
Citation: Zhang, Y.; Tao, J.; Lv, Y.;

Wang, G. An Improved DCC Model

Based on Large-Dimensional

Covariance Matrices Estimation and

Its Applications. Symmetry 2023, 15,

953. https://doi.org/10.3390/

sym15040953

Academic Editor: Alexander

Zaslavski

Received: 20 March 2023

Revised: 17 April 2023

Accepted: 18 April 2023

Published: 21 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

An Improved DCC Model Based on Large-Dimensional
Covariance Matrices Estimation and Its Applications
Yan Zhang 1 , Jiyuan Tao 2, Yongyao Lv 1 and Guoqiang Wang 1,*

1 School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science,
Shanghai 201620, China

2 Department of Mathematics and Statistics, Loyola University Maryland, Baltimore, MD 21210, USA
* Correspondence: guoqwang@sues.edu.cn; Tel.: +86-021-67791195

Abstract: The covariance matrix estimation plays an important role in portfolio optimization and risk
management. It is well-known that portfolio is essentially a convex quadratic programming problem,
which is also a special case of symmetric cone optimization. Accurate covariance matrix estimation
will lead to more reasonable asset weight allocation. However, some existing methods do not consider
the influence of time-varying factor on the covariance matrix estimations. To remedy this, in this
article, we propose an improved dynamic conditional correlation model (DCC) by using nonconvex
optimization model under smoothly clipped absolute deviation and hard-threshold penalty functions.
We first construct a nonconvex optimization model to obtain the optimal covariance matrix estimation,
and then we use this covariance matrix estimation to replace the unconditional covariance matrix
in the DCC model. The result shows that the loss of the proposed estimator is smaller than other
variants of the DCC model in numerical experiments. Finally, we apply our proposed model to the
classic Markowitz portfolio. The results show that the improved dynamic conditional correlation
model performs better than the current DCC models.

Keywords: covariance matrix estimation; dynamic conditional correlation model; portfolio optimiza-
tion; nonconvex optimization

1. Introduction

In the era of information explosion, high-dimensional data is used widely in various
fields such as biology, medicine, finance, signal processing, etc. [1–4]. High-dimensional
data bring challenges to traditional statistical and computational methods. For instance,
in the financial area, financial data are usually characterized by large dimension, non-
normality and positive correlation so that the covariance matrix estimation becomes a
popular issue [5–7].

Recently, the estimation and modeling of large-dimensional sparse covariance matrix
have attracted extensive attention of scholars. A key point in the literature is to assume
that the target matrix is sparse; see, for instance [2,8]. Furthermore, a common method is to
construct a convex optimization model by using norm penalty [9–12]. Moreover, to reduce
the estimation bias, Fan et al. [13,14] constructed nonconvex optimization model to estimate
the sparse precision matrix and studied their theoretical properties.

It is well-known that a covariance matrix or correlation matrix is affected by the market
information. Thus, Engle [15] proposed the DCC model based on constant correlation
model [16] and GARCH model [17]. However, the performance of the DCC model is not
good because of the dimension and the noise in large dimensional data. To reduce the
dimension of data and remove the noise, Engle et al. [5] applied the nonlinear shrinkage
method [18] to the DCC model on the aspects of eigenvalues, which optimized the perfor-
mance of the DCC model. Furthermore, De Nard et al. [19] applied this model to intraday
data to predict dynamic conditional covariance matrix. Since the DCC model needs to
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normalize the conditional correlation matrix to obtain the dynamic conditional covariance
matrix, it leads to compromising the model fit. From this perspective, Jarjour et al. [20]
proposed dynamic conditional angular correlation model based on the DCC model and
Tse and Tsui [21] proposed a time-varying conditional correlation model, and an empirical
research showed that the dynamic conditional angular correlation model outperforms
in the DCC model for small sample in portfolio construction. More information on the
applications of the DCC model in portfolio can be refered to [6,19,20,22].

