expressions were extensively applied to compute the Casimir–van der Waals forces (see the
lists of references in the monographs [2–9]).

At high frequencies, (3), (5), and (7) predict the following similar asymptotic behavior
for the response functions of both insulating and metallic materials:

ε(ω)− 1 ∼ 1
ω2 , ε(iξ)− 1 ∼ 1

ξ2 . (8)

According to [36], however, this prediction is incorrect. In support of this claim, some
optical data for water, SiO2, and LiF were collected, which seemingly yielded the electronic
contribution to the dielectric functions along the imaginary frequency axis obeying at high
frequencies the law [36]:

εel(iξ)− 1 ∼ 1
ξα

, (9)

where 0 < α < 2 in place of (8).
On this basis, Reference [36] argued that the electronic contribution to the response

function commonly described by the first two terms on the right-hand side of (7) can be
modified to an empirical relationship:

εel(iξ) = 1 +
gUV

1 +
(

ξ
ωUV

)α . (10)

It is easily seen, however, that (9) and, thus, (10) are invalid. As explained in [40], if the
field frequency ω is much larger compared to the frequencies of almost all atomic electrons,
the latter can be considered as free particles not interacting between themselves and with
atomic nuclei. The velocities of electrons in atoms v are small compared to the speed of
light c. Because of this, the distances 2πv/ω traveled by electrons during a period of the
electromagnetic wave are small in comparison to the wavelength 2πc/ω.

As a consequence, when finding the velocity of an electron in the electromagnetic field
of a wave, the latter can be considered as spatially homogeneous. Under these conditions,
solving the equation of motion and calculating the polarization of the material by summing
over all electrons in the unit volume, one arrives at [40]

ε(ω) = 1− 4πNe2

meω2 , ε(iξ) = 1 +
4πNe2

meξ2 , (11)

where me and e are the mass and charge of an electron and N is the number of electrons in
all atoms of the unit of volume of a material.

We underline that (11) is a universal result following from the basic physical principles,
and it is valid for the response functions of any material: insulator, metal, or semiconductor.
For light elements, the application region of (11) starts from the far ultraviolet (6 eV–10 eV)
and for heavier elements from the X-ray frequencies (100 eV–100 keV) [40]. Thus, if some
used sets of the measured optical data (often taken from different sources) lead to the
response function ε(iξ), which does not satisfy (11) at sufficiently high frequencies, one
should cast doubt on these data.
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3. Comparison between Measured and Calculated Casimir–van der Waals Forces
Using the Nonconventional Fit to the Modified Oscillators for Gold Test Bodies

According to [36], the “self-consistent” response function of Au presented by (2) using
the fit to a modified oscillator is given by (see the Supplemental Materials in [36])

εAu(iξ) = 1 +
(9.1)2

ξ(ξ + 0.06)
+

6.5

1 +
(

ξ
5.9

)1.42 , (12)

where ωp = 9.1 eV, γ0 = 0.06 eV, gUV = 6.5, ωUV = 5.9 eV, and α = 1.42 (the frequency ξ is
measured in eV).

Reference [36] claimed that the theoretical Casimir–van der Waals forces calculated
using the “self-consistent” response functions in the framework of the Lifshitz theory match
remarkably well with the experimentally measured forces. It is well known that the most
precise measurements of the Casimir–van der Waals forces were performed between an
Au-coated sphere and an Au-coated plate separated with a vacuum gap [8,12]. In Figure 5
of [36], the theory–experiment comparison of this kind was presented, however, only for
two and not the most precise experiments [42,43] performed long ago.

Thus, in the experiment [42], the Casimir force was measured between the Au-coated
surfaces of a sphere and a plate by means of an atomic force microscope operated in static
mode. Here, we calculated the Casimir force in the experimental configuration of [42]
using the Lifshitz theory and the “self-consistent” response function (12) with the properly
accounted-for effect of surface roughness as described in [44,45].

