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Abstract: Due to the small data and unbalanced sample distribution in the existing facial emotion
datasets, the effect of facial expression recognition is not ideal. Traditional data augmentation methods
include image angle modification, image shearing, and image scrambling. The above approaches
cannot solve the problem that is the high similarity of the generated images. StarGAN V2 can generate
different styles of images across multiple domains. Nevertheless, there are some defects in gener-ating
these facial expression images, such as crooked mouths and fuzzy facial expression images. To service
such problems, we improved StarGAN V2 by solving the drawbacks of creating pictures that apply
an SENet to the generator of StarGAN V2. The generator’s SENet can concentrate at-tention on
the important regions of the facial expression images. Thus, this makes the generated symmetrical
expression image more obvious and easier to distinguish. Meanwhile, to further im-prove the quality
of the generated pictures, we customized the hinge loss function to reconstruct the loss functions that
increase the boundary of real and fake images. The created facial expression pictures testified that
our improved model could solve the defects in the images created by the original StarGAN V2. The
experiments were conducted on the CK+ and MMI datasets. The correct recognition rate of the facial
expressions on the CK+ was 99.2031%, which is a 1.4186% higher accuracy than that of StarGAN V2.
The correct recognition rate of the facial expressions on the MMI displays was 98.1378%, which is
5.059% higher than that of the StarGAN V2 method. Furthermore, contrast test outcomes proved that
the improved StarGAN V2 performed better than most state-of-the-art methods.

Keywords: face expression recognition; data enhancement; StarGAN V2; hinge loss; SENet; symmetry
and asymmetry; GAN; deep learning

1. Introduction

Facial expression recognition (FER) has a vital role in emotional communication.
As technology advances, facial expression recognition has been widely merged into our
lives [1–4]. Human–computer symmetrical interaction and e-learning, etc., have become the
current research hotspots for machine learning and artificial intelligence [5–8]. Traditional
expression recognition consists mainly of three branches: image preprocessing, feature
extraction, and classification. The most important branch in the whole process is feature
extraction. This process is related to the correct recognition rate of facial expressions. In
feature extraction, there are mainly active appearance models (AAM), which are based
on the localization of facial feature points, and local feature extraction/algorithms, such
as Gabor wavelets, local binary patterns (LBP) [9], and multi-feature fusion [10,11], etc.
Traditional feature extraction approaches in facial expression recognition applications can
also be detected in [12,13]. Nevertheless, these feature extractions require sufficient artificial
experience to design and they have limitations, such as a weak robustness to image sizes,
illumination effects, and image angles.

Symmetry 2023, 15, 956. https://doi.org/10.3390/sym15040956 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15040956
https://doi.org/10.3390/sym15040956
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-2122-0240
https://doi.org/10.3390/sym15040956
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15040956?type=check_update&version=2


Symmetry 2023, 15, 956 2 of 20

Compared to traditional feature extraction methods, deep learning can autonomously
learn the features in facial expression images and obtain a better recognition rate. San-
tosh et al. [14] proposed an effective facial expression recognition method for identifying
six basic facial expression images. Wang et al. [15] proposed a multi-task depth framework
that used key features to recognize facial expressions. Ruan et al. [16] proposed a novel
deep disturbance-disentangled learning (DDL) method for FER. To improve the recognition
rate of these facial expressions, CNN models continuously add depth and breadth to the
network [17–22]. However, with an increase in the depth and width of the network, the
number of parameters will also increase rapidly. In this case, if we continue to use the small
dataset, the over-fitting problem occurs. With an increase in the parameters, over-fitting
is more likely to happen. However, it is impossible to offer extensive samples in some
training phases. Some facial expression datasets have small sample sizes and unbalanced
sample distributions. The numbers of happy and disgusted images in the CK+ dataset
are 69 and 59, respectively, while the numbers of fear and contempt images are 25 and 18,
respectively. As discussed above, this makes it hard for deeper CNN models to get good
outcomes. Therefore, solving the issues of insufficient sample sizes and unbalanced sample
distributions has become the key problem.

Data enhancement is one of the effective approaches to solving insufficient data and
unbalanced sample distributions. Traditional image enhancement methods are generally
geometric transformations. Zhou et al. [23] constructed a new face sample by passing the
symmetry of an image through a classifier that combined conventional cooperative expres-
sion with inverse linear regression. Li et al. [24] used a horizontal mirror transformation for
their data enhancement. Tripathi et al. [25] proposed an adaptive geometric filter approach
for gray and color image enhancement. Different from simple geometric transformations or
increased illumination for data enhancement, generative adversarial networks (GAN) [26]
can effectively solve the high similarity of generated images. GANs can generate the same
facial expressions, and different models need to be retrained when getting different facial
expressions. Thus, this has caused training to be redundant. Choi et al. [27] proposed
StarGAN V2, which generates images of diverse styles over multiple domains. Therefore,
various facial expression images can be generated in a model, reducing the redundant
models. As shown in Figure 1, the generator is inputted by different features to generate
the target images. Important features will have a huge effect on the generated images. To
generate more vivid images, we introduce an SENet [28] to select the important features.
Hinge loss [29] is used to find the maximum margin between the real and fake images to
enhance the realism of the created images.

To solve the problems of insufficient sample sizes and unbalanced sample distribu-
tions in these facial expression images, we introduced StarGAN V2 to enhance the facial
expression datasets. To further improve the vividness of the created images and reduce
the redundant features, an SENet was added to the generator in StarGAN V2. The SENet
mainly extracted the vital facial expression features. Our network introduced the idea
of relative discrimination [30]. We replaced the standard discriminator with a relative
discriminator. Additionally, we increased the ratio of the fake samples in the initial train-
ing to achieve a better training state. Our network introduced hinge loss to improve the
authenticity of the created images.

