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Abstract: In this study, a mathematical model that may depict the dynamic transmission of the
Chikungunya virus within a specific population has been examined. Various differential operators
were considered, ranging from classical to nonlocal operators. We added a stochastic component
to each instance and used the Lipschitz and linear growth criteria to illustrate the existence and
uniqueness of the solutions. The most recent numerical method with Newton polynomial (are related
symmetrical) interpolations was used to solve each problem numerically using MATLAB. There are
some presented numerical simulations which are compared with the Lipschitz and linear growth
properties. This new research work emphasizes how the Chikungunya virus model is formulated
using fractional ODEs.
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1. Introduction

A challenging and crucial area of modern mathematical control theory and harmonic
analysis, which has many applications and is of interest to many academics worldwide, is
the investigation of systems with symmetry and control systems. Due to recently developed,
highly potent mathematical techniques, such as decay, the power law, and crossover from
power law to exponential, which can capture even the most subtle complexities of nature,
the idea of fractional calculus operators have been consolidated to create new fractional
integration and differentiation operators in many issues in the real world. These novel
operators’ key benefit is their ability to simultaneously capture processes that follow power
laws, Mittag-Leffler functions, and exponential decay functions [1–4]. In [5], the authors
developed an application software for computing the components of the stress-strain state
of biomaterials while taking into account their fractal structure using the finite element
method to calculate the rheological properties of a biomaterial with a fractal structure.
These new operators are ideal modeling tools for many complicated real-world issues
thanks to their exceptional and distinctive capabilities. Mathematicians also developed the
idea of Brownian motion to capture randomness. Over the past ten years, this idea has been
employed with varying degrees of success in a number of sectors of science, technology,
and engineering. It is important to keep in mind that Brownian motions and differential
operators with the aforementioned kernels cannot take into account randomness, fading
memory, crossover effects, and power law, even though both have proved successful in
replicating real-world problems separately [6–8]. However, it is important to remember
that many situations in nature can display both processes. Therefore, neither stochastic nor
fractional calculus are unable to account for these. Since the spread of infectious diseases
within humans depends on a variety of conditions, it is true that their dissemination cannot
be well explained by straightforward mathematical formulae. The Chikungunya virus,
for instance, spread. This spread has been the subject of numerous mathematical models;
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therefore, it is thought that these new operators will play a major role in modeling in the
future. The spread is modeled in this paper using fractional operators.

Several methods, including residual power series, symmetry, spectral, Fourier trans-
form, similarity, and collocation methods, are being used to examine the system with
symmetry and manage differential equations in both fractional and classical orders, as
well as their systems. A symmetry fractional operator and the various types of Caputo
derivatives are directly related. Due to the elegant form of its fractional definition and its
algebraic features, the concept of the fractional derivative operator plays a significant role
in the fields of mathematical inequality and mathematical analysis. Numerous authors
have recently investigated the tight connections and related work on fractional operators
with symmetry. Because of their close association, when working on one topic, it can also
be used to the other.

Today, mathematical modeling is regarded as an essential and successful method
for describing the origin and dynamics of many prevalent infectious diseases, including
HIV/AIDS, COVID-19, TB, Lassa fever, Ebola, syphilis, cancer cells, polio, and many others,
which are categorized in [9]. Due to its nonlocal features and memory effects, a fractional-
order derivative, which is thought of as an extension of the integer-order derivative, has
attracted much scholarly attention recently. The fractional-order derivatives have memory
features since they depend on all of the prior states in addition to the current state [10].
Several academics have used the idea of fractional calculus to simulate various nonlinear
phenomena in the fields of medicine, engineering, physics, and applied sciences. This is
due to the specific qualities of fractional calculus. For instance, Diethelm [11] confirmed in
his work that the proposed fractional-order model more closely matches the actual data of
the dengue sickness than the integer-order case. Bi-order derivatives have been taken into
consideration in an unique differentiation theory that has been put forth recently; the first
case is known as the fractal fractional-order and the second case is known as the fractal
dimension. In the literature, this kind of integral and differential equation is still not well
covered. Recently, Pitolli [12] has effectively studied the Riesz-Caputo derivative in a cubic
spline to approximate the numerical solution of the boundary value differential problems
and compare the same with analytical solutions. Several numerical schemes have been
implemented to study nonlinear fractional systems. The discretization methods for the
logistic equation are discussed by Izadi and Shrivastava [13].

In the current study, the fractional case extension of the classical-order differential
equations is discussed. The idea of a fractional operator has been successfully used to
describe a variety of real-world issues in engineering, physics, biology, and biomedical sys-
tems. In order to describe the Chikungunya differential equations in the sense of the Caputo
operator, this work extends the notion of fractional operators of orders. We are not aware
of any formulations of the Chikungunya model that incorporate fractional derivatives.

The primary body of this work is divided into the following sections:
Section 2 provides some helpful definitions of fractional operators. Section 3 in-

troduces the dynamics of the Chikungunya model for cases of integer and non-integer
order, and Section 4 examines linear stability analysis, the existence, and the uniqueness of
solutions via the fractional operators presented in Section 4. In Section 5, a novel numeri-
cal approximation method for the proposed model’s solution, which is described by the
Caputo-fractional, Caputo-Fabrizio (CF), and AB derivatives, and numerical experiments
that illustrate the behavior of the dynamics under investigation are presented for various
instances of orders, followed by a numerical simulation of various orders. The validation
of current study is elaborated in the form of a remark. Finally, the conclusion is presented
with details of the limitations and future work.

2. Preliminaries and Definition

In this section, we review some fundamental definitions and characteristics of the
theory of fractional calculus that will be helpful in the sections to follow.
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Definition 1 ([14]). The Caputo derivative with ζ order, where u is a function not necessarily
differentiable and ζ is a real number such that ζ > 0 is given as:

C
0 Dζ

t u(t) =
1

Γ(ζ)

∫ t

0
(t− y)ζ−1u(y)dy. (1)

Definition 2 ([15]). The Caputo-Fabrizio derivative for u ∈ H1(a, b), b > a, ζ ∈ [0, 1] of the
fractional order is given by:

Dζ
t (u(t)) =

M(ζ)

(1− ζ)

∫ t

a
u
′
(x) exp

[
−ζ

t− x
1− ζ

]
dx. (2)

where M(0) = M(1) = 1 [15].

Definition 3 ([16]). The AB derivative in a Caputo sense for u ∈ H1(x, y), y > x, ζ ∈ [0, 1] with
the function u differentiable is given as:

ABC
a Dζ

t [u(t)] =
M(ζ)

1− ζ

∫ t

a

d
dt

u(x)Eζ

[
−ζ

(t− x)ζ

1− ζ

]
dx. (3)

Definition 4 ([16]). The Atangana-Baleanu fractional integral is given as:

ABC
a Iζ

t [u(t)] =
1− ζ

B(ζ)
u(t) +

ζ

B(ζ)Γ(ζ)

∫ t

a
u(j)(t− j)ζ−1dj. (4)

3. Chikungunya Transmission Mathematical Model

Here, we look at a mathematical model that shows how the Chikungunya virus
dynamically spreads over a particular population [17]. When bitten by an infectious
mosquito, a fraction of susceptible humans S are exposed to the infection E. People then
become symptomatically infectious (I) or asymptotically infectious (Ia) after the latent
phase of infection before recovering (R). Similar to this, after receiving an infectious bite, a
certain percentage of susceptible mosquitoes (X) are exposed to the pathogen (Y) before
developing the infectious (Z) disease. The associated equations that represent the kinetics
of infection are as follows:

dS
dt

= −β1SZ,

dE
dt

= −β1SZ− λ1E,

dI
dt

= φλ1E− γI,

dIa

dt
= (1− φ)λ1E− γIa,

dR
dt

= γ(I + Ia),

dX
dt

= µ− β2X(I + Ia)µX,

dY
dt

= β2X(I + Ia)− λ2Y− µY,

dZ
dt

= λ2Y− µz.

(5)

The following lists the Chikungunya model’s parameters and variables:

• S represents susceptible hosts;
• E represents exposed hosts;
• I represents symptomatically infectious hosts;
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• Ia represents asymptomatically infectious hosts (proportion);.
• R represents recovered hosts;
• X represents susceptible mosquitoes;
• Y represents exposed mosquitoes;
• Z represents infectious mosquitoes;
• β1 represents mosquito-to-human transmission (number of mosquito bites per human

per day, allowing for imperfect pathogen transmission);
• β2 represents human-to-mosquito transmission (per day bite rate also allowing for

imperfect pathogen transmission);
• φ shows hosts that develop symptoms;
• 1

λ1
represents host latent period (from ‘infected’ to ‘infectious’, days);

• 1
λ2

represents mosquito latent period (from ‘infected’ to ‘infectious’, days);
• γ represents host recovery rate (per day);
• 1

ω1
represents host pre-patient period (from ‘infected’ to symptom’s development,

days);
• µ is given by mosquito life span (days).