In addition, Wen et al. [23] proposed a class of positive-definite covariance estimators
to realize sparsity and positive definiteness by using generalized nonconvex penalties.
However, the covariance matrix estimation with nonconvex function performs worse in
high noise. In order to resolve this problem, Zhang et al. [24] constructed a optimal convex
combination of the linear shrinkage estimation and the rotation-invariant estimator to
remove the noise under the Frobenius norm. Although the new estimator can signifi-
cantly remove the sampling noise, it does not consider the variance, and covariance varies
with time.

Motivated by [5,23,24] and a special case of symmetric cone optimization, in this paper,
we consider the following factors:

1. We propose a new large covariance matrix estimator to realize the sparsity and
positive-definiteness by constructing a nonconvex optimization model with smoothly
clipped absolute deviation (SCAD) and hard threshold penalty functions based on
the rotation-invariant estimator.

2. To improve the performance of the DCC model, we use the new covariance matrix
estimator to replace the unconditional covariance matrix in the DCC model.

3. We show that the improved DCC model has a smaller loss and lower out-of-sample
risk in portfolio optimization model.

The outline of this article is as follows: Section 2 describes the preliminary work.
Section 3 introduced the proposed estimator. Section 4 implements the numerical simulation
and application. Section 5 makes a discussion and Section 6 gives a conclusion.

2. Preliminary Work
2.1. Covariance Matrix Estimation Based on Convex Combination

In random matrix theory, the eigenvalues inside and outside the boundary of Marc̆enko
and Pastur law generate noise so that they affect the estimation of covariance matrix.
In order to deal with the noise caused by these two types of eigenvalues simultaneously,
Zhang et al. [24] used a optimal convex combination of the shrinkage transformation and
the rotation invariant estimator to remove noisy correlations. In what follows, we briefly
introduce the model.

Let Σ be a true covariance matrix, Zhang et al. [24] constructed the following convex
optimization model, i.e.,

min
θ,φ

||Σ− Σest||2F (1)

s.t.

{
Σest = φ(θΣF + (1− θ)ΣRIE) + (1− φ)ΣS,
0 ≤ θ ≤ 1, 0 ≤ φ ≤ 1.

where ΣF, ΣRIE, ΣS and ||.||F denoted the shrinkage target matrix [7], rotation invariant
estimator [25] and the sample covariance matrix [5], and Frobenius norm, respectively. Now,
let θ∗ and φ∗ be the optimal parameters. It follows from (1) that the optimal covariance
matrix estimation under the Frobenius norm is given by

Σ∗ = φ∗(θ∗ΣF + (1− θ∗)ΣRIE) + (1− φ∗)ΣS

This model effectively eliminates the sample noise generated by the eigenvalues inside
and outside the boundary of Marc̆enko and Pastur law, so that it can improve the estimation
efficiency of the covariance matrix. The more details refer to [24].
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2.2. Classical DCC Model

Although the positive-definite estimator with the SCAD penalty function is of a good
theoretical properties, in financial research, the covariance matrix or correlation matrix
changes over market information and is affected by large dimensions and noise. Therefore,
studying the conditional covariance matrix is of theoretical and practical significance.
Engle [15] proposed the DCC model below, which takes into account the impact of the past
market information on the correlation matrix or covariance matrix.

Let ri,t denote asset return series i at date t, rt := (r1,t, . . . , rN,t), and rt obeys standard-
ized normal distribution. Then,

Ht = DtRtDt, (2)

rt|φ ∼ N(0, DtRtDt),

d2
i,t = ωi + αir2

i,t−1 + βid2
i,t−1, (3)

D2
t = diag {ωi}+ diag{αi}r′t−1rt−1 + diag{βi}D2

t−1, (4)

Rt = diag{Qt}−1Qtdiag{Qt}−1, (5)

where di,t = var(ri,t|Ft−1) is the conditional variance of ith asset at date t, Dt denotes the
N dimensions diagonal matrix with diagonal entries di,t (i = 1, . . . , N), Rt denoted the
dynamic conditional correlation matrix and dynamic conditional covariance matrix Qt is
defined by the following way:

For arbitrary α, β and α + β ≤ 1,

Qt = (1− α− β)S + αq′t−1qt−1 + βQt−1. (6)

where S is the unconditional covariance matrix of qt = D−1
t rt, which denotes the standard

return at date t, and qt ∼ N(0, IN).