The main contributions of this work are as follows:

(1) To solve the problems of insufficient data and unbalanced sample distributions in
facial expression datasets, we used an improved StarGAN V2 model to generate facial
images with different emotions. StarGAN V2 is an efficient method for enhancing
facial expression images. StarGAN V2 generates different expression images in
a model.

(2) To improve the vividness of the created images, an SENet was added to the generator
in StarGAN V2 to extract the important facial expression features.

(3) We introduced hinge loss and relative discrimination. Hinge loss was used to find
the maximum margins among the different sample distributions and improve the
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authenticity of the generated images. Relative discrimination made our network
achieve a better training state.

Figure 1. The structure of StarGAN V2.

The remainder of the paper is organized as follows. In Section 2, we review some
related work, including StarGAN V2 and the SENet. Our proposed network is described in
detail in Section 3. In Section 4, we introduce some public databases and ablation experi-
ments and display our experimental results, while the conclusion is placed in Section 5.

2. Related Work
2.1. Facial Expression Recognition

FER has been universally utilized within various fields, such as human–computer
interaction, medical assistance, and digital entertainment. Traditional expression recogni-
tion can be split into three main procedures: image preprocessing, feature extraction, and
classification. The most important of these steps is feature extraction, which directly affects
the correct recognition rate of facial expressions. Traditional expression feature extraction
relies on the various statistics of the pixels’ values, including the facial images. Examples of
this include principal component analyses (PCA) [31], LBPs [32], and Gabor transforms [33].
Aroram et al. [34] applied the hybridization of feature extraction, which achieved good
results. Islam et al. [35] extracted features from the segmented parts using a fusion of the
histogram of oriented gradients (HOG) and LBPs. The dimension of the feature vector was
reduced by using a PCA. Bisogni et al. [36] proposed a multi-input hybrid FER mode, due
to the various limitations of traditional feature extraction methods. These limitations are
their manual design, less characteristic information, and other problems. Traditional fea-
ture extraction methods have various drawbacks. Therefore, traditional feature extraction
methods find it difficult to achieve good results for facial expression recognition.

Over the last few years, facial expression recognition based on deep neural networks
has advanced a lot. It is as follows that the current progress of feature extraction uses
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deep learning. Deep learning has challenged the traditional feature extraction methods
in facial expression recognition and it can execute feature extraction and classification.
Feature extraction executed by deep learning uses continuous optimization with loss
functions. Most of the applications of deep learning in facial expression recognition are
based on a CNN structure. The CNN structure includes AlexNet [17], VGGNet [18],
Googlenet [19], ResNet [20], MobileNet [21], and DensNet [22]. Naim et al. [37] merged
a CNN and SVM to produce a new model that improved the recognition rate of facial
expressions. Sadeghi et al. [38] put forward deep histogram metric learning in a CNN
for facial expression recognition. However, some of the existing emotional datasets have
some problems. These problems are insufficient data, unbalanced sample distributions,
and high-similarity samples. These problems lead to unsatisfactory recognition results of
the network. The data enhancement method can effectively solve the above problems.

As cited, [37,38] include the the latest technologies. In [37], the CNN and SVM
were merged to create a new model. Triple loss is discussed in [38]. They all use the
CNN structure and demonstrate the effectiveness of this structure for facial expression
recognition. The technologies learn facial expression images from various aspects and are
effective in improving the recognition rate of these facial expression images.

2.2. Data Enhancement

With the advancement of multimedia technology, the facial expression recognition
technique is universally used in social life. Due to various reasons, some existing facial
expression datasets have insufficient data and unbalanced sample distributions. With
an increase in the network’s scale, the network also increases its number of parameters.
The over-fitting phenomenon would appear in the network because the facial expression
datasets are limited. Therefore, data enhancement is necessary. Some examples of tradi-
tional image augmentation methods are geometric transformation [39] and color space
transformation [40]. Xin et al. [41] used a single sample face image for facial reconstruction.
The reconstructed facial image and original counterpart were treated as a new training
sample set. The effectiveness of the algorithm was proven by a commonly used database.
Ramasubramanian et al. [42] presented an automatically generated 3D facial model. Ma-
jid et al. [43] proposed a triple dynamic clipped histogram equalization (TDCHE) method.
Traditional image enhancement approaches have good outcomes for some aspects. How-
ever, these approaches are mainly dependent on manual design and do not have the
ability for autonomous learning. In addition, the images generated by traditional image
enhancement methods have a high similarity.

With the advancement of deep learning in computer vision, GANs have many advan-
tages and can generate different types of images. These generated image types include
style transfer, attribute transfer, improved image vividness, and so on. Adversarial training
makes it easier to generate more realistic images.

A GAN contains two parts: a generator and discriminator. The generator is input into a
random vector and generates the images. The discriminator distinguishes between the real
and fake pictures. After successive iterations, GANs can produce the target images. With
the development of deep learning, GAN models have also been improved. Mirza et al. [44]
introduced sufficient semantic guidance and a penalty mechanism. Fu et al. [45] proposed a
conditional generative adversarial network (cGAN) to establish the relationship among the
emotion-related EEG data, coarse markers, and facial expression images. Their experimental
results proved the rationality of the method. Zhu et al. [46] translated an image from a source
domain to a target domain in the absence of paired examples. Dou et al. [47] proposed an
asymmetric cycle–GAN model to use the asymmetric need in NIR–RGB translations.

Choi et al. [48] proposed StarGAN to perform the image-to-image translations for
multiple domains using a model. The model was proposed based on GANs, deep convolu-
tional generative adversarial networks (DCGAN), and conditional generative adversarial
networks (CGAN). Therefore, StarGAN can flexibly translate an input picture into a dif-
ferent target style via a model. The generator in StarGAN can generate various facial
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expression images. The generated images keep the original identity information of the
input pictures. Experiments have proved effective in face attribute synthesis and facial
expression transformation.