4. Existence and Uniqueness

We outline the model’s existence and uniqueness requirements.
For this, we demonstrate that ∀ ι ∈ {1, 2, 3, 4, 5, 6, 7, 8}

(a) The linear growth condition is |pι(Xι, ø)|2 and |Gι(Xι, ø)|2 ≤ k(1 + |Xι|2).
(b) ∣∣∣pι(X1

ι , ø)− pι(X2
ι , ø)

∣∣∣2 ≤ k̄|X1
ι − X2

ι |2∣∣∣Gι(X1
ι , ø)− Gι(X2

ι , ø)
∣∣∣2 ≤ k̄|X1

ι − X2
ι |2

p1(S, t) = −β1SZ, G1(S, t) = σ1S

|p1(S, t)|2 = |−βSZ|2

= β2|S|2|Z|2 ≤ β2(1 + |S|2)|Z|2

≤ β2(1 + |S|2) sup
t∈[0,t]

|Z|2

≤ β2‖Z‖2
∞(1 + |S|2)

≤ k1(1 + |S|2)

num
den

So

|G1(S, t)|2 ≤ E2
1(1 + |S|2) ≤ k′1(1 + |S|2) (6)

p2(E, t) = −βSZ− λ1E1, G2(E, t) = σ2E

|p2(E, t)|2 ≤ 2β2‖S‖2
∞‖Z‖

2
∞ − 2λ2

1|E|2

≤ 2β2‖S‖2
∞‖Z‖

2
∞

(
1 +

λ2
1|E|2

2β2‖S‖2
∞‖Z‖

2
∞

)
.

(7)

If λ2
1|E|

2

2β2‖S‖2
∞‖Z‖

2
∞
< 1, then

|p2(E, t)|2 ≤ k2(1 + |E|2)
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where k2 = 2β2‖S‖2
∞‖Z‖

2
∞. Clearly also

|G2(E, t)|2 ≤ σ2
2 (1 + |E|2)

≤ k2
2(1 + |E|2).

(8)

Furthermore,
|Gι(Xι, t)|2 ≤ σ2

ι (1 + |Xι|2) ≤ k2
ι (1 + |Xι|2) (9)

|p3(I, t)|2 = |φλ1E− rI|2

≤ 2φ2λ2‖E‖2
∞ + 2r2|I|2

≤ 2φ2λ2‖E‖2
∞

(
1 +

r2|I|2

2φ2λ2‖E‖2
∞

)
.

(10)

If
r2

φ2λ2
1‖E‖

2
∞

< 1

then
|p3(I, t)|2 ≤ k3(1 + |I|2) (11)

|p4(I, t)|2 ≤ 2(1− φ)2λ2
1‖E‖

2
∞ + 2r2|Ia|2. (12)

Thus, if
r2

2(1− φ)2λ2
1‖E‖

2
∞

< 1

then
|p4(I, t)|2 ≤ k4(1 + |Ia|2) (13)

k4 = 2(1− φ)2λ2
1‖E‖

2
∞

|p5(R, t)|2 ≤ 2r2
(
‖I‖2

∞ + ‖Ia‖2
∞

)
(1 + |R|2)

≤ k5(1 + |R|2)
(14)

|p6(X, t)|2 ≤ 3µ2 + 3β2
2

(
‖I‖2

∞ + ‖Ia‖2
∞

)
µ2|X|2

≤ 3µ2

(
1 +

β2
2(‖I‖2

∞ + ‖Ia‖2
∞)µ2|X|2

3µ2

)
.

(15)

If
β2

2(‖I‖2
∞ + ‖Ia‖2

∞)µ2

3µ2 < 1

then
|p6(X, t)|2 ≤ 3µ2(1 + |X|2) (16)

|p7(Y, t)|2 ≤ 2β2
2‖X‖

2
∞

(
2(‖I‖2

∞ + ‖Ia‖2
∞)
)
+ 2(λ2 + µ)2

≤ 2β2
2‖X‖

2
∞

(
2‖I‖2

∞ + ‖Ia‖2
∞

)1 +
(λ2 + µ)2

4β2
2‖X‖

2
∞

(
‖I‖2

∞ + ‖Ia‖2
∞

)
.

(17)

Thus, if
λ2 + µ

4β2
2‖X‖

2
∞

(
‖I‖2

∞ + ‖Ia‖2
∞

) < 1

then
|p7(Y, t)|2 ≤ k7(1 + |X|2). (18)
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Finally, we have

|p8(Z, t)|2 ≤ λ2
2‖Y‖

2
∞ + µ2|Z|2

≤ λ2
2‖Y‖

2
∞

(
1 +

µ2|Z|2

λ2
2‖Y‖

2
∞

)
.

(19)

If
µ2

λ2
2‖Y‖

2
∞

< 1

then
|p9(Z, t)|2 ≤ k8(1 + |Z|2). (20)

The solution for the system is unique if

min
{

λ2
1

2β2‖S‖2
∞‖Z‖

2
∞

, r2

2(1−φ)2λ2
1‖E‖

2
∞

, r2

φ2λ2
1‖E‖

2
∞

,

β2
2(‖I‖2

∞+‖Ia‖2
∞)

3 , λ2+µ

4β2
2‖X‖

2
∞(‖I‖2

∞+‖Ia‖2
∞)

}
< 1. (21)

This proof holds true for both the model with a fractional derivative and the model
without a fractional derivative.

Remark 1. SIR-type models describe infection prevalence (not incidence). In order to compare
weekly incidence data with our model output, new infections were tracked each day using the SEIR
model studied here. The ranges for the biological components of the dynamical model are provided
in the literature but the same can be calculated/implemented more accurately using fractional
orders of the components, e.g., the basic reproduction number (and type reproduction number) of
Chikungunya is more accurate using the fractional order system. In this context, our work is the
generalization of the work by Yakoob et al. [17].

5. Numerical Methods of the Model

In this section, we provide a numerical framework for the fractional model based on
the fractional derivatives of Caputo, CF, and Atangana-Baleanu [18]. We first take into
account the following non-linear fractional ODEs while implementing this scheme.

5.1. Numerical Method for Caputo Fractional Derivative

We focus on the following Cauchy problem{
C
0 D~

t m(t) = m(t, m(t)),
m(0) = m0

(22)

where the Caputo fractional derivative is the derivative. Now, our goal is to outline a
numerical plan for resolving the previous equation. First, we convert the aforementioned
equation into

m(t)−m(0) =
1

Γ(~)

∫ t

0
m(ø, m(ø))(t− ø)~−1dø. (23)

Here, tξ+1 = (ξ + 1)∆t,

m(tξ+1)−m(0) =
1

Γ(~)

∫ tξ+1

0
m(ø, m(ø))(tξ+1 − ø)~−1dø. (24)
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Furthermore, we have

m(tξ+1) = m(0) +
1

Γ(~)

ξ

∑
ε=2

∫ tε+1

tε

m(ø, m(ø))(tξ+1 − ø)~−1dø. (25)

When the Newton polynomial is substituted into the equation above, we have

mξ+1 −m0 =
1

Γ(~)

ξ

∑
ε=2

∫ tε+1

tε


+m(tε−1, mε−1)

+m(tε−1,mε−1)−m(tε−2,mε−1)
∆t (ø− tε−2)

+m(tε ,mε−2)−2m(tε−1,mε−1)+m(tε−2,mε−1)
2(∆t)2

×(ø− tε−2)(ø− tε−1)

(tξ+1 − ø)~−1dø. (26)

So the above equation becomes

mξ+1

= m0 +
1

Γ(~)

ξ

∑
ε=2


+
∫ tε+1

tε
m(tε−2, mε−1)(tξ+1 − ø)~−1dø

+
∫ tε+1

tε

m(tε−1,mε−1)−m(tε−2,mε−1)
∆t

∫ tε+1
tε

(ø− tε−2)(tξ+1 − ø)~−1dø

+
∫ tε+1

tε

m(tε ,mε−2)−2m(tε−1,mε−1)+m(tε−2,mε−1)
2(∆t)2

×(ø− tε−2)(ø− tε−1)(tξ+1 − ø)~−1dø

.
(27)

After rearranging the equation

mξ+1

= m0 +
1

Γ(~)

ξ

∑
ε=2

m(tε−2, mε−1)
∫ tε+1

tε

(tξ+1 − ø)~−1dø

+
1

Γ(~)

ξ

∑
ε=2

m(tε−1, mε−1)−m(tε−2, mε−1)

∆t

∫ tε+1

tε

(ø− tε−2)(tξ+1 − ø)~−1dø

+
1

Γ(~)

ξ

∑
ε=2

m(tε, mε−2)− 2m(tε−1, mε−1) + m(tε−2, mε−1)

2(∆t)2

×
∫ tε+1

tε

(ø− tε−2)(ø− tε−1)(tξ+1 − ø)~−1dø.

(28)

It follows,∫ tε+1

tε

(tξ+1 − ø)~−1dø =
(∆t)~

~
[(ξ − ε + 1)~ − (ξ − ε)~]∫ tε+1

tε

(ø− tε−2)(tξ+1 − ø)~−1dø =
(∆t)~+1

~(~+ 1)

[
(ξ − ε + 1)~(ξ − ε + 3 + 2~)
−(ξ − ε)~(ξ − ε + 3 + 3~)

]
∫ tε+1

tε

(ø− tε−2)(ø− tε−1)(tξ+1 − ø)~−1dø =
(∆t)~+2

~(~+ 1)(~+ 2)

×

 (ξ − ε + 1)~
[

2(ξ − ε)2 + (3 ~+10)(ξ − ε)
+2 ~2 +9 ~+12

]
−(ξ − ε)~

[
2(ξ − ε)2 + (5 ~+10)(ξ − ε)

6 ~2 +18 ~+12

]
.