The Casimir force acting between a sphere of radius R spaced at a distance a � R
above a plate at temperature T in thermal equilibrium with the environment is expressed
by the following Lifshitz formula [8,12]:

F(a) = kBTR
∞

∑
l=0

′
∫ ∞

0
k⊥dk⊥∑

α

ln
[
1− r2

α(iξl , k⊥)e−2aql
]
. (13)

Here, kB is the Boltzmann constant, k⊥ is the magnitude of the wave vector component
along the plate, ξl = 2πkBTl/h̄ are the Matsubara frequencies with l = 0, 1, 2, . . . , the
prime on the first summation sign divides the term with l = 0 by 2, and the summation in
α is over two independent polarizations of the electromagnetic field, transverse magnetic
(α = TM) and transverse electric (α = TE). The reflection coefficients calculated at the pure
imaginary Matsubara frequencies are given by

rTM(iξl , k⊥) =
ε lql − kl
ε lql + kl

, rTE(iξl , k⊥) =
µlql − kl
µlql + kl

, (14)

where ε l = ε(iξl), the magnetic permeability µl = µ(iξl) describes the response of materials
to the magnetic field (for Au µ(ω) = 1), and the following notations are introduced:

ql =

(
k2
⊥ +

ξ2
l

c2

)1/2

, kl =

[
k2
⊥ + ε lµl

ξ2
l

c2

]1/2

. (15)

Equation (13) is written in the proximity force approximation [8,12]. The exact theory using
the scattering approach demonstrates that, at short separations a � R, the corrections
to (13) do not exceed the fraction of a/R [46–53]. These corrections are negligibly small in
the configurations of precise experiments on measuring the Casimir force [8,12,34,35].

The theoretical results taking into account the surface roughness are obtained from (13)
by the geometrical averaging over the measured roughness profiles of the plate and sphere
surfaces [6,12]:

FR(a) = ∑
i,k

v(1)i v(2)k F(a + H(1)
0 + H(2)

0 − h(1)i − h(2)k ), (16)
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where v(1)i (v(2)k ) are the fractions of the plate (sphere) areas with heights h(1)i (h(2)k ). Here,

H(1,2)
0 are the zero levels relative to which the mean values of the roughness profiles on

both bodies are zero. It was shown [8,12,34] that at short separations, where the effect of
surface roughness should be taken into account, the more fundamental analysis based
on the scattering approach [54] leads to approximately the same results as the method of
geometrical averaging.

The computational results obtained using (12), (13), and (16) are shown in Figure 1
by the black band, whose width is determined by the theoretical errors calculated at the
95% confidence level. In the same figure, the measurement data are indicated as crosses,
whose arms show the experimental errors in measuring the absolute separations and forces,
which were also determined at the 95% confidence level.

62 64 66 68 70
-500

-480

-460

-440

-420

-400

-380

-360

a (nm)

F
R

(p
N

)

Figure 1. Predictions of the Lifshitz theory for the Casimir force between the Au surfaces of a sphere
and a plate obtained using the modified oscillator in the experimental configuration of [42] are
shown by the black band. The measurement data of [42,44] are indicated as crosses, whose arms are
determined at the 95% confidence level.

As is seen in Figure 1, the agreement between experiment and theory cannot be
called remarkably good because some of the crosses do not even touch the theoretical
band. Reference [36] recognized the presence of some deviations between the theoretical
results computed using the modified oscillators and the measurement data, especially
at short separations, but attributes them to the probable role of surface roughness and
to the subnanometer errors in the estimation of the separation distances. However, in
the theory–experiment comparison presented here in Figure 1, both of these effects were
addressed quantitatively and taken into account.

The more precise modern experiments on measuring the Casimir interaction demon-
strated the total discrepancy between the theoretical predictions using the dielectric func-
tions of [36] and the measurement data. In Figure 2a–f, the experimental data of [55,56] for
determining the effective Casimir pressure PR(a) between the Au-coated surfaces of two
parallel plates by means of a micromechanical torsional oscillator are shown as crosses over
six different separation intervals. The theoretical bands are computed here using the dielec-
tric function (12) with the account of the surface roughness by the Lifshitz formula [8,12]:

PR(a) = − 1
2πR

dFR(a)
da

. (17)
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Both the arms of the crosses and the widths of the bands are again found at the 95%
confidence level (see [55,56] for the details of the computations).
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Figure 2. Predictions of the Lifshitz theory for the effective Casimir pressure between two Au plates
obtained using the modified oscillator in the experimental configuration of [45,46] are shown by the
black bands over different separation intervals. The measurement data of [45,46] are indicated as
crosses, whose arms are determined at the 95% confidence level. In all subfigures (a–f), the theoretical
predictions obtained using (12) are excluded by the measurement data.