StarGAN V2 was proposed based on the StarGAN network and has achieved a good
performance in generating facial expression images [27]. The generated images retain
the original identity information of the input images. A mapping network was added
to StarGAN V2 that could convert the images of one domain into multiple images of the
target domain. Therefore, we chose StarGAN V2 to generate our facial expression pictures.
However, we found some defects in the images generated by StarGAN V2. The generated
images have crooked mouths, fuzzy images, and so on. To further promote the quality of
the generated images, we replaced the standard loss function with the hinge loss function
in StarGAN V2. We added an SENet to StarGAN V2’s generator to promote the vividness
of the generated images.

The structure of StarGAN V2 is shown in Figure 1. StarGAN V2 is composed of a
generator G, discriminator D, mapping network F, and style encoder E. The style encoder
E generates the style code S1. The mapping network F generates the style code S2. S1,
S2, and the original images are input into the generator G. The generator G can generate
different styles of the target images. The discriminator D is a multi-task discriminator that
consists of multiple output branches. Each branch is a binary classification to determine if
an image is real or fake. The mapping network F consists of an MLP to provide style codes
for all the available domains. Additionally, the mapping network F contains two inputs:
one is a potential encoding converted into a multiple domain style encoding and the other
is generated by random noise. The style encoder E can produce diverse style codes from
diverse reference pictures.

YANG et al. [49] proposed an Image-to-Image (I2I) Translation based on StarGAN V2.
Experiments have proven the effectiveness of this method.

In [47,49], the latest technologies are included. Paired samples were not used for
training in [47,49]. This could solve samples being newly generated due to paired samples.
In [47,49], various loss functions were employed to ensure the quality of the generated
images. Both models used generative adversarial networks. There was a trend towards
unpaired samples in the image generations. This solved the problem of not being able to
generate new images due to paired image samples. Multiple loss functions were used to
ensure the quality of the generated images. The networks learnt the original image from
different perspectives and improved the quality of the generated images.

From the above theory derivation and application, StarGAN V2 is indeed effective in
generating images. Therefore, we used StarGAN V2 to generate facial expression images.

2.3. Squeeze-and-Excitation Networks

An SENet (Squeeze-and-Excitation network) [28] is an attention mechanism. The
model can be inserted into CNN models with a low overhead. Its key features are strength-
ened to improve the quality of the generated images. Figure 2 is the structure of an SENet,
which mainly consists of two parts: Squeeze (Figure 2 Fsq) and Excitation (Figure 2 Fex).
These two parts complete the adaptive scale of the feature channel.

The feature (X ∈ Rw×h×c) is input into the SENet, and the output becomes the feature
(X̃ ∈ Rw×h×c). The SENet contains a squeeze operator (Figure 2 Fsq) and excitation operator
(Figure 2 Fex). The squeeze operator embeds information from the global receptive field
into a channel in each layer. The squeeze operator produces a sequence S in 1× 1× c,
which represents the correlations of each layer. The squeeze operator is (1):

zc = Fsq(uc) =
1

H ×W ∑H
i=1 ∑W

j=1 uc(i, j), (1)

zc is the c-th element of the squeezed channels and Fsq is the squeeze function. uc represents
the c-th channel of the input features. The height and width of the input images are H and
W, respectively.
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Figure 2. SENet network structure diagram.

The excitation operator is later used to execute a feature recalibration. The excitation
operator is shown as follows (2):

sc = Fex(z, W) = σ(Wuδ(Wdzc)) (2)

Fex is the excitation function and zc is the input-squeezed signal from the last layer. δ repre-
sents the ReLU activation function. Wd ∈ Rc× c

r is the channel using the 1× 1 convolution
and the dimensionality reduction ratio r is reduced. The final output of the block x̃c is
readapted to make use of the channel sc, and is as follows (3):

x̃c = Fscale(uc, sc) = sc·uc (3)

Chen et al. [50] proposed a three-stream 3D CNN, which is called an SE three-stream
fusion network (SETFNet) for near-infrared facial expression recognition. By using an SE
block, the model automatically, adaptively learns the weights of various local features to
further promote an accurate rate of recognition.

Nguyen et al. [51] put forward a SqueezeNet–SE model, which combined CNNs with
an SE block. An SE block was used to indicate the importance of the feature maps in
each module.

As cited, [50,51] include the latest technologies that have been proposed. Both models
contain SENets, which suggests that SENets can identify some important regions for
network learning, with a focus on the regions of interest.

The above theory derivation and application examples suggest that, under the same
conditions, an SENet can achieve better vital features. Therefore, this paper employed an
SENet, which could effectively improve the vividness of the generated images.

3. Proposed Method

With a continuously increasing network structure, the demand magnitude of the
required training data increases. However, many existing facial expression datasets affect
the performance of deep neural networks. Those datasets contain insufficient sample sizes
and unbalanced sample distributions. Increasing these sample sizes and balancing the
sample distributions become necessary. Therefore, data enhancement tasks apply GANs,
but this method needs to train different models repeatedly, which takes up a lot of resources
and a long training time. In the meantime, StarGAN V2 provides a better result for the above
problems. StarGAN V2 generates different expressions in facial images when inputting
one facial image and retains the identity information of the input images. Its generator
can achieve various styles when learning the different original images. Nevertheless, the
importance of each feature is different, which produces different effects on the image
generation. Concerning the generation of more vivid images, our model adopted an SENet
to pick up the important features, while ignoring the redundant ones. Our generator is
the attention mechanism + generator (AttG) in Figure 3. To improve the quality of the
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image generation, we improved the reconstruction loss by introducing the hinge loss. Our
network structure is shown in Figure 4.