3. An Improved DCC Model Based on Nonconvex Combination

Since most of off-diagonal entries of the covariance matrix are close to zero in nu-
merical experiments and empirical studies, we propose the constrained covariance matrix
estimation to achieve sparsity and positive-definiteness simultaneously, which solves the
following problem

min
Σ

||Σ− Σ∗||2F + gλ(Σ), (7)

s.t.


diag(Σ) = Id,
Σ ≥ εId,
ε > 0.

where gλ(Σ) is the penalty function and λ is the penalty parameter. In [9–11], the alternating
direction method (ADM) and the augmented Lagrangian method (ALM) algorithm are
used to solve the nonconvex optimization model. Wen et al. [23] pointed out that the ADM
algorithm is more effective for the optimization model with nonconvex penalty function.

There are many penalty functions in existing literatures. For instance, Fan et al. [13]
first proposed the SCAD penalty function, i.e.,

pscad
λ (y) =


λ|y|, 0 ≤ |y| < λ,
2bλ|y| − y2 − λ2, λ ≤ |y| < bλ,
(b + 1)λ2/2, |y| ≥ bλ,
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where b = 3.7 is an optimal parameter. Antoniadis [26] gave the hard threshold penalty
function, i.e.,

pHT
λ (y) = λ2 − (|y| − λ)2 I(|y| ≤ λ).

More details about the nonconvex penalty functions refer to [13,23,26] and refer-
ences therein.

It is well-known that the traditional DCC model does not perform well in large
dimensions [5,6]. However, if we use the solution Θ of the optimization matter (1) to
replace the unconditional covariance matrix S in the DCC model, then not only can the
estimated efficiency of the DCC model be improved, but it resolves the dimensional disaster
and the sample noise problems.

In this article, we propose an improved DCC model by using nonconvex optimization
model under SCAD and hard-threshold penalty functions. The estimation algorithm for
the improved DCC model is given below.

• Step 1: Solve the model (1) to obtain the covariance matrix estimation Σ∗.
• Step 2: Input Σ∗ into the nonconvex optimization model (7) and use ADM to solve it

to obtain the covariance matrix estimation Θ.
• Step 3: Execute Equations (3) and (4), fit the GARCH (1,1) model for each asset return

series, and output matrix Dt and residual qt.
• Step 4: Use the covariance matrix to estimate Σ∗ to replace the unconditional covari-

ance matrix S in Equation (6), and get the matrix Qt by maximizing the composite
likelihood function.

• Step 5: Standardize Qt and calculate the dynamic conditional correlation matrix Ht in
Equation (2).

4. Numerical Experiments and Application
4.1. The Simulation Datasets
4.1.1. The Simulation of Typical Sparse Covariance Matrix

In simulation, we simulate Block matrix, Toeplitz matrix, and Banded matrix, respec-
tively. The heat map of these three types matrix are shown in Figure 1.

(a) (b) (c)

Figure 1. The simulated matrices for d = 100. (a) Simulation matrix-Block matrix; (b) Simulation
matrix-Toeplitz matrix; (c) Simulation matrix-Banded matrix.

We consider dimensions with d = 100, 400, the sample size n ∈ {100, 200, 400, 800, 1000},
and the frequency of the simulations f = 1, 2, . . . , 10. We measure the performance of the
covariance matrix estimation based on the relative error of the estimation under the Frobe-
nius norm and the spectral norm. In the process of the simulation, we first simulate the
data set (the sample size is n) satisfying the Gaussian random distribution with zero mean
and finite covariance. The penalty parameter λ is set up fifteen values range from 0 to 1.