(29)
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Substituting the value of Equation (29) in Equation (28) we get following

mξ+1 = m0 +
(∆t)ϑ

Γ(ϑ + 1)

ξ

∑
ε=2

m(tε−2, mε−1)[(ξ − ε + 1)ϑ − (ξ − ε)ϑ]

+
(∆t)ϑ

Γ(ϑ + 2)

ξ

∑
ε=2

m(tε−1, mε−1)−m(tε−2, mε−1)

×
[

(ξ − ε + 1)ϑ(ξ − ε + 3 + 2ϑ)
−(ξ − ε)ϑ(ξ − ε + 3 + 3ϑ)

]
+

(∆t)ϑ

2Γ(ϑ + 3)

ξ

∑
ε=2

m(tε, mε−2)− 2m(tε−1, mε−1) + m(tε−2, mε−1)

×

 (ξ − ε + 1)ϑ

[
2(ξ − ε)2 + (3ϑ + 10)(ξ − ε)

+2ϑ2 + 9ϑ + 12

]
−(ξ − ε)ϑ

[
2(ξ − ε)2 + (5ϑ + 10)(ξ − ε)

6ϑ2 + 18ϑ + 12

]
.

(30)

Hence, we can formulate Equation (5) using the Caputo derivative as

C
0 Dξ

t S(t) = −β1SZ,
C
0 Dξ

t E(t) = −β1SZ− λ1E,
C
0 Dξ

t I(t) = φλ1E− γI,
C
0 Dξ

t Ia(t) = (1− φ)λ1E− γIa,
C
0 Dξ

t R(t) = γ(I + Ia),
C
0 Dξ

t X(t) = µ− β2X(I + Ia)µX,
C
0 Dξ

t Y(t) = β2X(I + Ia)− λ2Y− µY,
C
0 Dξ

t Z(t) = λ2Y− µz.

(31)

They accompany the initial conditions as follows:

S(0) = S0, E(0) = E0, I(0) = I0, Ia(0) = Ia0 , R(0) = R0, X(0) = X0, Y(0) = Y0, Z(0) = Z0. (32)

For the sake of convenience, we write Equation (31) as follows:

C
0 Dξ

t S(t) = S1(t, S, E, I, Ia, R, X, Y, Z),
C
0 Dξ

t E(t) = E1(t, S, E, I, Ia, R, X, Y, Z),
C
0 Dξ

t I(t) = I1(t, S, E, I, Ia, R, X, Y, Z),
C
0 Dξ

t Ia(t) = Ia1(t, S, E, I, Ia, R, X, Y, Z),
C
0 Dξ

t R(t) = R1(t, S, E, I, Ia, R, X, Y, Z),
C
0 Dξ

t X(t) = X1(t, S, E, I, Ia, R, X, Y, Z),
C
0 Dξ

t Y(t) = Y1(t, S, E, I, Ia, R, X, Y, Z),
C
0 Dξ

t Z(t) = Z1(t, S, E, I, Ia, R, X, Y, Z).

(33)
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Here,

S1(t, S, E, I, Ia, R, X, Y, Z) = −β1SZ,

E1(t, S, E, I, Ia, R, X, Y, Z) = −β1SZ− λ1E,

I1(t, S, E, I, Ia, R, X, Y, Z) = φλ1E− γI,

Ia1(t, S, E, I, Ia, R, X, Y, Z) = (1− φ)λ1E− γIa,

R1(t, S, E, I, Ia, R, X, Y, Z) = γ(I + Ia),

X1(t, S, E, I, Ia, R, X, Y, Z) = µ− β2X(I + Ia)µX,

Y1(t, S, E, I, Ia, R, X, Y, Z) = β2X(I + Ia)− λ2Y− µY,

Z1(t, S, E, I, Ia, R, X, Y, Z) = λ2Y− µz.

(34)

We can apply the next method to this model,

Sξ+1 = S0 +
(∆t)~

Γ(~+ 1)

ξ

∑
ε=2

(
S1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2

a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)
)

× [(ξ − ε + 1)~ − (ξ − ε)~]

+
(∆t)~

Γ(~+ 2)

ξ

∑
ε=2

[(
tξ−1, Sξ−1, Eξ−1, Iξ−1, Iξ−1

a , Rξ−1, Xξ−1, Yξ−1, Zξ−1
)

−
(

S1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2
a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)

)]
×
[

(ξ − ε + 1)~(ξ − ε + 3 + 2~)
−(ξ − ε)~(ξ − ε + 3 + 3~)

]
+

(∆t)~

2Γ(~+ 3)

ξ

∑
ε=2

[(
S1(tξ , Sξ , Eξ , Iξ , Iξ

a , Rξ , Xξ , Yξ , Zξ)
)

−2
(

tξ−1, Sξ−1, Eξ−1, Iξ−1, Iξ−1
a , Rξ−1, Xξ−1, Yξ−1, Zξ−1

)
+
(

S1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2
a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)

)]

×

 (ξ − ε + 1)~
[

2(ξ − ε)2 + (3 ~+10)(ξ − ε)
+2 ~2 +9 ~+12

]
−(ξ − ε)~

[
2(ξ − ε)2 + (5 ~+10)(ξ − ε)

6 ~2 +18 ~+12

]
.

(35)

Eξ+1 = E0 +
(∆t)~

Γ(~+ 1)

ξ

∑
ε=2

(
E1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2

a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)
)

× [(ξ − ε + 1)~ − (ξ − ε)~]

+
(∆t)~

Γ(~+ 2)

ξ

∑
ε=2

[(
tξ−1, Sξ−1, Eξ−1, Iξ−1, Iξ−1

a , Rξ−1, Xξ−1, Yξ−1, Zξ−1
)

−
(

E1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2
a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)

)]
×
[

(ξ − ε + 1)~(ξ − ε + 3 + 2~)
−(ξ − ε)~(ξ − ε + 3 + 3~)

]
+

(∆t)~

2Γ(~+ 3)

ξ

∑
ε=2

[(
E1(tξ , Sξ , Eξ , Iξ , Iξ

a , Rξ , Xξ , Yξ , Zξ)
)

−2
(

tξ−1, Sξ−1, Eξ−1, Iξ−1, Iξ−1
a , Rξ−1, Xξ−1, Yξ−1, Zξ−1

)
+
(

E1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2
a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)

)]

×

 (ξ − ε + 1)~
[

2(ξ − ε)2 + (3 ~+10)(ξ − ε)
+2 ~2 +9 ~+12

]
−(ξ − ε)~

[
2(ξ − ε)2 + (5 ~+10)(ξ − ε)

6 ~2 +18 ~+12

]
.

(36)
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Iξ+1 = I0 +
(∆t)~

Γ(~+ 1)

ξ

∑
ε=2

(
I1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2

a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)
)

× [(ξ − ε + 1)~ − (ξ − ε)~]

+
(∆t)~

Γ(~+ 2)

ξ

∑
ε=2

[(
tξ−1, Sξ−1, Eξ−1, Iξ−1, Iξ−1

a , Rξ−1, Xξ−1, Yξ−1, Zξ−1
)

−
(

I1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2
a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)

)]
×
[

(ξ − ε + 1)~(ξ − ε + 3 + 2~)
−(ξ − ε)~(ξ − ε + 3 + 3~)

]
+

(∆t)~

2Γ(~+ 3)

ξ

∑
ε=2

[(
I1(tξ , Sξ , Eξ , Iξ , Iξ

a , Rξ , Xξ , Yξ , Zξ)
)

−2
(

tξ−1, Sξ−1, Eξ−1, Iξ−1, Iξ−1
a , Rξ−1, Xξ−1, Yξ−1, Zξ−1

)
+
(

I1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2
a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)

)]

×

 (ξ − ε + 1)~
[

2(ξ − ε)2 + (3 ~+10)(ξ − ε)
+2 ~2 +9 ~+12

]
−(ξ − ε)~

[
2(ξ − ε)2 + (5 ~+10)(ξ − ε)

6 ~2 +18 ~+12

]
.

(37)

Iξ+1
a = I0

a +
(∆t)~

Γ(~+ 1)

ξ

∑
ε=2

(
Ia1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2

a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)
)

× [(ξ − ε + 1)~ − (ξ − ε)~]

+
(∆t)~

Γ(~+ 2)

ξ

∑
ε=2

[(
tξ−1, Sξ−1, Eξ−1, Iξ−1, Iξ−1

a , Rξ−1, Xξ−1, Yξ−1, Zξ−1
)

−
(

Ia1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2
a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)

)]
×
[

(ξ − ε + 1)~(ξ − ε + 3 + 2~)
−(ξ − ε)~(ξ − ε + 3 + 3~)

]
+

(∆t)~

2Γ(~+ 3)

ξ

∑
ε=2

[(
Ia1(tξ , Sξ , Eξ , Iξ , Iξ

a , Rξ , Xξ , Yξ , Zξ)
)

−2
(

tξ−1, Sξ−1, Eξ−1, Iξ−1, Iξ−1
a , Rξ−1, Xξ−1, Yξ−1, Zξ−1

)
+
(

Ia1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2
a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)

)]

×

 (ξ − ε + 1)~
[

2(ξ − ε)2 + (3 ~+10)(ξ − ε)
+2 ~2 +9 ~+12

]
−(ξ − ε)~

[
2(ξ − ε)2 + (5 ~+10)(ξ − ε)

6 ~2 +18 ~+12

]
.