Figure 3. The Flowchart of AttG.

Figure 4. The Flowchart of proposed network architecture.

3.1. The Proposed Network

As shown in Figure 4, our network structure is composed of AttG, a discriminator D,
a mapping network F (mapping network F forms the style code S̃), and a style encoder E
(style encoder E produces the style code Ŝ ). F learns the style coding of the target domain
S̃, S̃ = Fỹ(z). E learns the style coding of the source domain Ŝ, Ŝ = Eỹ(x), while the
discriminator D distinguishes between the real and fake images. The network is optimized
by an adversarial loss LRHingeGAN .

The generator AttG can produce different styles of emoticon images. The discriminator
D is a multi-task discriminator that is composed of multiple output branches. Each branch
is a binary classification that is used to determine whether an image is real or fake. The
mapping network F is composed of an MLP with multiple output branches to provide
style codes for all the available domains. Additionally, the mapping network F contains
two inputs: one is a potential encoding converted into a multiple domain style encoding,
and the other is generated by random noise. The style encoder E can produce diverse style
codes from the various reference emoticon images.

When training AttG, an original picture x and target domain style code S̃ are imported
into AttG. AttG outputs the synthesized target image G

(
x, S̃
)

. The synthesized target

image G
(

x, S̃
)

and the source image style code Ŝ are inputted into AttG again. Finally,
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AttG outputs a reconstructed image G
(

G
(

x, S̃
))

. Preserving the similarity between x

and G
(

G
(

x, S̃
))

is maintained through the cyclic consistency loss Lcyc. Through contin-
uous adversarial training, AttG generates realistic pictures that can be classified as the
target domains.

3.1.1. Attention Generator G

The original generator G structure of StarGAN V2 is shown in Table 1. The generator
G finds the sample distribution law and generates facial expression images with similar
distribution laws. When a source image x is inputted, a corresponding composite image is
generated. The content information provided by the original picture x and the style code
provided by the target domain picture S̃ are inputted into the generator G. The generator G
generates the image G

(
x, S̃
)

. S̃ is injected into G using adaptive instance normalization

(AdaIN). We observe that S̃ is designed to represent the style of a particular domain of the
source image x. This eliminates the need to supply a source image to G and allows G to
synthesize an image of the target domain. The generator converts the input image into an
output image that reflects the style code that is specific to the domain. To better extract the
important features, an SENet is added to G. The specific structure is shown in Table 2. This
makes the generated image more vivid.

Table 1. Generator architecture.

Layer Resample Norm Output Shape

Image x - - 256 × 256 × 3
Conv1 × 1 - - 256 × 256 × 64
ResBlock AvgPool IN 128 × 128 × 128
ResBlock AvgPool IN 64 × 64 × 256
ResBlock AvgPool IN 32 × 32 × 512
ResBlock AvgPool IN 16 × 16 × 512
ResBlock - IN 16 × 16 × 512
ResBlock - IN 16 × 16 × 512
ResBlock - AdaIN 16 × 16 × 512
ResBlock - AdaIN 16 × 16 × 512
ResBlock Upsample AdaIN 32 × 32 × 512
ResBlock Upsample AdaIN 64 × 64 × 256
ResBlock Upsample AdaIN 128 × 128 × 128
ResBlock Upsample AdaIN 256 × 256 × 64

Conv1 × 1 - - 256 × 256 × 3

Table 2. Attention mechanism + Generator architecture.

Layer Resample Norm Output Shape

Image x - - 256 × 256 × 3
Conv1 × 1 - - 256 × 256 × 64
ResBlock AvgPool IN 128 × 128 × 128
ResBlock AvgPool IN 64 × 64 × 256
ResBlock AvgPool IN 32 × 32 × 512
ResBlock AvgPool IN 16 × 16 × 512
ResBlock - IN 16 × 16 × 512
ResBlock - IN 16 × 16 × 512

SENet - - 16 × 16 × 512
ResBlock - AdaIN 16 × 16 × 512
ResBlock - AdaIN 16 × 16 × 512
ResBlock Upsample AdaIN 32 × 32 × 512
ResBlock Upsample AdaIN 64 × 64 × 256
ResBlock Upsample AdaIN 128 × 128 × 128
ResBlock Upsample AdaIN 256 × 256 × 64

Conv1 × 1 - - 256 × 256 × 3
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In the generator, Instance Normalization (IN) normalizes the feature statistics of a
single sample to keep the contents of the images. Thus, the content of the images before
and after translation is kept unchanged, while the style of the images is changed. The
AdaIN layer aligns the mean and variance of the content features with those of the style
features and realizes the style transfer. Hence, we use the SENet to enhance some detailed
features to make the generated images more vivid. We place the SENet in the middle layer
(the middle layer is shown in Figure 3).

3.1.2. Multi-Task Discriminator D

The discriminator D tries to distinguish between the fake and real pictures. The
discriminator in our network is a multi-task discriminator, which contains multiple linear
output branches. Each branch employs a binary classification to determine the real domain
ỹ of an image y or the synthesized target image G

(
x, S̃
)

generated by AttG. Multiple
classifiers are avoided by making general judgments about whether the resulting image is
authentic or not. This is because we want the generated images to be true in a particular do-
main, rather than the entire image to be real. The generated images make the optimization
more specific. The specific structure of the multi-task discriminator D is shown in Table 3.

Table 3. Discriminator architectures and style encoder.

