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Abstract: Long series time forecasting has become a popular research direction in recent years,
due to the ability to predict weather changes, traffic conditions and so on. This paper provides a
comprehensive discussion of long series time forecasting techniques and their applications, using the
Informer algorithm model as a framework. Specifically, we examine sequential time prediction models
published in the last two years, including the tightly coupled convolutional transformer (TCCT)
algorithm, Autoformer algorithm, FEDformer algorithm, Pyraformer algorithm, and Triformer
algorithm. Researchers have made significant improvements to the attention mechanism and Informer
algorithm model architecture in these different neural network models, resulting in recent approaches
such as wavelet enhancement structure, auto-correlation mechanism, and depth decomposition
architecture. In addition to the above, attention algorithms and many models show potential and
possibility in mechanical vibration prediction. In recent state-of-the-art studies, researchers have used
the Informer algorithm model as an experimental control, and it can be seen that the algorithm model
itself has research value. The informer algorithm model performs relatively well on various data sets
and has become a more typical algorithm model for time series forecasting, and its model value is
worthy of in-depth exploration and research. This paper discusses the structures and innovations
of five representative models, including Informer, and reviews the performance of different neural
network structures. The advantages and disadvantages of each model are discussed and compared,
and finally, the future research direction of long series time forecasting is discussed.

Keywords: deep learning; neural networks; long series time forecasting; attention mechanism; pre-
diction

1. Introduction

In recent years, long series time forecasting (LSTF) has become a widely used tech-
nique in various fields, including weather forecasting [1], stock market analysis [2], medical
diagnosis [3], traffic prediction [4], defect detection [5], vibration analysis [6], action recog-
nition [7], and anomaly detection [8]. The Transformer algorithm model was introduced by
the Google team in 2017 [9] and has since replaced the Long Short-Term Memory (LSTM)
algorithm model [10] as one of the most popular neural network prediction models. The
Transformer algorithm model has been shown to outperform the LSTM algorithm model in
terms of both accuracy and computational efficiency. However, researchers have found that
the Transformer algorithm model still faces several challenges that limit the direct applica-
tion to long series time forecasting problems, such as secondary spatio-temporal complexity,
high memory usage, and inherent limitations of the encoder–decoder architecture.

To address these challenges, researchers have developed an efficient algorithmic
model called Informer for long series time forecasting, which is based on the Transformer
model [11]. The Informer model employs the ProbSparse self-attention mechanism, which
achieves O(L/ log L) time complexity and enhances sequence dependency alignment, re-
sulting in more reliable performance. Several new algorithmic models have been developed
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to improve the Transformer model and enhance the attention and encoder–decoder archi-
tecture of the Informer model. As the Transformer model still suffers from loose coupling,
Shen et al. proposed the TCCT algorithmic model in 2021 [12]. They introduced the Cross
Stage Partial Attention (CSPAttention) mechanism, which combines Cross Stage Partial
Network (CSPNet) with the self-attention mechanism, resulting in a 30% reduction in
computational cost and a 50% reduction in memory usage. Whereas this improvement
solves the issue of loose coupling, some limitations of the Transformer model remain, such
as ignoring the potential correlation between sequences and the encoder–decoder struc-
ture’s limited scalability during the optimization algorithm. To address these limitations,
Su et al. proposed the Adaptive Graph Convolutional Network for a Transformer-based
Long Sequence Time-Series Forecasting (AGCNT) algorithmic model in 2021 [13]. The
AGCNT model captures the correlations between sequences in multivariate long series
time forecasting problems without causing memory bottlenecks.

The application of methods based on the Transformer algorithm model has led to
significant improvements in long series time forecasting, but these models are still plagued
by issues such as high computational cost and the inability to capture a global view of
the time series. To overcome these challenges, several new algorithmic models have been
proposed recently. For instance, Zhou et al. introduced the FEDformer algorithm model
in 2022 [14], which leverages trend decomposition to capture a global view of the time
series by incorporating seasonal trends. The Autoformer algorithm model proposed by Wu
et al. [15] takes a different approach, with a deep decomposition architecture that extracts
more predictable components from complex time series and enables targeted attention
to reliable temporal dependencies that were previously undetected. Additionally, Liu
et al. presented the Pyraformer algorithm model in 2022 [16], which employs a pyramidal
self-attention mechanism to capture temporal features of different scales and reduces
computation time and memory consumption while performing high-precision single-step
and long time multi-step forecasting tasks. Finally, in 2022, Razvan-Gabriel Cirstea et al.
introduced the Triformer algorithm model [17], which uses the patch attention algorithm to
replace the original attention algorithm, proposes a triangular shrinkage module as a new
pooling method, and employs a modeling approach for lightweight variables to enable the
model to obtain features between different variables.

Various methods have been developed to predict mechanical vibration faults using
models associated with the Informer algorithm [6]. Predicting vibration faults can allow
for the early detection of equipment failures, the identification of the failure location, and
the determination of the type of failure in the case of serious equipment failures. The
time series prediction of equipment vibration is a valuable research direction in predicting
failure and the remaining service life of electromechanical equipment. By applying fault
prediction based on vibration data of electromechanical equipment to the manufacturing
and operation and maintenance process of various products, the loss of electromechanical
equipment can be avoided, resulting in cost savings and loss reduction. The time series pre-
diction of motor-bearing vibration involves analyzing the historical data of its components
to determine the possibility of future failure. Yang et al. [6] applied the Informer algorithm
model to motor-bearing vibration prediction and proposed a random search-based time
series prediction method for optimizing the Informer algorithm model. By optimizing
the Informer and using a stochastic search to optimize the model parameters, the authors
achieved better algorithmic performance in the time series prediction of motor bearing
vibration.