(38)
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Rξ+1 = R0 +
(∆t)~

Γ(~+ 1)

ξ

∑
ε=2

(
R1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2

a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)
)

× [(ξ − ε + 1)~ − (ξ − ε)~]

+
(∆t)~

Γ(~+ 2)

ξ

∑
ε=2

[(
tξ−1, Sξ−1, Eξ−1, Iξ−1, Iξ−1

a , Rξ−1, Xξ−1, Yξ−1, Zξ−1
)

−
(

R1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2
a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)

)]
×
[

(ξ − ε + 1)~(ξ − ε + 3 + 2~)
−(ξ − ε)~(ξ − ε + 3 + 3~)

]
+

(∆t)~

2Γ(~+ 3)

ξ

∑
ε=2

[(
R1(tξ , Sξ , Eξ , Iξ , Iξ

a , Rξ , Xξ , Yξ , Zξ)
)

−2
(

tξ−1, Sξ−1, Eξ−1, Iξ−1, Iξ−1
a , Rξ−1, Xξ−1, Yξ−1, Zξ−1

)
+
(

R1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2
a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)

)]

×

 (ξ − ε + 1)~
[

2(ξ − ε)2 + (3 ~+10)(ξ − ε)
+2 ~2 +9 ~+12

]
−(ξ − ε)~

[
2(ξ − ε)2 + (5 ~+10)(ξ − ε)

6 ~2 +18 ~+12

]
.

(39)

Xξ+1 = X0 +
(∆t)~

Γ(~+ 1)

ξ

∑
ε=2

(
X1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2

a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)
)

× [(ξ − ε + 1)~ − (ξ − ε)~]

+
(∆t)~

Γ(~+ 2)

ξ

∑
ε=2

[(
tξ−1, Sξ−1, Eξ−1, Iξ−1, Iξ−1

a , Rξ−1, Xξ−1, Yξ−1, Zξ−1
)

−
(

X1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2
a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)

)]
×
[

(ξ − ε + 1)~(ξ − ε + 3 + 2~)
−(ξ − ε)~(ξ − ε + 3 + 3~)

]
+

(∆t)~

2Γ(~+ 3)

ξ

∑
ε=2

[(
X1(tξ , Sξ , Eξ , Iξ , Iξ

a , Rξ , Xξ , Yξ , Zξ)
)

−2
(

tξ−1, Sξ−1, Eξ−1, Iξ−1, Iξ−1
a , Rξ−1, Xξ−1, Yξ−1, Zξ−1

)
+
(

X1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2
a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)

)]

×

 (ξ − ε + 1)~
[

2(ξ − ε)2 + (3 ~+10)(ξ − ε)
+2 ~2 +9 ~+12

]
−(ξ − ε)~

[
2(ξ − ε)2 + (5 ~+10)(ξ − ε)

6 ~2 +18 ~+12

]
.

(40)
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Yξ+1 = Y0 +
(∆t)~

Γ(~+ 1)

ξ

∑
ε=2

(
Y1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2

a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)
)

(ξ − ε + 1)~ − (ξ − ε)~]

+
(∆t)~

Γ(~+ 2)

ξ

∑
ε=2

[(
tξ−1, Sξ−1, Eξ−1, Iξ−1, Iξ−1

a , Rξ−1, Xξ−1, Yξ−1, Zξ−1
)

−
(

Y1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2
a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)

)]
×
[

(ξ − ε + 1)~(ξ − ε + 3 + 2~)
−(ξ − ε)~(ξ − ε + 3 + 3~)

]
+

(∆t)~

2Γ(~+ 3)

ξ

∑
ε=2

[(
Y1(tξ , Sξ , Eξ , Iξ , Iξ

a , Rξ , Xξ , Yξ , Zξ)
)

−2
(

tξ−1, Sξ−1, Eξ−1, Iξ−1, Iξ−1
a , Rξ−1, Xξ−1, Yξ−1, Zξ−1

)
+
(

Y1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2
a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)

)]

×

 (ξ − ε + 1)~
[

2(ξ − ε)2 + (3 ~+10)(ξ − ε)
+2 ~2 +9 ~+12

]
−(ξ − ε)~

[
2(ξ − ε)2 + (5 ~+10)(ξ − ε)

6 ~2 +18 ~+12

]
.

(41)

Zξ+1 = Z0 +
(∆t)~

Γ(~+ 1)

ξ

∑
ε=2

(
Z1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2

a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)
)

× [(ξ − ε + 1)~ − (ξ − ε)~]

+
(∆t)~

Γ(~+ 2)

ξ

∑
ε=2

[(
tξ−1, Sξ−1, Eξ−1, Iξ−1, Iξ−1

a , Rξ−1, Xξ−1, Yξ−1, Zξ−1
)

−
(

Z1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2
a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)

)]
×
[

(ξ − ε + 1)~(ξ − ε + 3 + 2~)
−(ξ − ε)~(ξ − ε + 3 + 3~)

]
+

(∆t)~

2Γ(~+ 3)

ξ

∑
ε=2

[(
Z1(tξ , Sξ , Eξ , Iξ , Iξ

a , Rξ , Xξ , Yξ , Zξ)
)

−2
(

tξ−1, Sξ−1, Eξ−1, Iξ−1, Iξ−1
a , Rξ−1, Xξ−1, Yξ−1, Zξ−1

)
+
(

Z1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2
a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)

)]

×

 (ξ − ε + 1)~
[

2(ξ − ε)2 + (3 ~+10)(ξ − ε)
+2 ~2 +9 ~+12

]
−(ξ − ε)~

[
2(ξ − ε)2 + (5 ~+10)(ξ − ε)

6 ~2 +18 ~+12

]
.

(42)

5.2. CF Fractional Derivative

These are the issues we address in this section: The Cauchy problem with the fractional
derivative of CF: {

CF
0 D~

t m(t) = m(t, m(t)),
m(0) = m0

(43)

where m is a non-linear function. We may rewrite the aforementioned problem as follows
to offer a numerical method for solving our equation:

m(t)−m(0) =
1−~
M(~)

m(t, m(t)) +
~

M(~)

∫ t

0
m(ø, m(ø))dø. (44)
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Here, tξ+1 = (n + 1)∆t,

m(tξ+1)−m(0) =
1−~
M(~)

m(tξ , m(tξ)) +
~

M(~)

∫ tξ+1

0
m(ø, m(ø))dø (45)

and tξ = n∆t,

m(tn)−m(0) =
1−~
M(~)

m(tξ−1, m(tξ−1)) +
~

M(~)

∫ tn

0
m(ø, m(ø))dø. (46)

So,

m(tξ+1)−m(tξ) =
1−~
M(~)

[m(tξ , m(tξ))−m(tξ−1, m(tξ−1))]

+
~

M(α)

∫ tξ+1

tξ

m(ø, m(ø))dø
(47)

and

m(tξ+1)−m(tξ) =
1−~
M(~)

[m(tξ , m(tξ))−m(tξ−1, m(tξ−1))]

+
~

M(~)

ξ

∑
ε=2

∫ tε+1

tε

m(ø, m(ø))dø.
(48)

The approximate representation of the function m(t, m(t)) can be written as follows using
the Newton polynomial:

Pξ(ø) = m(tξ−2, m(tξ−2)) +
m(tξ−1, m(tξ−1))−m(tξ−2, m(tξ−2))

∆(t)
(ø− tξ−2)

m(tξ , m(tξ))− 2m(tξ−1, m(tξ−1)) + m(tξ−2, m(tξ−2))

2(∆t)2

× (ø− tξ−2)(ø− tξ−1).

(49)

In order to solve Equation (48) using the polynomial (49), we write the following:

mξ+1 −mξ =
1−~
M(~)

[m(tξ , m(tξ))−m(tξ−1, m(tξ−1))]

+
~

M(~)

ξ

∑
ε=2

∫ tε+1

tε


+m(tε−2, mε−1)

+m(tε−1,mε−1)−m(tε−2,mε−1)
∆t (ø− tε−2)

+m(tε ,mε−2)−2m(tε−1,mε−1)+m(tε−2,mε−1)
2(∆t)2

×(ø− tε−2)(ø− tε−1)

dø
(50)

and reorder as follows

mξ+1 −mξ =
1−~
M(~)

[m(tξ , m(tξ))−m(tξ−1, m(tξ−1))]

+
~

M(~)

ξ

∑
ε=2


+m(tε−2, mε−1)

+m(tε−1,mε−1)−m(tε−2,mε−1)
∆t

∫ tε+1
tε

(ø− tε−2)dø

+m(tε ,mε−2)−2m(tε−1,mε−1)+m(tε−2,mε−1)
2(∆t)2

×
∫ tε+1

tε
(ø− tε−2)(ø− tε−1)dø

.
(51)

We have the following calculations for the above integrals:∫ tε+1

tε

(ø− tε−2)dø =
5
2
(∆t)2 (52)
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∫ tε+1

tε

(ø− tε−2)(ø− tε−1)dø =
23
6
(∆t)3. (53)

If we substitute them out in the previous scheme, we obtain the next scheme:

mξ+1 = mξ +
1−~
M(~)

[m(tξ , m(tξ))−m(tξ−1, m(tξ−1))]

+
~

M(~)

ξ

∑
ε=2

{
+m(tε−2, mε−1)∆t + [m(tε−1, mε−1)−m(tε−2, mε−1)] 5

2 ∆t
+[m(tε, mε−2)− 2m(tε−1, mε−1) + m(tε−2, mε−1) 23

6 ∆t

}
.