Figure 2 shows the heat maps of the estimator ΣSCM, Σ∗ and ΣSCAD under the three
simulation matrices when d = 100, and the corresponding sample sizes are n = 100 and
n = 1000, respectively. On the one hand, the error of the estimator ΣSCAD is always smaller
than other estimators. On the other hand, the heat map of the estimator ΣSCAD is more and
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more similar to the original simulation matrix, which implies that the error of the estimator
ΣSCAD is gradually decreasing as the sample size increases. To compare with the estimator
ΣL1(ALM) which using the lasso penalty function under ALM algorithm, we named the
estimator using SCAD, Hard-threshold, Lq-norm (q = 0.5) and lasso penalty functions
under ADM as ΣSCAD, ΣHard, ΣLq , and ΣL1 , respectively. It shows that the estimation error
of the ΣSCAD and ΣHard are lower than other estimators under the F-norm and the spectral-
norm. In sparse optimization, the choice of the penalty parameter λ is important. In our
numerical experiment, we set up five folds cross validation and select the optimal parameter
λ by minimizing the sum of cross validation errors. Also, we give the penalty parameter λ
of the estimator ΣSCAD under five-folds cross-validation. The results in Figure 3 shows that
the total error of estimator cross-validation is relatively large when the sample size of the
three matrices reaches n = 100 for the first time, and the total error decreases and the curve
tends to be stable after f = 10. The first simulation corresponding to the number of the
samples n = 100, all three matrices obtain the minimum error sum at the penalty parameter
λ = 0.2276, instead of the last simulation corresponding to the samples size n = 1000,
the penalty parameters λ of the ΣSCAD are 0.3727, 0.0848, and 0.1389, respectively.

Figures 4 and 5 show the heat maps of estimator ΣSCM, Σ∗ and ΣSCAD and choice of
the penalty parameter under the three simulation matrices when d = 400. Obviously, the er-
ror of the estimator increases in Figure 4. For the penalty parameter λ, with the increase of
the simulation frequencies, the error decreases significantly. The total error of the first simu-
lation is higher than before. The first simulation corresponding to the sample size n = 100,
all three matrices obtain the minimum error sum at the penalty parameter λ = 0.3728.
Moreover, the last simulation corresponding to the sample size n = 1000, and the penalty
parameters λ of the estimator ΣSCAD are 0.2276, 0.0848, and 0.0848, respectively.

(a) (b)

(c) (d)

Figure 2. Cont.
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(e) (f)

Figure 2. The heat map of each estimation for d = 100. (a) Block matrix (d = 100, n = 100); (b) Block
matrix (d = 100, n = 1000); (c) Block matrix (d = 100, n = 100); (d) Block matrix (d = 100, n = 1000);
(e) Block matrix (d = 100, n = 100); (f) Block matrix (d = 100, n = 1000).

(a) (b)

(c) (d)

(e) (f)

Figure 3. The sum error of the estimator ΣSCAD in five folds cross-validation under the F-norm for
d = 100. (a) Block matrix ( f = 1, n = 100); (b) Block matrix ( f = 10, n = 1000); (c) Block matrix
( f = 1, n = 100); (d) Block matrix ( f = 1, n = 100); (e) Block matrix ( f = 10, n = 1000); (f) Block
matrix ( f = 1, n = 100).
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(a) (b)

(c) (d)

(e) (f)

Figure 4. The heat map of each estimator for d = 400. (a) Block matrix (d = 400, n = 100); (b) Block
matrix (d = 400, n = 1000); (c) Block matrix (d = 400, n = 100); (d) Block matrix (d = 400, n = 1000);
(e) Block matrix (d = 400, n = 100); (f) Block matrix (d = 400, n = 1000).

(a) (b)

Figure 5. Cont.
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(c) (d)

(e) (f)

Figure 5. The sum error of the estimator ΣSCAD in five folds cross-validation under the F-norm for
d = 400. (a) Block matrix ( f = 1, n = 100); (b) Block matrix ( f = 10, n = 1000); (c) Block matrix
( f = 1, n = 100); (d) Block matrix ( f = 1, n = 100); (e) Block matrix ( f = 10, n = 1000); (f) Block
matrix ( f = 1, n = 100).