Layer Resample Norm Output Shape

Image x - - 256 × 256 × 3
Conv1 × 1 - - 256 × 256 × 64
ResBlock AvgPool - 128 × 128 × 128
ResBlock AvgPool - 64 × 64 × 256
ResBlock AvgPool - 32 × 32 × 512
ResBlock AvgPool - 16 × 16 × 512
ResBlock AvgPool - 8 × 8 × 512
ResBlock AvgPool - 4 × 4 × 512
LReLU - - 4 × 4 × 512

Conv4 × 4 - - 1 × 1 × 512
LReLU - - 1 × 1 × 512

Reshape - - 512
Linear × K - - D × K

3.1.3. Style Coder E

The style encoder E generates different style codes using various reference pictures.
An input picture is symbolized as x and its corresponding target domain is marked as y. E
can extract the stylistic encoding Ŝ, Ŝ = Eỹ(x) from the source image x. The style encoder
is the same as the multi-branch discriminator structure setting. The style encoder E can
generate diversified style codes using different reference pictures. It allows the generator G
to synthesize an output image that reflects the style Ŝ of the reference images. The style
encoder E is used to extract the different image style features from the different reference
images. Therefore, the network can provide a variety of style features with the use of
different reference images for training. The specific structure of the style encoder E is
shown in Table 3.

3.1.4. Mapping Network

The mapping network F accepts the latent code from the standard Gaussian distri-
bution, and subsequently, the generator can get rid of the label constraint to generate the
target images. Given a domain y, with a latent encoding z as its input, a network encoding
S̃ = Fỹ(z) is generated by the mapping network F. F is composed of an MLP with multiple
output branches to offer style codes for all the available domains. The specific structure of
the mapping network F is displayed in Table 4.
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Table 4. Mapping network.

Type Layer Actvation Output Shape

Shared Latent z - 16
Shared Linear ReLU 512
Shared Linear ReLU 512
Shared Linear ReLU 512
Shared Linear ReLU 512

Unshared Linear ReLU 512
Unshared Linear ReLU 512
Unshared Linear ReLU 512
Unshared Linear - 64

3.2. Improved Reconstruction Loss Function

The choice of a loss function is a significant factor affecting the network’s performance.
The essence of a GAN’s adversarial loss is to find the Nash equilibrium solution in the
zero-sum game. During the image’s translation, the generator will generate samples that
appear to match the distribution of the source dataset. Pdata(x) represents the sample
distribution of the image’s domain x, Pdata(z) represents the sample distribution of the
image’s domain z, and the loss function is defined in the original GAN as follows:

min LGAN(Dx) = −
(

Ex∼Pdata(x)
[logDx(x)] + Ez∼Pdata(z)

[log(1− Dx(G(z))]
)

(4)

min LGAN(G) = Ex∼Pdata(x)
[logDx(x)] + Ez∼Pdata(z)

[log(1− Dx(G(z))] (5)

In Formula (4) and Formula (5), the discriminator D measures the optimization of G
under the optimal D as equal to the optimization of the JS divergence (Jensen–Shannon
divergence) [26] between Pdata(x) and Pdata(z). There is a minimum value for the JS
divergence, but the discriminator does not know the a priori knowledge that half of the
input data is true and half is fake. There may be an actual situation in that all the inputs of
x have D(x) ≈ 1. This makes it difficult for the discriminator to rely on both the real and
created data. Eventually, the probability of the real data and created data finds it difficult
to reach 0.5 in its ideal state, and it is hard to find the real Nash equilibrium settlement.

Considering the problem that standard GAN adversarial loss fails to make complete
use of the prior knowledge of the input data being half real and half fake, our network
introduces the idea of relative discrimination. This means replacing the standard discrimi-
nator with a relative discriminator to increase the ratio of the fake samples in the initial
training, in order to achieve a better training state. In facial expression generation, increas-
ing the spacing boundary between true and false images can improve the authenticity of
the created pictures. Therefore, using a combination of relative discrimination and hinge
loss, the loss functions of the discriminator and generator are shown in Formula (6) and
Formula (7), respectively:

LRHingeGAN
Dsrc

= Ex∼Pdata(x)
[max(0, 1− Dsrc(x) + Dsrc

(
G
(
x, ltarget

))
) + max

(
0, 1 + Dsrc

(
G
(
x, ltarget

))
− Dsrc(x)

)
] (6)

LRHingeGAN
G = Ex∼Pdata(x)

[
(

Dsrc
(
G
(
x, ltarget

)
, x
))
)] (7)

In Formulas (6) and (7), Pdata represents the real data distribution. Dsrc represents
the real and fake discriminative structure in the discriminator D. ltarget represents the
target label.

The style reconstruction loss forces AttG to use the style encoding s̃ when generating
the image G(x, s̃). This is shown in the following Formula (8):

Lsty = Ex,ỹ,z

[
‖s̃− Eỹ(G(x, s̃))‖1

]
(8)
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To further make AttG produce different images, the diversity sensitivity loss is used
to regularize AttG, as in Formula (9),

Lds = Ex,ỹ,z1,z2 [‖G(x, s̃1)− G(x, s̃2)‖1] (9)

The target style codes s̃1 and s̃2 are generated by the mapping style F, according to
the two random latent codes z1 and z2, namely s̃i = Fỹ(zi) for i ∈ {1, 2}. Maximizing the
regular term can force AttG to explore the picture space and find meaningful style features
to create various pictures. However, it is not guaranteed that the created picture will only
change the content related to the input picture domain and retain the other contents of
the input picture. Therefore, the cyclic consistency loss is used in the generator, as in
Formula (10)

Lcyc = Ex,y,ỹ,z[‖x− G(G(x, s̃), ŝ)‖1] (10)

where ŝ is the style code of the input picture x. y is the target domain of x. The synthesized
image G(x, s̃) and ŝ are input into AttG, in an attempt to reconstruct the source picture
x. Additionally, the reconstructed image G(G(x, s̃), ŝ) and x calculate the difference of the
L1 norm. AttG learns to change its style while retaining the original characteristics of x.
Finally, the complete objective function of optimizing AttG and D is as in Formula (11)

LF,G,E = LRHingeGAN + λstyLsty − λdsLds + λcycLcyc (11)

where λsty, λds, and λcyc denote the style reconstruction loss hyperparameters, diversity
sensitive loss hyperparameters, and cycle consistency loss hyperparameters, and the corre-
lation coefficients are set as 1, 2, 1. LRHingeGAN represents the adversarial loss between the
generator and discriminator.