(54)

After rearranging,

mξ+1 = mξ +
1−~
M(~)

[m(tξ , m(tξ))−m(tξ−1, m(tξ−1))]

+
~

M(~)

ξ

∑
ε=2

{
−4

3
m(tε−1, mε−1)∆t +

5
12

m(tε−2, mε−1)∆t +
23
12

m(tε, mε)∆t
}

.
(55)

For the sake of convenience, we write the fractional derivative of the CF Equation (5) as
follows:

CF
0 Dξ

t S(t) = S1(t, S, E, I, Ia, R, X, Y, Z),
CF
0 Dξ

t E(t) = E1(t, S, E, I, Ia, R, X, Y, Z),
CF
0 Dξ

t I(t) = I1(t, S, E, I, Ia, R, X, Y, Z),
CF
0 Dξ

t Ia(t) = Ia1(t, S, E, I, Ia, R, X, Y, Z),
CF
0 Dξ

t R(t) = R1(t, S, E, I, Ia, R, X, Y, Z),
CF
0 Dξ

t X(t) = X1(t, S, E, I, Ia, R, X, Y, Z),
CF
0 Dξ

t Y(t) = Y1(t, S, E, I, Ia, R, X, Y, Z),
CF
0 Dξ

t Z(t) = Z1(t, S, E, I, Ia, R, X, Y, Z).

(56)

The following results are obtained using the Caputo-Fabrizio fractional derivative.
For this model, we use the following solution:

S(tξ+1) = S(tξ) +
1−~
M(~)

[
S1(tξ , S(tξ), E(tξ), I(tξ), Ia(tξ), R(tξ), X(tξ), Y(tξ), Z(tξ))

−S1(tξ−1, (S(tξ−1), E(tξ−1), I(tξ−1), Ia(tξ−1), R(tξ−1), X(tξ−1), Y(tξ−1), Z(tξ−1)))
]
+

~
M(~)

×
ξ

∑
ε=2

{
−4

3
S1(tξ−1, (S(tξ−1), E(tξ−1), I(tξ−1), Ia(tξ−1), R(tξ−1), X(tξ−1), Y(tξ−1), Z(tξ−1)))∆t

+
5
12

S1(tξ−2, (S(tξ−2), E(tξ−2), I(tξ−2), Ia(tξ−2), R(tξ−2), X(tξ−2), Y(tξ−2), Z(tξ−2)))∆t

+
23
12

S1(tξ , (S(tξ), E(tξ), I(tξ), Ia(tξ), R(tξ), X(tξ), Y(tξ), Z(tξ)))∆t
}

(57)
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E(tξ+1) = E(tξ) +
1−~
M(~)

[
E1(tξ , S(tξ), E(tξ), I(tξ), Ia(tξ), R(tξ), X(tξ), Y(tξ), Z(tξ))

−E1(tξ−1, (S(tξ−1), E(tξ−1), I(tξ−1), Ia(tξ−1), R(tξ−1), X(tξ−1), Y(tξ−1), Z(tξ−1)))
]
+

~
M(~)

×
ξ

∑
ε=2

{
−4

3
E1(tξ−1, (S(tξ−1), E(tξ−1), I(tξ−1), Ia(tξ−1), R(tξ−1), X(tξ−1), Y(tξ−1), Z(tξ−1)))∆t

+
5
12

E1(tξ−2, (S(tξ−2), E(tξ−2), I(tξ−2), Ia(tξ−2), R(tξ−2), X(tξ−2), Y(tξ−2), Z(tξ−2)))∆t

+
23
12

E1(tξ , (S(tξ), E(tξ), I(tξ), Ia(tξ), R(tξ), X(tξ), Y(tξ), Z(tξ)))∆t
}

(58)

I(tξ+1) = I(tξ) +
1−~
M(~)

[
I1(tξ , S(tξ), E(tξ), I(tξ), Ia(tξ), R(tξ), X(tξ), Y(tξ), Z(tξ))

−I1(tξ−1, (S(tξ−1), E(tξ−1), I(tξ−1), Ia(tξ−1), R(tξ−1), X(tξ−1), Y(tξ−1), Z(tξ−1)))
]
+

~
M(~)

×
ξ

∑
ε=2

{
−4

3
I1(tξ−1, (S(tξ−1), E(tξ−1), I(tξ−1), Ia(tξ−1), R(tξ−1), X(tξ−1), Y(tξ−1), Z(tξ−1)))∆t

+
5

12
I1(tξ−2, (S(tξ−2), E(tξ−2), I(tξ−2), Ia(tξ−2), R(tξ−2), X(tξ−2), Y(tξ−2), Z(tξ−2)))∆t

+
23
12

I1(tξ , (S(tξ), E(tξ), I(tξ), Ia(tξ), R(tξ), X(tξ), Y(tξ), Z(tξ)))∆t
}

(59)

Ia(tξ+1) = Ia(tξ) +
1−~
M(~)

[
Ia1(tξ , S(tξ), E(tξ), I(tξ), Ia(tξ), R(tξ), X(tξ), Y(tξ), Z(tξ))

−Ia1(tξ−1, (S(tξ−1), E(tξ−1), I(tξ−1), Ia(tξ−1), R(tξ−1), X(tξ−1), Y(tξ−1), Z(tξ−1)))
]
+

~
M(~)

×
ξ

∑
ε=2

{
−4

3
Ia1(tξ−1, (S(tξ−1), E(tξ−1), I(tξ−1), Ia(tξ−1), R(tξ−1), X(tξ−1), Y(tξ−1), Z(tξ−1)))∆t

+
5

12
Ia1(tξ−2, (S(tξ−2), E(tξ−2), I(tξ−2), Ia(tξ−2), R(tξ−2), X(tξ−2), Y(tξ−2), Z(tξ−2)))∆t

+
23
12

Ia1(tξ , (S(tξ), E(tξ), I(tξ), Ia(tξ), R(tξ), X(tξ), Y(tξ), Z(tξ)))∆t
}

(60)

R(tξ+1) = R(tξ) +
1−~
M(~)

[
R1(tξ , S(tξ), E(tξ), I(tξ), Ia(tξ), R(tξ), X(tξ), Y(tξ), Z(tξ))

−R1(tξ−1, (S(tξ−1), E(tξ−1), I(tξ−1), Ia(tξ−1), R(tξ−1), X(tξ−1), Y(tξ−1), Z(tξ−1)))
]
+

~
M(~)

×
ξ

∑
ε=2

{
−4

3
R1(tξ−1, (S(tξ−1), E(tξ−1), I(tξ−1), Ia(tξ−1), R(tξ−1), X(tξ−1), Y(tξ−1), Z(tξ−1)))∆t

+
5

12
R1(tξ−2, (S(tξ−2), E(tξ−2), I(tξ−2), Ia(tξ−2), R(tξ−2), X(tξ−2), Y(tξ−2), Z(tξ−2)))∆t

+
23
12

R1(tξ , (S(tξ), E(tξ), I(tξ), Ia(tξ), R(tξ), X(tξ), Y(tξ), Z(tξ)))∆t
}

(61)
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X(tξ+1) = X(tξ) +
1−~
M(~)

[
X1(tξ , S(tξ), E(tξ), I(tξ), Ia(tξ), R(tξ), X(tξ), Y(tξ), Z(tξ))

−X1(tξ−1, (S(tξ−1), E(tξ−1), I(tξ−1), Ia(tξ−1), R(tξ−1), X(tξ−1), Y(tξ−1), Z(tξ−1)))
]
+

~
M(~)

×
ξ

∑
ε=2

{
−4

3
X1(tξ−1, (S(tξ−1), E(tξ−1), I(tξ−1), Ia(tξ−1), R(tξ−1), X(tξ−1), Y(tξ−1), Z(tξ−1)))∆t

+
5

12
X1(tξ−2, (S(tξ−2), E(tξ−2), I(tξ−2), Ia(tξ−2), R(tξ−2), X(tξ−2), Y(tξ−2), Z(tξ−2)))∆t

+
23
12

X1(tξ , (S(tξ), E(tξ), I(tξ), Ia(tξ), R(tξ), X(tξ), Y(tξ), Z(tξ)))∆t
}

(62)

Y(tξ+1) = Y(tξ) +
1−~
M(~)

[
Y1(tξ , S(tξ), E(tξ), I(tξ), Ia(tξ), R(tξ), X(tξ), Y(tξ), Z(tξ))

−Y1(tξ−1, (S(tξ−1), E(tξ−1), I(tξ−1), Ia(tξ−1), R(tξ−1), X(tξ−1), Y(tξ−1), Z(tξ−1)))
]
+

~
M(~)

×
ξ

∑
ε=2

{
−4

3
Y1(tξ−1, (S(tξ−1), E(tξ−1), I(tξ−1), Ia(tξ−1), R(tξ−1), X(tξ−1), Y(tξ−1), Z(tξ−1)))∆t

+
5

12
Y1(tξ−2, (S(tξ−2), E(tξ−2), I(tξ−2), Ia(tξ−2), R(tξ−2), X(tξ−2), Y(tξ−2), Z(tξ−2)))∆t

+
23
12

Y1(tξ , (S(tξ), E(tξ), I(tξ), Ia(tξ), R(tξ), X(tξ), Y(tξ), Z(tξ)))∆t
}

(63)

Z(tξ+1) = Z(tξ) +
1−~
M(~)

[
Z1(tξ , S(tξ), E(tξ), I(tξ), Ia(tξ), R(tξ), X(tξ), Y(tξ), Z(tξ))

−Z1(tξ−1, (S(tξ−1), E(tξ−1), I(tξ−1), Ia(tξ−1), R(tξ−1), X(tξ−1), Y(tξ−1), Z(tξ−1)))
]
+

~
M(~)

×
ξ

∑
ε=2

{
−4

3
Z1(tξ−1, (S(tξ−1), E(tξ−1), I(tξ−1), Ia(tξ−1), R(tξ−1), X(tξ−1), Y(tξ−1), Z(tξ−1)))∆t

+
5
12

Z1(tξ−2, (S(tξ−2), E(tξ−2), I(tξ−2), Ia(tξ−2), R(tξ−2), X(tξ−2), Y(tξ−2), Z(tξ−2)))∆t

+
23
12

Z1(tξ , (S(tξ), E(tξ), I(tξ), Ia(tξ), R(tξ), X(tξ), Y(tξ), Z(tξ)))∆t
}

.