Figure 6 shows the performance of all estimators for d = 100. We use SCAD-ADM,
Hard-ADM, Lq-ADM, and L1-ADM to terms as the estimator ΣL1(ALM), ΣSCAD, ΣHard, ΣLq ,
and ΣL1 . In this case, the performance of the estimation is different under three simulated
matrices. For Block matrix, the average error of estimation with Hard-threshold is the
lowest under the ADM algorithm and with the SCAD penalty is the next. This implies that
the larger the sample size, the better of the performance of proposed estimators with the
ADM algorithm. For instance, when the sample size n = 100, the average estimation error
of the ΣLq , ΣHard and ΣSCAD are approximately 64.06%, 46.24% and 60.50% of the estimator
ΣL1(ALM) under the Frobenius norm, while they are 74.55%, 60.70% and 73.61% under the
spectral norm. When the sample size n = 1000, the average estimation error of the estimator
ΣLq(ADM), ΣHard and ΣSCAD are approximately 54.53%, 42.03% and 46.40% of the estimator
ΣL1(ALM) under the Frobenius norm, while they are 64.10%, 53.13% and 57.01% under the
spectral norm. It should be noted that when we simulate Toeplitz matrix, the average error
of each estimator has little difference under the ADM algorithm. Overall, the average error
of the new estimator with the SCAD and hard-threshold penalty function is low under the
ADM algorithm. For banded matrices, the new estimator with SCAD penalty function has
more obvious advantages. It is easy to see that three simulated matrices are more sparse
when d = 100.
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(a)

(b)

(c)

Figure 6. The average relative error of each estimator for d = 100. (a) Simulation matrix-Block matrix;
(b) Simulation matrix-Toeplitz matrix; (c) Simulation matrix-Banded matrix.

Figure 7 shows that the performance of the estimator ΣSCAD, ΣHard, and ΣLq are more
significant when d = 400. All estimators decline as number of the samples increases.
For Block matrix, the average relative error of the proposed estimator with the ADM
algorithm under the Frobenius-norm and the spectral-norm is lower than that with ALM
algorithm. When the sample size n = 100, the average estimation error of the estimator ΣLq ,
ΣHard and ΣSCAD are approximately 72.73%, 52.86%, and 68.91% of the estimator ΣL1(ALM)

under the Frobenius norm, while they are 80.56%, 65.15%, and 79.40% under the spectral
norm. Accordingly, the average error of the estimator is higher than the situation of d = 100.
Moreover, when n = 1000, the average estimation error of the estimator ΣLq , ΣHard and
ΣSCAD are approximately 55.95%, 44.83%, and 45.81% under the Frobenius norm, while
they are 65.68%, 56.01%, and 56.91% under the spectral norm. Compared to d = 100, it
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shows that the performance of the estimator is more significant for Block matrix. When we
simulate Toeplitz matrix, the average error of the estimator based on the ΣSCAD exceeds
the ΣL1(ALM). However, the average error of the estimator significantly declines as number
of the sample increases. The average error of the ΣSCAD is approximately 75.44% when
n = 1000. For Banded matrix, the new estimator with SCAD penalty function shows a
better performance than the estimator ΣL1(ALM) and ΣL1 .

(a)

(b)

(c)

Figure 7. The average relative error of each estimator for d = 400. (a) Simulation matrix-Block matrix;
(b) Simulation matrix-Toeplitz matrix; (c) Simulation matrix-Banded matrix.

Figure 8 shows the eigenvalues of five estimators when d = 100 and n = 200. As can
be seen, the eigenvalues of all comparison estimator are positive. This implies that the
estimator is positive-definite.
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Figure 8. The eigenvalues of each estimation under Block matrix for d = 100 and n = 200.

4.1.2. The Monte Carlo Simulation

In the Monte Carlo simulation, we simulate the DCC model with parameters refered to
Pakel et al. [27]. In the DCC model, the univariate volatility model dynamic is governed by
the GARCH model. We use the GARCH(1,1) to carry out it with parameters. We generate a
simulation return, where the number of the sample T = 1000. As for the dimension of the
assets, we set three dimensions, there are N = 100, 400, 800, respectively. In our simulation,
the concentration ratio is c = 0.80.

Although c can be larger than one, we only consider the situation of c is less than one
so that we can compare the performance with the DCC model.