3.3. The Algorithm in the Paper

The generator AttG and multi-task discriminator D conduct adversarial training in
alternating ways. First, we fix AttG to train D, followed by fixing D to train AttG, and then
continue with the cyclic training. The abilities of AttG and D are enhanced. Eventually, the
images generated by AttG can be seen as real. For example, in facial expression generation,
when one facial expression image generates different facial expression images, the specific
training process is as follows:

(1) AttG is fixed, training D with ỹ and training n epochs (once for each sample in the
training sample set).

(2) G(x, s̃) is generated from AttG, training D with G(x, s̃) and training n epochs.
(3) D is fixed, using the output of D as the image’s label, calculating the loss function,

and continuing with training AttG and the n epochs.
(4) Steps (1)–(3) are repeated until the images generated by AttG can be seen as real.
(5) The test image set is selected to assess the performance of the final network and the

quality of the generated image.

4. Experimental Results and Analysis

The experiments were implemented on Pytorch 1.6.0, Python 3.6.10, Tensorflow 1.14.0,
and 18.04.1-Ubuntu operating systems. The improved StarGAN V2 in the experiment ran
on the Intel(R)Xeon(R)CPU E5-2620V3@2.40 GHz in the CPU and NVIDIA GEFORCE GTX
TITAN X graphics card in the GPU. In the experiment, the GPU was used to speed up the
model’s computation and decrease the training time.

All the models in our network were trained using the Adam optimization algorithm,
the initial learning rate of the network was set to 1 × 10−4, the batch size was 128, and each
network was trained for 100 K iterations.
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4.1. Experimental Dataset

To evaluate our network, this section will cover the experiments conducted on two
public facial expression datasets, which were the extended Cohn-Kanade library (CK+) [52]
dataset and the MMI dataset [53]. CK+ and MMI were captured in controlled lab environ-
ments. Since the experiment in our network was for static images, the three peaks of the
expression changes in the video sequence ((CK+) expression library and MMI expression
library) were taken as image samples, and all the images were scaled to 512 × 512. Among
them, the entire number of CK+ images was 981, and the entire number of MMI pictures
was 609. Tables 5 and 6 display the number of various emotion pictures in the CK+ and
MMI datasets.

Table 5. The number of different emotion pictures in CK+ training set and test set.

CK+ Anger Contempt Disgust Fear Happy Sadness Surprise

Train 90 36 118 50 138 56 166
Test 45 18 59 25 69 28 83

Table 6. The number of different emotion pictures in MMI training set and test set.

MMI Anger Disgust Fear Happy Sadness Surprise

Train 64 56 56 84 64 82
Test 32 28 28 42 32 41

4.2. Using Different GANs to Generate Different Samples on the CK+ Dataset

Figure 5 shows the original image (an angry expression in the CK+ data). Figure 6
shows the different facial expression images generated from the angry expressions in the
CK+ data in each of the different networks. The first column (a) represents the sample
generated by our network. The second column (b) represents the samples generated by
Att-StarGAN V2. The third column (c) represents the samples created by Hinge-StarGAN V2
and (d) represents the samples created by StarGAN V2. The ATT-StarGAN V2 represents a
combination of StarGAN V2 and SENet. The Hinge-StarGAN V2 denotes a combination of
StarGAN V2 and the hinge loss.

As shown in Figure 6, the images generated by our network still had some advantages
over the images generated by the other three networks. The details of the expressions
produced by our network were better performed. For example, when the facial expression
was in the fear state, the images generated by our network were more realistic and vivid,
and the expression details were processed appropriately. The images generated by our
network appeared to be more vivid than the images generated by ATT-StarGAN V2.

The facial expression image details generated by ATT-StarGAN V2 were suited. It can
be seen that the detail characteristics of the generated images in column (b) are more perfect
compared to column (d). The expression details of the images generated by ATT-StarGAN
V2 were better than the expression details of the images generated by Hinge-StarGAN V2.
The images generated by our network had advantages in their realism and expression
details over the images generated by StarGAN V2.

The facial expression images generated by Hinge-StarGAN V2 were more realistic. The
created pictures in column (c) are more realistic than those in column (d). Another example
is that when the facial expression was surprised, it could better reflect the advantages of
our network.
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Figure 5. Angry expression in CK+ data.

Figure 6. CK+ dataset generated sample comparison chart ((a) represents the sample generated by
our network, column (b) represents the samples generated by Att-StarGAN V2, (c) represents the
samples created by Hinge-StarGAN V2, and (d) represents the samples created by StarGAN V2).