(64)

5.3. Numerical Method for Atangana-Baleanu Fractional Derivative

We now address the following.The Cauchy problem with the fractional derivative of
Atangana-Baleanu (AB) is as follows:{

ABC
0 D~

t m(t) = m(t, m(t)),
m(0) = m0.

(65)

We offer a numerical method to solve this equation in this section. Using the AB integral,
we change the equation above into

m(t)−m(0) =
1−~
AB(~)

m(t, m(t)) +
~

AB(~)Γ(~)

∫ t

0
m(ø, m(ø))(t− ø)~−1dø. (66)

Here tξ+1 = (n + 1)∆t,

m(tξ+1)−m(0) =
1−~
AB(~)

m(tξ , m(tξ)) +
~

AB(~)Γ(~)

∫ tξ+1

0
m(ø, m(ø))(tξ+1 − ø)~−1dø. (67)
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At tξ = n∆t,

m(tξ+1)−m(0) =
1−~
AB(~)

m(tξ , m(tξ)) +
~

AB(~)Γ(~)

ξ

∑
ε=2

∫ tε+1

ε
m(ø, m(ø))dø. (68)

Here we employ the Newton polynomial, which is provided to approximate the function
m(t, m(t)),

Pξ(ø) = m(tξ−2, m(tξ−2)) +
m(tξ−1, m(tξ−1))−m(tξ−2, m(tξ−2))

∆(t)
(ø− tξ−2)

m(tξ , m(tξ))− 2m(tξ−1, m(tξ−1)) + m(tξ−2, m(tξ−2))

2(∆t)2

× (ø− tξ−2)(ø− tξ−1).

(69)

The following results are obtained if we write this polynomial in (68),

mξ+1 = m0 +
1−~
AB(~)

m(tξ , m(tξ))

+
~

AB(~)Γ(~)

ξ

∑
ε=2

∫ tε+1

tε


+m(tε−2, mε−1)

+m(tε−1,mε−1)−m(tε−2,mε−1)
∆t (ø− tε−2)

+m(tε ,mε−2)−2m(tε−1,mε−1)+m(tε−2,mε−1)
2(∆t)2

×(ø− tε−2)(ø− tε−1)

(tξ+1 − ø)~−1dø,
(70)

and we can reorganize,

mξ+1 = m0 +
1−~
AB(~)

m(tξ , m(tξ))

+
~

AB(~)Γ(~)

ξ

∑
ε=2


+
∫ tε+1

tε
m(tε−2, mε−1)(tξ+1 − ø)~−1dø

+
∫ tε+1

tε

m(tε−1,mε−1)−m(tε−2,mε−1)
∆t (ø− tε−2)(tξ+1 − ø)~−1dø

+
∫ tε+1

tε

m(tε ,mε−2)−2m(tε−1,mε−1)+m(tε−2,mε−1)
2(∆t)2

×(ø− tε−2)(ø− tε−1)(tξ+1 − ø)~−1dø

.
(71)

Thus, we have

mξ+1 = m0 +
1−~
AB(~)

m(tξ , m(tξ))

+
~

AB(~)Γ(~)

ξ

∑
ε=2

m(tε−2, mε−1)∆t
∫ tε+1

tε

(tξ+1 − ø)~−1dø

+
~

AB(~)Γ(~)

ξ

∑
ε=2

m(tε−1, mε−1)−m(tε−2, mε−1)

∆t

×
∫ tε+1

tε

(ø− tε−2)(ø− tε−1)(tξ+1 − ø)~−1dø

+
~

AB(~)Γ(~)

ξ

∑
ε=2

m(tε, mε−2)− 2m(tε−1, mε−1) + m(tε−2, mε−1)

2(∆t)2

×
∫ tε+1

tε

(ø− tε−2)(ø− tε−1)(tξ+1 − ø)~−1dø.

(72)
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The above integral becomes

∫ tε+1

tε

(tξ+1 − ø)~−1dø =
(∆t)~

~
[(ξ − ε + 1)~ − (ξ − ε)~]∫ tε+1

tε

(ø− tε−2)(tξ+1 − ø)~−1dø =
(∆t)~+1

~(~+ 1)

[
(ξ − ε + 1)~(ξ − ε + 3 + 2~)
−(ξ − ε)~(ξ − ε + 3 + 3~)

]
∫ tε+1

tε

(ø− tε−2)(ø− tε−1)(tξ+1 − ø)~−1dø =
(∆t)~+2

~(~+ 1)(~+ 2)

×

 (ξ − ε + 1)~
[

2(ξ − ε)2 + (3 ~+10)(ξ − ε)
+2 ~2 +9 ~+12

]
−(ξ − ε)~

[
2(ξ − ε)2 + (5 ~+10)(ξ − ε)

6 ~2 +18 ~+12

]
.

(73)

By including these equalities into the previous scheme, we can produce the subsequent system

mξ+1 = m0 +
1−~
AB(~)

m(tξ , m(tξ))

+
~(∆t)~

AB(~)Γ(~+ 1)

ξ

∑
ε=2

m(tε−2, mε−1)[(ξ − ε + 1)~ − (ξ − ε)~]

+
~(∆t)~

AB(~)Γ(~+ 2)

ξ

∑
ε=2

m(tε−1, mε−1)−m(tε−2, mε−1)

×
[

(ξ − ε + 1)~(ξ − ε + 3 + 2~)
−(ξ − ε)~(ξ − ε + 3 + 3~)

]
+

~(∆t)~

AB(~)Γ(~+ 3)

ξ

∑
ε=2

m(tε, mε−2)− 2m(tε−1, mε−1) + m(tε−2, mε−1)

×

 (ξ − ε + 1)~
[

2(ξ − ε)2 + (3 ~+10)(ξ − ε)
+2 ~2 +9 ~+12

]
−(ξ − ε)~

[
2(ξ − ε)2 + (5 ~+10)(ξ − ε)

6 ~2 +18 ~+12

]
.

(74)

For Equation (5), we perform the same procedure for the AB fractional derivative as

ABC
0 Dξ

t S(t) = S1(t, S, E, I, Ia, R, X, Y, Z),
ABC
0 Dξ

t E(t) = E1(t, S, E, I, Ia, R, X, Y, Z),
ABC
0 Dξ

t I(t) = I1(t, S, E, I, Ia, R, X, Y, Z),
ABC
0 Dξ

t Ia(t) = Ia1(t, S, E, I, Ia, R, X, Y, Z),
ABC
0 Dξ

t R(t) = R1(t, S, E, I, Ia, R, X, Y, Z),
ABC
0 Dξ

t X(t) = X1(t, S, E, I, Ia, R, X, Y, Z),
ABC
0 Dξ

t Y(t) = Y1(t, S, E, I, Ia, R, X, Y, Z),
ABC
0 Dξ

t Z(t) = Z1(t, S, E, I, Ia, R, X, Y, Z).

(75)

Thus, we may offer the following strategy for numerically solving the aforementioned
equation as
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Sξ+1 = S0 +
1−~
AB(~)

(
S1(tξ , Sξ , Eξ , Iξ , Iξ

a , Rξ , Xξ , Yξ , Zξ)
)

+
~(∆t)~

AB(~)Γ(~+ 1)

ξ

∑
ε=2

(
S1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2

a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)
)

[(ξ − ε + 1)~ − (ξ − ε)~] +
~(∆t)~

AB(~)Γ(~+ 2)

ξ

∑
ε=2

(
tξ−1, Sξ−1, Eξ−1, Iξ−1, Iξ−1

a , Rξ−1, Xξ−1, Yξ−1, Zξ−1
)

−
(

S1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2
a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)

)
[

(ξ − ε + 1)~(ξ − ε + 3 + 2~)
−(ξ − ε)~(ξ − ε + 3 + 3~)

]
+

~(∆t)~

AB(~)Γ(~+ 3)

ξ

∑
ε=2

[(
S1(tξ , Sξ , Eξ , Iξ , Iξ

a , Rξ , Xξ , Yξ , Zξ)
)

−2
(

tξ−1, Sξ−1, Eξ−1, Iξ−1, Iξ−1
a , Rξ−1, Xξ−1, Yξ−1, Zξ−1

)
+
(

S1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2
a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)

)]

×

 (ξ − ε + 1)~
[

2(ξ − ε)2 + (3 ~+10)(ξ − ε)
+2 ~2 +9 ~+12

]
−(ξ − ε)~

[
2(ξ − ε)2 + (5 ~+10)(ξ − ε)

6 ~2 +18 ~+12

]
.