As is seen in Figure 2, the theoretical predictions found by using the “self-consistent”
dielectric functions of Au (12) are excluded by the measurement data at the 95% confidence
level over the entire measurement range.

In one more precise experiment, the gradient of the Casimir force dFR(a)/da acting
between the Au-coated surfaces of a sphere and a plate was measured by means of a
dynamic atomic force microscope [57]. The experimental data measured in this experiment
are shown as crosses over the three separation intervals in Figure 3a–c.

The theoretical bands are again computed with the account of the surface roughness by
using (13), (16), and the “self-consistent” response function (12). In this case, all errors were
determined at the 67% confidence level. From Figure 3, one can conclude that the theoretical
predictions obtained using the response function (12) are excluded by the measurement
data of [57].

We note that the data of the most precise experiments [55–57], measuring the Casimir
interaction between two Au surfaces separated by a vacuum gap, were not considered and
compared with the suggested approach of [36] using a nonconventional fit of the response
functions to the modified oscillators. As a result, an invalid conclusion has been made
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that the Casimir–van der Waals interaction computed using these response functions agree
remarkably well with the experimental results.

240 250 260 270 280

35

40

45

50

55
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65

70

F
′ R
(µ
N
/m

)

290 300 310 320 330

20

25
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F
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(µ
N
/m

)

340 350 360 370 380 390 400

10

12

14

16

18

20

a (nm)

F
′ R
(µ
N
/m

)

(b)

(a)

(c)

Figure 3. Predictions of the Lifshitz theory for the gradient of the Casimir force between the Au sur-
faces of a sphere and a plate obtained using the modified oscillator in the experimental configuration
of [47] are shown by the black bands over different separation intervals. The measurement data of [47]
are indicated as crosses, whose arms are determined at the 67% confidence level. In all subfigures
(a–c), the theoretical predictions obtained using (12) are excluded by the measurement data.

4. Comparison between Measured and Calculated Casimir–van der Waals Forces
Using the Nonconventional Fit to the Modified Oscillators for Nickel Test Bodies

Measurements of the Casimir interaction for the test bodies made of a magnetic metal
Ni play an especially important role in Casimir physics because the magnetic properties
of a material, along with the dielectric ones, produce a pronounced impact on the force
value. The gradient of the Casimir force between the Ni-coated surfaces of a sphere and a
plate separated by a vacuum gap was measured in [58,59] by means of a dynamic atomic
force microscope.
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Here, we compared the obtained measurement data with the theoretical predictions of
the Lifshitz theory found using the “self-consistent” response function of Ni presented in
the form of a modified oscillator in the Supplemental Materials to [36]:

εNi(iξ) = 1 +
(4.33)2

ξ(ξ + 0.0195)
+

115

1 +
(

ξ
0.61

)1.35 , (18)

where ωp = 4.33 eV, γ0 = 0.0195 eV, gUV = 115, ωUV = 0.61 eV, and α = 1.35.
The theoretical band for the gradient of the Casimir force calculated using (13) and (18)

with the account of the surface roughness is shown in Figure 4a,b in two different separation
intervals. These calculations take into account the static magnetic permeability of Ni,
µ0(0) = 110, entering the Lifshitz formula through the reflection coefficients (14) at zero
Matsubara frequency [58,59]. Note that the magnetic properties of a material do not
contribute to all Matsubara terms of (13) with l ≥ 1 because µ(iξ) quickly drops to unity
with increasing ξ [60]. The experimental data for the measured gradients are indicated as
crosses. Here, we recalculated the arms of these crosses to the 95% confidence level (in the
original publications, the errors were determined at the 67% confidence level).
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F
′ R
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N
/m

)
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(a)

Figure 4. Predictions of the Lifshitz theory for the gradient of the Casimir force between the Ni
surfaces of a sphere and a plate obtained using the modified oscillator in the experimental config-
uration of [48,49] are shown by the black bands over different separation intervals. The measure-
ment data of [48,49] are indicated as crosses, whose arms are determined at the 95% confidence
level. In both subfigures (a,b), the theoretical predictions obtained using (18) are excluded by the
measurement data.