4.3. Using Different GANs to Generate Different Samples on the MMI Dataset

Figure 7 shows the original image (an angry expression in the MMI data). Figure 8
shows the different types of expressions generated from the angry expressions in the
MMI data in each of the different networks. The first column (a) represents the samples
generated by our network, the second column (b) represents the samples generated by
ATT-StarGAN V2, column (c) represents the samples generated by Hinge-StarGAN V2, and
column (d) represents the samples generated by StarGAN V2. In the MMI dataset, the
facial expression amplitude changed greatly, so it was also possible to generate a poor
image quality, such as sad expressions, as seen in Figure 8. Our network could generate
better-quality facial expression images, but the facial expression images generated by the
other three networks were deformed. In column (b) and column (d), the left eyes of the
pictures in the sad row, created by ATT-StarGAN V2 and StarGAN V2, respectively, are
incomplete. The emotional details of the facial expression pictures were processed without
processing the authenticity of the facial expression image, which proved that it was difficult
to achieve the expected effect. Hinge loss could make the generated facial expression
images more realistic. However, by adding the SENet, it was possible for the performance
of the expression details in the generated facial expression images to be more complete and
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vivid. For example, in the fear row, which shows the facial expression images generated
by StarGAN V2, the eyebrows are deformed, and the quality of the images from the other
three networks displays some progress.

Figure 7. Angry expression in MMI data.

Figure 8. MMI-dataset-generated sample comparison chart ((a) represents the samples generated
by our network, (b) represents the samples generated by ATT-StarGAN V2, column (c) represents
the samples generated by Hinge-StarGAN V2, and column (d) represents the samples generated by
StarGAN V2).

To verify the availability of our network, the generated image data and original data
were trained and tested. The numbers of the various emotional pictures in the training set
and test set are displayed in Tables 7 and 8.

Table 7. The number of different emotion pictures in CK+ training set and test set.

CK+ Anger Contempt Disgust Fear Happy Sadness Surprise

Train 2070 2202 2002 2168 1953 2153 1885
Test 900 970 880 950 850 920 804

Table 8. The number of different emotion pictures in MMI training set and test set.

MMI Anger Disgust Fear Happy Sadness Surprise

Train 1260 1294 1285 1217 1266 1221
Test 540 552 549 519 540 522
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In the experiment, the images were rescaled to 48 × 48 in the training and testing
phases. We employed VGG19 for the training and testing. The training and testing phases
were repeated 60 times, and we selected the best recognition rate as the final result.

4.4. Ablation Experiment

The ablation experiment outcomes are displayed in Table 9, and the recognition
accuracy (%) is served as the performance evaluation.

Table 9. Ablation studies for key modules of our network on the CK+ and MMI databases.

Method CK+ MMI

VGG19 96.8085 74.576
VGG19+StarGAN V2 97.7845 93.0788
VGG19+Hinge-StarGAN V2 98.6930 95.4687
VGG19+Middle layer + SENet + StarGAN V2 98.4699 93.9168
VGG19+SENet+Middle layer + StarGAN V2 98.9002 95.0652
VGG19+Att-StarGAN V2 99.173 95.2514
VGG19+ our network 99.2031 98.1378

As demonstrated in Table 9, our network could improve the facial expression recognition
rate. Our network had a certain improvement effect compared to the other six networks.

In the original CK+ and MMI datasets, the accuracy of VGG19 was 96.8085% and
74.576%, respectively. The accuracy of VGG19 + StarGAN V2 was 97.7845% and 93.0788%,
respectively. Compared to the original CK+ and MMI datasets, the accurate rates of
recognition showed increases of 0.976% and 18.5028%, respectively, by using StarGAN
V2. After adding the hinge loss into StarGAN V2, the accurate rates of recognition were
98.6930% and 95.4687% for the CK+ and MMI datasets, respectively. Compared to the
StarGAN V2-enhanced CK+ and MMI datasets, the accurate rates of recognition showed
increases of 0.9085% and 2.3899%, respectively, by using the Hinge-StarGAN V2-enhanced
CK+ and MMI datasets.

After adding the SENet to StarGAN V2, the accurate rates of recognition were 99.173%
and 95.2514% for the CK+ and MMI datasets, respectively. Compared to the StarGAN
V2-enhanced CK+ and MMI datasets, the accurate rates of recognition showed increases
of 1.3885% and 2.1726% by using the ATT-StarGAN V2-enhanced CK+ and MMI datasets.
For the CK+ and MMI datasets that were enhanced by our network, the accurate rates
of recognition were 99.2031% and 98.1378%, respectively. Compared to the StarGAN V2
enhanced-CK+ and MMI datasets, the accuracy showed increases of 1.4186% and 5.059%
by using our enhanced network. Compared to the CK+ and MMI datasets with no enhance-
ment, the recognition rates of our network improved by 2.3946% and 23.5618%, respectively.

Table 9 shows that the dataset was enhanced and that the expression recognition rates
of the CK+ and MMI datasets were improved. Compared to the quality of the images
generated by StarGAN V2, our network’s generated image quality was also improved.

After the data enhancement, the recognition rate of the CK+ dataset was significantly
improved. The main causes for this were that the images in the CK+ dataset consisted
primarily of young men and women and that the characteristics were obvious. Therefore,
compared to the original CK+ dataset, the recognition rate of the images generated by our
network increased by 2.3946%. Compared to the original MMI dataset, the recognition rate
of the images generated by our network increased by 23.5618%. The recognition rate of
the MMI dataset was greatly improved by our enhanced network. There were two main
reasons for this. On the one hand, it was due to the small number of samples in the original
MMI dataset; on the other hand, it was due to age and facial occlusion. Thus, after the
data enhancement, we solved the problems of insufficient data and unbalanced sample
distributions, which was more conducive to network learning.

To further prove that the location of the SENet selection in the network was conducive
to the quality of the network improvement, we placed the SENet at the front and back
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of the middle layer (the middle layer is shown in Figure 3). The middle layer + SENet
denotes that the middle layer was placed in front of the SENet. The SENet + middle layer
denotes that the SENet was placed behind the middle layer. Table 9 shows the gap among
the accuracy rates. The improvement effect of the SENet + middle layer was better than
that of the middle layer + SENet, as it had a certain effect on improving the accuracy rate.
It could focus on the original person’s identity characteristics, so our network was based
on the SENet + middle layer.