To measure the performance of the new estimator effectively, the loss function referred
to Engle et al. [28] is given by

Lloss(Σ̂, Σ) =
N[tr(Σ̂−1Σ−1Σ̂)]

[tr(Σ̂−1)]2
− N

tr(Σ̂−1)
, (8)

which can be to extend to the case of the Ĥt, i.e., ,

L =
1
T

T

∑
t=1
Lloss(Ĥt, Ht). (9)

We first use five estimators to replace the S, and then we combine them with DCC
model to compare the loss (8). The following are five estimators that we consider. The ex-
plication of each estimator as follow:

• DCC-S: The S in the DCC model is replaced by the sample covariance matrix ΣSCM.
• DCC-L2: The S in the DCC model is replaced by the estimator obtained from the

method of Engle and Ledoit [7].
• DCC-NL: The S in the DCC model is replaced by the estimator obtained from the

method of [18].
• DCC-NCP1: The S in the DCC model is replaced by the estimator ΣHard obtained from

the model (7) based on the hard-threshold penalty function.
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• DCC-NCP2: The S in the DCC model is replaced by the estimator ΣSCAd obtained
from the model (7) based on the SCAD penalty function.

The bold character in Table 1 denote the minimum loss under every dimension. It
can be seen that the loss of the improved DCC model is smaller than that of other models.
As the dimension increases, the performance of the improved DCC model is better than
other DCC variants.

Table 1. The loss of five estimators in different dimensions of the assets. (The unit is 10−6).

N DCC-S DCC-L2 DCC-NL DCC-NCP1 DCC-NCP2

100 4.6874 0.6223 0.4996 0.2279 2.4265
400 3.2222 2.4103 3.1089 2.6286 0.2583
800 5.6512 4.2802 4.9354 3.7852 1.4324

4.2. The Application

In order to prove the robustness of the model, we implemented the empirical research.
The data of this paper come from the component stock of CSI500, HS300, and SSE50 in 218
the tushare financial website. The whole period of the samples is from 24 May 2017 to 1
July 2021. Removing the missing data of the samples from transaction, we finally obtain
426 component stocks of CSI500, 218 component stocks of HS300, and 41 component stocks
of SSE50. We set T1 = 500 as the windows of the estimation first, and then we shift these
500 days training window forward, update the portfolio at frequencies of 100 and 200 days.

4.2.1. Global Minimum Variance Portfolio

In this article, we focus on the portfolio optimization model with constraints below

min
ω

ω′Σω

s.t.


1
′
ω = 1,

r
′
ω ≥ rmin,

ω ≥ 0,

(10)

where 1 denote the vector of ones of N × 1 and ω = (ω1, ω2, . . . ., ωN) denote the weight
vector of the assets. In what follows, we replace the Σ in the model (10) by different effective
covariance matrix estimations.

4.2.2. Analysis of Empirical Research

We apply the above five estimators to the portfolio optimization model and consider
the three indexes. When the expected return achieves 0.0015, we allow the assets to be
sell short. Supposed that one year is 252 trading day, the average rate of return (MR) and
standard deviation (SD) in the Tables 2–4 are obtained on this premise.

Tables 2–4 show the out-of-sample performance of five portfolio optimization models
with different assets. For out-of-sample data, we use the SD and Sharpe ratio as the
performance metric. To obtain the Sharpe ratio with accuracy, we set the risk-free rate is
1.75% and the mean returns of all models are equal under the frequency of the 100 days
and 200 days in Tables 2–4.

Table 2 shows that the SD of the DCC-NCP2 corresponding to portfolio optimization
model is only 20.488%, which is the smallest in all models in the case of the frequency of
100 days. It achieves the highest Sharpe ratio in all models. Under the the frequency of
200 days, the performance of the portfolio optimization model corresponding to DCC-L2 is
the best and the Share ratio of the portfolio optimization model corresponding to DCC-L2
is the highest in all models.



Symmetry 2023, 15, 953 13 of 15

Table 2. The out-of-sample performance of five estimators of 41 assets based on SSE50 in the portfolio
optimization model.

Model
MR * SD * SR

100 d 200 d 100 d 200 d 100 d 200 d

DCC-S 37.80 37.80 20.783 16.561 1.735 2.177
DCC-L2 37.80 37.80 20.700 16.417 1.742 2.196
DCC-NL 37.80 37.80 20.701 16.470 1.741 2.189

DDC-NCP1 37.80 37.80 20.658 16.652 1.745 2.165
DCC-NCP2 37.80 37.80 20.488 16.543 1.760 2.179

* denote the unit is %.