(76)

Eξ+1 = E0 +
1−~
AB(~)

(
E1(tξ , Sξ , Eξ , Iξ , Iξ

a , Rξ , Xξ , Yξ , Zξ)
)

+
~(∆t)~

AB(~)Γ(~+ 1)

ξ

∑
ε=2

(
E1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2

a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)
)

[(ξ − ε + 1)~ − (ξ − ε)~] +
~(∆t)~

AB(~)Γ(~+ 2)

ξ

∑
ε=2

(
tξ−1, Sξ−1, Eξ−1, Iξ−1, Iξ−1

a , Rξ−1, Xξ−1, Yξ−1, Zξ−1
)

−
(

E1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2
a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)

)
[

(ξ − ε + 1)~(ξ − ε + 3 + 2~)
−(ξ − ε)~(ξ − ε + 3 + 3~)

]
+

~(∆t)~

AB(~)Γ(~+ 3)

ξ

∑
ε=2

[(
E1(tξ , Sξ , Eξ , Iξ , Iξ

a , Rξ , Xξ , Yξ , Zξ)
)

−2
(

tξ−1, Sξ−1, Eξ−1, Iξ−1, Iξ−1
a , Rξ−1, Xξ−1, Yξ−1, Zξ−1

)
+
(

E1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2
a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)

)]

×

 (ξ − ε + 1)~
[

2(ξ − ε)2 + (3 ~+10)(ξ − ε)
+2 ~2 +9 ~+12

]
−(ξ − ε)~

[
2(ξ − ε)2 + (5 ~+10)(ξ − ε)

6 ~2 +18 ~+12

]
.

(77)
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Iξ+1 = S0 +
1−~
AB(~)

(
I1(tξ , Sξ , Eξ , Iξ , Iξ

a , Rξ , Xξ , Yξ , Zξ)
)

+
~(∆t)~

AB(~)Γ(~+ 1)

ξ

∑
ε=2

(
I1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2

a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)
)

[(ξ − ε + 1)~ − (ξ − ε)~] +
~(∆t)~

AB(~)Γ(~+ 2)

ξ

∑
ε=2

(
tξ−1, Sξ−1, Eξ−1, Iξ−1, Iξ−1

a , Rξ−1, Xξ−1, Yξ−1, Zξ−1
)

−
(

I1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2
a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)

)
[

(ξ − ε + 1)~(ξ − ε + 3 + 2~)
−(ξ − ε)~(ξ − ε + 3 + 3~)

]
+

~(∆t)~

AB(~)Γ(~+ 3)

ξ

∑
ε=2

[(
I1(tξ , Sξ , Eξ , Iξ , Iξ

a , Rξ , Xξ , Yξ , Zξ)
)

−2
(

tξ−1, Sξ−1, Eξ−1, Iξ−1, Iξ−1
a , Rξ−1, Xξ−1, Yξ−1, Zξ−1

)
+
(

I1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2
a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)

)]

×

 (ξ − ε + 1)~
[

2(ξ − ε)2 + (3 ~+10)(ξ − ε)
+2 ~2 +9 ~+12

]
−(ξ − ε)~

[
2(ξ − ε)2 + (5 ~+10)(ξ − ε)

6 ~2 +18 ~+12

]
.

(78)

Iξ+1
a = I0

a +
1−~
AB(~)

(
Ia1(tξ , Sξ , Eξ , Iξ , Iξ

a , Rξ , Xξ , Yξ , Zξ)
)

+
~(∆t)~

AB(~)Γ(~+ 1)

ξ

∑
ε=2

(
Ia1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2

a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)
)

[(ξ − ε + 1)~ − (ξ − ε)~] +
~(∆t)~

AB(~)Γ(~+ 2)

ξ

∑
ε=2

(
tξ−1, Sξ−1, Eξ−1, Iξ−1, Iξ−1

a , Rξ−1, Xξ−1, Yξ−1, Zξ−1
)

−
(

Ia1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2
a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)

)
[

(ξ − ε + 1)~(ξ − ε + 3 + 2~)
−(ξ − ε)~(ξ − ε + 3 + 3~)

]
+

~(∆t)~

AB(~)Γ(~+ 3)

ξ

∑
ε=2

[(
Ia1(tξ , Sξ , Eξ , Iξ , Iξ

a , Rξ , Xξ , Yξ , Zξ)
)

−2
(

tξ−1, Sξ−1, Eξ−1, Iξ−1, Iξ−1
a , Rξ−1, Xξ−1, Yξ−1, Zξ−1

)
+
(

Ia1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2
a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)

)]

×

 (ξ − ε + 1)~
[

2(ξ − ε)2 + (3 ~+10)(ξ − ε)
+2 ~2 +9 ~+12

]
−(ξ − ε)~

[
2(ξ − ε)2 + (5 ~+10)(ξ − ε)

6 ~2 +18 ~+12

]
.

(79)
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Rξ+1 = R0 +
1−~
AB(~)

(
R1(tξ , Sξ , Eξ , Iξ , Iξ

a , Rξ , Xξ , Yξ , Zξ)
)

+
~(∆t)~

AB(~)Γ(~+ 1)

ξ

∑
ε=2

(
R1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2

a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)
)

[(ξ − ε + 1)~ − (ξ − ε)~] +
~(∆t)~

AB(~)Γ(~+ 2)

ξ

∑
ε=2

(
tξ−1, Sξ−1, Eξ−1, Iξ−1, Iξ−1

a , Rξ−1, Xξ−1, Yξ−1, Zξ−1
)

−
(

R1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2
a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)

)
[

(ξ − ε + 1)~(ξ − ε + 3 + 2~)
−(ξ − ε)~(ξ − ε + 3 + 3~)

]
+

~(∆t)~

AB(~)Γ(~+ 3)

ξ

∑
ε=2

[(
R1(tξ , Sξ , Eξ , Iξ , Iξ

a , Rξ , Xξ , Yξ , Zξ)
)

−2
(

tξ−1, Sξ−1, Eξ−1, Iξ−1, Iξ−1
a , Rξ−1, Xξ−1, Yξ−1, Zξ−1

)
+
(

R1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2
a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)

)]

×

 (ξ − ε + 1)~
[

2(ξ − ε)2 + (3 ~+10)(ξ − ε)
+2 ~2 +9 ~+12

]
−(ξ − ε)~

[
2(ξ − ε)2 + (5 ~+10)(ξ − ε)

6 ~2 +18 ~+12

]
.

(80)

Xξ+1 = X0 +
1−~
AB(~)

(
X1(tξ , Sξ , Eξ , Iξ , Iξ

a , Rξ , Xξ , Yξ , Zξ)
)

+
~(∆t)~

AB(~)Γ(~+ 1)

ξ

∑
ε=2

(
X1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2

a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)
)

[(ξ − ε + 1)~ − (ξ − ε)~] +
~(∆t)~

AB(~)Γ(~+ 2)

ξ

∑
ε=2

(
tξ−1, Sξ−1, Eξ−1, Iξ−1, Iξ−1

a , Rξ−1, Xξ−1, Yξ−1, Zξ−1
)

−
(

X1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2
a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)

)
[

(ξ − ε + 1)~(ξ − ε + 3 + 2~)
−(ξ − ε)~(ξ − ε + 3 + 3~)

]
+

~(∆t)~

AB(~)Γ(~+ 3)

ξ

∑
ε=2

[(
X1(tξ , Sξ , Eξ , Iξ , Iξ

a , Rξ , Xξ , Yξ , Zξ)
)

−2
(

tξ−1, Sξ−1, Eξ−1, Iξ−1, Iξ−1
a , Rξ−1, Xξ−1, Yξ−1, Zξ−1

)
+
(

X1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2
a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)

)]

×

 (ξ − ε + 1)~
[

2(ξ − ε)2 + (3 ~+10)(ξ − ε)
+2 ~2 +9 ~+12

]
−(ξ − ε)~

[
2(ξ − ε)2 + (5 ~+10)(ξ − ε)

6 ~2 +18 ~+12

]
.

(81)
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Yξ+1 = Y0 +
1−~
AB(~)

(
Y1(tξ , Sξ , Eξ , Iξ , Iξ

a , Rξ , Xξ , Yξ , Zξ)
)

+
~(∆t)~

AB(~)Γ(~+ 1)

ξ

∑
ε=2

(
Y1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2

a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)
)

[(ξ − ε + 1)~ − (ξ − ε)~] +
~(∆t)~

AB(~)Γ(~+ 2)

ξ

∑
ε=2

(
tξ−1, Sξ−1, Eξ−1, Iξ−1, Iξ−1

a , Rξ−1, Xξ−1, Yξ−1, Zξ−1
)

−
(

Y1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2
a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)

)
[

(ξ − ε + 1)~(ξ − ε + 3 + 2~)
−(ξ − ε)~(ξ − ε + 3 + 3~)

]
+

~(∆t)~

AB(~)Γ(~+ 3)

ξ

∑
ε=2

[(
Y1(tξ , Sξ , Eξ , Iξ , Iξ

a , Rξ , Xξ , Yξ , Zξ)
)

−2
(

tξ−1, Sξ−1, Eξ−1, Iξ−1, Iξ−1
a , Rξ−1, Xξ−1, Yξ−1, Zξ−1

)
+
(

Y1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2
a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)

)]

×

 (ξ − ε + 1)~
[

2(ξ − ε)2 + (3 ~+10)(ξ − ε)
+2 ~2 +9 ~+12

]
−(ξ − ε)~

[
2(ξ − ε)2 + (5 ~+10)(ξ − ε)

6 ~2 +18 ~+12

]
.