Our proposed model could effectively enhance facial expression images and generate
different types of these facial expression images. The comparison results of the ablation
experiment show that our proposed model could effectively improve the accuracy of facial
expression recognition. Therefore, our proposed model could effectively enhance facial
expression images, which is more conducive to improving the correct recognition rate for
facial expression images.

4.5. The Score FID Different Models on CK+ and MMI Database

To further imply the quality of the generated pictures, we utilized Fréchet inception
distance (FID) [54] (lower is better) as the evaluation indicator to measure the visual quality.
FID is a common metric for evaluating pictures created by GANs. It conveys the quality
and diversity of the generated images by comparing the feature vectors among the different
images. The results of the paper’s comparison are displayed in Table 10. The ATT-StarGAN
V2 represents the combination of StarGAN V2 and the SENet. The Hinge-StarGAN V2
denotes the combination of StarGAN V2 and the hinge loss. The results show that the
SENet- and hinge-loss-improved StarGAN V2 achieved the best outcomes. Compared to
StarGAN V2, our method effectively improved the quality of the created pictures.

Table 10. The score of FID by different models on CK+ and MMI database.

Method CK+ MMI

our network 31.6228 26.2882
Att-StarGAN V2 36.9607 27.9682
Hinge-StarGAN V2 76.1028 29.4659
StarGAN V2 83.0125 31.54335

4.6. Comparison with Other Works

The comparison results with other works are shown in Table 11:

Table 11. Recognition accuracy (%) of the proposed network and comparison with previous work.

Method CK+ MMI

ELBP+PHOG+SVM [11] 95.33 -
HOG+VGGFace [12] 98.12 -
Ref. [13] - 94.98
HOG, LBP+SVM [14] 99.18 -
Ref. [15] 98.60 78.44
Ref. [16] 99.16 83.67
Ref. [36] 97.83 -
VGG19 + SVM [37] 98.76 -
HistNet [38] 98.47 83.41
FMN [55] 98.61 81.39
DLP-CNN [56] 95.78 78.46
IPA2LT [57] 92.45 65.61
Ref. [58] 96.12 -
PAU-Net (type I) [59] - 85.42
PAU-Net (type II) [59] - 85.89
DSN-DF [60] 98.9 79.33
VGG19+ our network 99.2031 98.1378
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As shown in Table 11, compared to other methods, our network had noticeable,
obvious advantages with regard to the MMI dataset. Since there were many different
characters in the MMI dataset and the expression amplitudes were quite different, it was
difficult to accurately identify the facial expressions. Our network could generate more
samples so that multiple sample expressions could be learned and the facial expression
recognition rate could be better improved. After the data enhancement, the recognition rate
of the MMI dataset was greatly promoted. Compared to the traditional feature extraction
method, Refs. [11–14] used the hybrid feature extraction method, which significantly
promoted the recognition accuracy. Due to the limitations of traditional methods, the
extracted feature information was not comprehensive enough and it was necessary to
add auxiliary measures to improve the recognition accuracy. In [15,36–38,55,58–60], deep
learning methods were used to conduct global learning, local learning, or a combination
of global and local learning. However, due to the small number of samples and the
unbalanced sample distributions in the MMI and CK+ datasets, redundant learning and
repetitive learning occurred from time to time. The accuracy of the recognition rate was
not as accurate as that of our network. Our network could generate many samples, which
effectively improved the recognition rate. In [16,56,57], the problem of facial expression
image recognition across datasets was solved, but due to the fusion of multiple datasets,
the difficulty of the recognition increased.

5. Conclusions

Facial expression datasets often contain insufficient data and unbalanced sample
distributions. This article constructed, implemented, and demonstrated an improved
StarGAN V2 model for a facial expression data enhancement. Firstly, we used StarGAN V2
to generate different facial expression images and enrich the expression dataset. Secondly,
the SENet paid more attention to the vital regions of the images and improved the vividness
of the created pictures. The model was integrated into the generator in StarGAN V2 to
improve the quality of the generated images. Lastly, we introduced the hinge loss to
StarGAN V2 to distinguish between the real or fake samples and improve the authenticity
of the generated images. The outcomes of the two public CK+ and MMI datasets showed
the effectiveness of our method. The improved StarGAN V2 was conducive to improving
the accuracy of the network recognition, which could retain the identity information and
transform the different styles.

Our proposed network was compared to previous studies from the LR. Compared
to [61], our network was based on StarGAN V2. The network generated diverse images
within a model and retained the original identity information. Compared to pix2pix [62],
our network did not require the training of image pairs. Our network products had more
freedom in generating different image styles.

The advantages of our proposed model are as follows:

(1) We propose a new facial expression image generation model. The model can generate
different facial expression images by applying a simple structure.

(2) Our network is an effective model, avoiding the training of redundant models and
saving a lot of time and resources.

(3) The generated facial expression images maintain the identity information of the
original input image. Additionally, our model improves the recognition rate of the
facial expression images.

The weaknesses of our proposed model are shown below:

(1) There is a lot of text and speech information in the expression dataset. We only
enhance the images.

(2) In addition to inputting the original image, the generator also inputs the correspond-
ing stylistic features. The amount of input into the generator should be minimized
while maintaining the quality of the generated image. This reduces the computational
effort of the model.
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(3) We only enhance the facial expression images, without corresponding transformations
for hairstyles and clothing, etc.

With the emergence of multimedia technology, facial expression recognition is not only
limited to images, but also involves many other aspects, such as sound and text. Methods
of integrating expression recognition into multimedia technology, in order to make it more
conducive to research on expression recognition, will be the focus of our future research.
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