Table 3. The out-of-sample performance of five estimators of 218 assets based on HS300 in the
portfolio optimization model.

Model
MR * SD * SR

100 d 200 d 100 d 200 d 100 d 200 d

DCC-S 37.800 37.800 15.447 15.393 2.334 2.2.342
DCC-L2 37.800 37.800 15.305 15.174 2.355 2.376
DCC-NL 37.800 37.800 15.319 15.377 2.353 2.346

DDC-NCP1 37.800 37.800 15.271 15.418 2.367 2.338
DCC-NCP2 37.800 37.800 15.559 15.079 2.317 2.391

* denote the unit is %.

Table 4. The out-of-sample performance of five estimators of 426 assets based on CSI500 in the
portfolio optimization model.

Model
MR * SD * SR

100 d 200 d 100 d 200 d 100 d 200 d

DCC-S 37.800 37.800 13.132 13.452 2.745 2.680
DCC-L2 37.800 37.800 13.029 13.543 2.767 2.662
DCC-NL 37.800 37.800 12.906 13.384 2.793 2.693

DDC-NCP1 37.800 37.800 12.883 13.219 2.798 2.727
DCC-NCP2 37.800 37.800 12.951 13.189 2.783 2.733

* denote the unit is %.

Table 3 gives the performance of the portfolio optimization models corresponding
to five estimators with 218 assets. It is easy to see that the performance of the portfolio
optimization model corresponding to our new model DCC-NCP1 and DCC-NCP2 are
superior to other models under the frequency of 100 days and 200 days, respectively.
The portfolio optimization model corresponding to our new estimator obtains the smallest
SD and the highest Sharpe ratio. Therefore, the portfolio optimization model corresponding
to our new estimator is superior to other models as the assets increase.

Table 4 compares the out-of-sample performance of the portfolio optimization models
corresponding to each estimator with 426 assets. When the number of assets N = 426,
the information ratio is given by

c =
N
T

=
426
500

= 0.852. (11)

The result shows that the portfolio optimization model corresponding to our new
estimator obtains the smallest SD in all models. Moreover, as the assets increase, the out-
of-sample SD of our new estimator corresponding to portfolio optimization model has
significantly reduced.
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5. Discussion

In numerical simulations, we found that the error of the new estimator significantly
decreases with the increase of simulation times and sample size. This is the impact of
vertical size increase on the performance of the estimator. In empirical research, we use
the rolling windows method to estimate and predict out-of-sample risk for the length
of estimate window T = 500. As the assets increase, the performance of the portfolio
optimization model corresponding to DCC-NCP1 and DCC-NCP2 is better than other
models. Obviously, the performance of the estimator has also been demonstrated when
the horizontal dimension increases. As you can see, the new estimator exhibits superior
performance in both aspects.

6. Conlusions

In this paper, we proposed an improved DCC model by combining the rotation
invariant estimator and nonconvex penalty functions. We first developed the nonconvex
optimization model of the covariance matrix estimation based on the SCAD and hard
threshold penalty functions, and then we used ADM to solve the nonconvex optimization
model to obtain an optimal covariance matrix estimation. Moreover, we replaced the
unconditional covariance matrix S in the DCC model by the new estimations based on the
SCAD and hard threshold penalty functions to get improved DCC models, respectively.
Finally, we provided the numerical simulations to demonstrate that the function of loss
of the proposed estimator is significantly smaller than DCC variants. In the application,
we applied real stock return data to portfolio selection, we showed that the portfolio
optimization model corresponding to new estimator obtains the higher Sharpe ratio as the
number of assets increases.

In addition, since the traditional DCC model and some DCC model variants generally
need to implement a normalization step of the correlation dynamics or use some window-
based local correlation matrices as proxies of the instantaneous correlation matrix, these
processes may affect the model fitting or complicate the theoretical analysis [20,21]. Thus,
an interesting future research problem is to use the nonconvex optimization model to
estimate the angular correlation matrix in dynamical conditional angular correlation model
and apply it to portfolio construction in high-dimensional financial data.
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