As is seen in Figure 4, the theoretical predictions obtained using the nonconventional
fit of the optical data to the modified oscillator (18) are excluded by the measurement data
over the separation distances from 222 to 335 nm.
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A comparison between Figure 4 and Figure 3 shows an important difference between
the cases of magnetic (Ni) and nonmagnetic (Au) metals. From Figure 4, it is seen that for
a magnetic metal the theoretically predicted force gradients are larger than the measured
values, whereas for a nonmagnetic metal the measured force gradients are in excess of
the computed results. This fact was used in [58,59] to underline the existence of a serious
unresolved problem in the calculation of the Casimir–van der Waals forces. Although in
the experiments mentioned above a gap between the computed and observed values is of
about a few percent, in measuring the differential Casimir forces the theoretical predictions
of the Lifshitz theory differ from the measured values by up to a factor of 1000 [61]. This
is a reason why the importance of the observed disagreement between experiment and
theory should not be underestimated.

5. Discussion

In the foregoing, we analyzed the recently proposed nonconventional fit of the re-
sponse functions of a wide class of materials along the imaginary frequency axis to the
so-called “modified” oscillators [36]. It was demonstrated that the mere form of the modi-
fied oscillator is unacceptable because it leads to an incorrect asymptotic behavior of the
response functions at high frequencies, which is in contradiction with the fundamental
physical principles. What is more, we calculated the Casimir–van der Waals interaction
in the configurations of several precise experiments using the formalism of the modi-
fied oscillators and found that the obtained computational results are excluded by the
measurement data.

The opposite result obtained in [36] is explained by the fact that the authors did not
consider the most precise experiments and presented the results of their comparison in the
logarithmic scale, which does not allow an informative discrimination between different
lines. Note also that [36] arrived at a misleading result that “In the case of metals. . . , the
role of interband transitions on the magnitude of van der Waals-Casimir forces becomes
crucial once the ratio of charge carriers to total electrons in the systems becomes small”.
In fact, as outlined in Section 2, for a particular metal, the relative role of the core and
conduction electrons depends on the separation distance between the test bodies made of
this metal. At separations much smaller than a micrometer, the major contribution to the
Casimir–van der Waals force is given by the core (bound) electrons, whereas at separations
in excess of several micrometers the force value is determined by the conduction electrons.
Keeping in mind the wide application areas of the Casimir–van der Waals forces and the
many publications using the dielectric functions of diverse materials in the computations,
the above clarifications regarding [36] seem pertinent.

6. Conclusions

We conclude with a short remark on the general situation in the theory of Casimir–van
der Waals forces. It has been long known that the standard description of free charge
carriers by means of the Drude model leads to contradictions between experiment and
theoretical Casimir forces even if the conventional fit of the optical data to the Lorentz
oscillators is employed [8,12,14,15,55–59,61]. When using the standard sets of optical data
from Palik’s handbook [62], the theory comes to an agreement with the measurement results if
the conduction electrons are described by the dissipationless plasma model [8,12,14,15,55–59,61].
This fact, however, has no commonly accepted theoretical explanation (note that with the
values of the plasma frequency found in [36] an agreement between experiment and theory
is lacking regardless of what model is chosen for a description of conduction electrons).
Similar problems arise for the Casimir force acting between insulator test bodies [8,12,63–66].
There is a possibility to deal with these problems using the so-called “weighted” Kramers–
Kronig relations [67], which allow the mathematical derivation of the response function of
a material outside the region where it is measured with sufficient precision. This method,
however, relies on the known behavior at zero frequency, which is different for the Drude
and plasma response functions.
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It was hypothesized that the above problems derive from the fact that the Drude
model is not applicable in the area of the low-frequency s-polarized evanescent waves,
where it has no sufficient experimental confirmation [68,69]. An experiment was proposed
allowing one to check this hypothesis [68,69]. The possible resolution of the problem might
be found in the search for spatially nonlocal generalizations of the Drude model at low
frequencies [70,71]. Several promising opportunities on this way are in sight.
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