(82)

Zξ+1 = Z0 +
1−~
AB(~)

(
Z1(tξ , Sξ , Eξ , Iξ , Iξ

a , Rξ , Xξ , Yξ , Zξ)
)

+
~(∆t)~

AB(~)Γ(~+ 1)

ξ

∑
ε=2

(
Z1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2

a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)
)

[(ξ − ε + 1)~ − (ξ − ε)~] +
~(∆t)~

AB(~)Γ(~+ 2)

ξ

∑
ε=2

(
tξ−1, Sξ−1, Eξ−1, Iξ−1, Iξ−1

a , Rξ−1, Xξ−1, Yξ−1, Zξ−1
)

−
(

Z1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2
a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)

)
[

(ξ − ε + 1)~(ξ − ε + 3 + 2~)
−(ξ − ε)~(ξ − ε + 3 + 3~)

]
+

~(∆t)~

AB(~)Γ(~+ 3)

ξ

∑
ε=2

[(
Z1(tξ , Sξ , Eξ , Iξ , Iξ

a , Rξ , Xξ , Yξ , Zξ)
)

−2
(

tξ−1, Sξ−1, Eξ−1, Iξ−1, Iξ−1
a , Rξ−1, Xξ−1, Yξ−1, Zξ−1

)
+
(

Z1(tξ−2, Sξ−2, Eξ−2, Iξ−2, Iξ−2
a , Rξ−2, Xξ−2, Yξ−2, Zξ−2)

)]

×

 (ξ − ε + 1)~
[

2(ξ − ε)2 + (3 ~+10)(ξ − ε)
+2 ~2 +9 ~+12

]
−(ξ − ε)~

[
2(ξ − ε)2 + (5 ~+10)(ξ − ε)

6 ~2 +18 ~+12

]
.

(83)

6. Numerical Simulation

Using the previously proposed numerical scheme, we provide some numerical simu-
lations in this part for various values of fractional orders.

The MATLAB ODE15s function was used to progress the numerical approximation
for the fractional Chikungunya model, as stated by Equation (83) in time. On a digital
ALIENWARE computer with a Core i7, 11th generation, 32 GB RAM, 512 GB SSD, and
an 8 GB Nvidia GTX 1070 graphics card, all simulations were run using the MATLAB
2021a package.

In addition, we present the treatment of patients with Chikungunya under the frac-
tional derivatives in the sense of the AB operator. First, let us redefine the variables to be
determined in the model. S(t) is the number of susceptible individuals in the population
and the number of individuals exposed to Chikungunya is represented by E(t). Then, the
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symptomatically infectious host is given by I(t) and Ia represents the asymptomatically
infectious hosts (proportion). R(t) represents the recovered hosts. X is defined for the
susceptible mosquitoes. Furthermore, Y is given for exposed mosquitoes and Z is for
infectious mosquitoes.

The initial conditions used in the simulation experiments are S(0) = 0.05, E(0) = 0.05,
I(0) = 0, Ia(0) = 0.01, R(0) = 0.001, X(0) = 0.08, Y(0) = 0.09, Z = 0.02, with time-step
h = 0.01.

Considering the parameters observed in the system for a total simulation time
t = 80/days, the following are given. The mosquito-to-human transmission (number of
mosquito bites per human per day allowing for imperfect pathogen transmission) β1 = 0.14;
the human-to-mosquito transmission (per day bite rate also allowing for imperfect pathogen
transmission) value β2 is 0.40. The hosts that develop symptoms value is φ = 0.97; the host
latent period (from ‘infected’ to ‘infectious’, days) is 1

λ1
= 0.50; 1

λ2
= 0.50 is the value of

the mosquito latent period (from ‘infected’ to ‘infectious’, days). The value of γ = 0.25 is
the host recovery rate (per day); 1

ω1
= 0.25 is the host pre-patient period (from ‘infected’ to

symptoms development, days); and the mosquito life span (days) is µ = 0.05.
First of all, the values of variables are given at different time levels and the behavior of

S(t), E(t), I(t), Ia(t), R(t), X, Y, Z are presented in Figures 1–8 for h = 0.01, and at different
instances of fractional order α ∈ (0, 1]. In order to simulate the dynamic behavior of
the fractional Chikungunya model as shown in Figures 1–8, numerical experiments were
carried out for various values of the parameters. Beginning with the numerical method
in Equation (75), we allowed the fractional values α and used fixed parameters as stated
above. Figures 1–8 illustrate the dynamic impacts for various values of α. When α = 0.85,
both the susceptible and infected population grew, but as α → 1, they rapidly declined.
This implies that a decrease in the parameter α led to an increase in the populations that
were vulnerable and infected.

Figure 1. Various values of fractional order numerical results of S(t). This figure was obtained using
AB-fractional derivative for different fractional values of alpha. By changing values of alpha slightly,
we studied the transmission rates of those susceptible to the pathogen with respect to time in days,
S(t).
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Figure 2. Various values of fractional order numerical results of E(t). This figure was obtained using
AB-fractional derivative for different fractional values of alpha. By changing values of alpha slightly,
we studied the transmission rates of those exposed to the pathogen with respect to time in days, E(t).

Figure 3. Various values of fractional order numerical results of I(t). This figure was obtained using
AB-fractional derivative for different fractional values of alpha. By changing values of alpha slightly,
we studied the transmission rates of those symptomatically infected with respect to time in days, I(t).
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Figure 4. Various values of fractional order numerical results of Ia(t). This figure was obtained using
AB-fractional derivative for different fractional values of alpha. By changing values of alpha slightly,
we studied the transmission rates of those asymptomatically infected with respect to time in days,
Ia(t).

Figure 5. Various values of fractional order numerical results of R(t). This figure was obtained using
AB-fractional derivative for different fractional values of alpha. By changing values of alpha slightly,
we studied the transmission rates of the recovered host with respect to time in days, R(t).
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Figure 6. Various values of fractional order numerical results of X(t). This figure was obtained using
AB-fractional derivative for different fractional values of alpha. By changing values of alpha slightly,
we studied the transmission rates of susceptible mosquitoes with respect to time in days, X(t).

Figure 7. Various values of fractional order numerical results of Y(t). This figure was obtained using
AB-fractional derivative for different fractional values of alpha. By changing values of alpha slightly,
we studied the transmission rates of exposed mosquitoes with respect to time in days, Y(t).
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Figure 8. Various values of fractional order numerical results of Y(t). This figure was obtained using
AB-fractional derivative for different fractional values of alpha. By changing values of alpha slightly,
we studied the transmission rates of infected mosquitoes with respect to time in days, Z(t).

Remark 2. Although there are still concerns regarding the accuracy of computer simulation models,
they are being utilized more frequently to help public health research and policy. This articles
goal was to examine the fundamentals and procedures for validating population-based disease
simulation models.

We created a thorough methodology for evaluating the simulation models of chronic diseases in
populations. We created a list of suggestions for assembling the proof of model believability based on
the review.

Examining the model development process, the model’s performance, and the caliber of decisions
made using the model provided evidence of the model’s legitimacy. Current recommendations do
not sufficiently address several significant concerns in model validation. A thorough assessment of
various data sources, graphical model representation, computer programming, model calibration,
model-to-model comparisons, sensitivity analysis, and prediction validity are some of these con-
cerns. The function of the model determines the part that external data play in model validation
(e.g., decision analysis versus prediction). The techniques for comparing the caliber of judgments
based on various models require more study.

7. Conclusions

The complicated transmission of the Chikungunya virus within a target population
was modeled in this work using fractional differential and integral operators. We provided
a thorough analysis supporting the presence and particular system of remedies for each
scenario using Caputo, Caputo-Fabrizio, and Atangana-Baleanu fractional derivatives. This
was accomplished by confirming the circumstances under which the Lipschitz quadratic
and linear growth properties held true. Using a numerical technique based on the Newton
polynomial, each model was handled differently. To examine the impact of the fractional
order, certain simulations were provided.

One limitation of this approach is that when α = 1, the accuracy of the fractional
order operators with singular kernels may result in a subpar accuracy. Accordingly, from
this perspective, the numerical solutions of high-dimensional partial fractional differential
equations (PFDEs) require a lot of computations, but the numerical issues are not the
primary justifications for using non-singular memory operators rather than those with
power-law memories. We must find a solution to the computational issues if the physical
model predicts power-law memory, but replacing it with other memories (such as operators
with non-singular memories) is wrong and goes against the physics that the model was
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based on. Using the Caputo-Fabrizio fractional derivative with a non-singular kernel, we
were able to solve these challenges.

The controllability and stability of the studied system should be considered as a
future work. Given that the system can also be extended through a stochastic model using
fractional Brownian motion, the optimal controllability using the numerical simulation will
be more advanced in future work. In the studied system, we have considered the system
components in the fractional order form. One can consider the fractional order system but
not component-wise.
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