During the process of developing new models, it is evident that the Informer algorithm
model is built upon the Transformer algorithm model with innovative improvements.
Nonetheless, it holds significant research value and innovative significance, making it a
typical algorithmic model with architecture and core algorithmic principles worth exploring
and studying in depth. The rapid emergence of subsequent models is influenced to some
extent by the Informer model.
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In view of this, this paper presents an overview of related algorithmic models such as
Informer. The contributions of this paper are summarized as follows:

1. In this paper, the principle of the Informer algorithm model, related structure, and
attention algorithm are restated in detail, and the advantages and shortcomings of the
informer algorithm model are analyzed.

2. In this paper, we kindly discuss in detail the innovations and improvements in the
model structure of several other advanced algorithmic models (including TCCT,
Autoformer, FEDformer, Pyraformer, and Triformer)

3. We study an overview of the attentional algorithm structure and innovations for each
model, and we also provide a critical analysis of the models and attention mechanisms
that were studied and summarize the advantages and disadvantages of each model.

4. In this paper, we compare and analyze each algorithm model with the informer
algorithm model, showing the feasibility of the attention mechanism and related
models such as the informer algorithm model and making predictions and outlooks
on future research directions.

2. Background of Informer Algorithm Model and Architecture

This section introduces the inception and fundamental structure of the Informer
algorithm model. Initially, the problem of long series time forecasting is defined, followed
by a novel analysis and exploration of the Informer algorithm model. A review of the
framework treatment is also provided.

2.1. Basic Forecasting Problem Definition

LSTF utilizes the long-term dependencies between spatial and temporal domains,
contextual information, and inherent patterns in data to improve predictive performance.
Recent research has shown that the Informer algorithm model and its variants have the
potential to further enhance this performance. In this section, we begin by introducing
the input and output representations, as well as the structural representation, in the LSTF
problem.

In the scrolling prediction setting with a fixed-size window, the input is represented
by χt = { xt

1, . . . , xt
Lx

∣∣∣xt
i ∈ Rdx }, while the output is the predicted corresponding sequence

Yt = {yt
1, · · · , yt

Ly

∣∣∣yt
i ∈ Rdy} at time t. The LSTF problem is capable of handling longer

output lengths than previous works, and its feature dimensionality is not limited to the
univariate case (dy ≥ 1).

The encoder–decoder operation is mainly carried out through a step-by-step process.
Many popular models are designed to encode the input χt as a hidden state Ht and decode
the output representation Yt from Ht = {ht

1, · · · , ht
Lh}. The inference involves a stepwise

process called “dynamic decoding”, in which the decoder computes a new hidden state
ht

k+1 from the previous state ht
k and other necessary outputs at step k, and then predicts the

sequence yt
k+1 at step (k + 1).

2.2. Informer Architecture

This section presents an overview of the refined Informer algorithm model architecture
designed by Zhou et al. [11] The Informer algorithm model is an improvement on the
transformer, and its structure is similar to the transformer in that it is a multi-layer structure
made by stacking informer blocks. Informer modules are characterized by a ProbSparse
multi-head self-focus mechanism, an encoder–decoder structure.

The following figure shows the basic architecture of the Informer algorithm model. The
schematic diagram in the left part of the figure shows the encoder receiving a large number
of long sequence inputs with the proposed ProbSparse self-attention instead of the canonical
self-attention. The green trapezoid is a self-attention distillation operation that extracts the
dominant attention and greatly reduces the network size. The layer-stacked copies increase
the robustness. The decoder in the right part of the figure receives the long sequence input,
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fills the target element with zero, measures the weighted attentional composition of the
feature map, and immediately predicts the output element in a generative manner.

The model successfully improves the predictive power of the LSTF problem and
validates the potential value of the transformer family of models in capturing individual
long-range dependencies between the output and the input of long time series. The Prob-
Sparse self-attention mechanism is successfully proposed to effectively replace the canonical
self-attention. The O(L/ log L) time complexity and O(L/ log L) memory footprint of de-
pendency alignment is achieved. The research article presents the self-attention extraction
operation to control the attention fraction in the stacked layers and significantly reduce the
total space complexity to O(L/ log L), which helps the model to receive long-range inputs.
Meanwhile, researchers proposed a generative decoder to obtain long sequence outputs
with only one forward step while avoiding the cumulative error expansion in the inference
stage.

In the original transformer model, the canonical self-attention is defined based on
tuple inputs, which are queries, keys, and values, and it performs the scaled dot product
for A(Q, K, V) = Softmax(QK>/

√
d)V, where Q ∈ RLQ×d,K ∈ RLK×d,V ∈ RLV×d and

d represent the input dimensions. To further discuss the self-attention mechanism, let
qi, ki, vi represent the i-th row in Q, K, and V, respectively. Following the formulas in
references [18,19], the attention of the i-th query is defined as a kernel smoother in the form
of probability:

A(qi, K, V) = ∑
j

k(qi, k j)

∑l k(qi, ki)
vj = Ep(kj |qi)

[vj] (1)

where p(k j
∣∣qi) = k(qi, k j)/ ∑l k(qi, kl) and k(qi, k j) choose the asymmetric index kernel

exp(qik j
>/
√

d). The output obtained by self-attention is mainly derived by combining the
values after calculating the probability p(k j, qi). Additionally, it requires quadratic dot prod-
uct computation and memory. Additionally, its need for quadratic dot product computation
and O(LQLK) memory is the main drawback of self-attention in the transformer.

The self-attention mechanism is an improved attention model, which is simply sum-
marized as a self-learning representation process. Moreover, the computational overhead
of self-attention is quadratically correlated with sequence length, which leads to low com-
putational efficiency, slow computational speed and high training costs of the Transformer
model, and the excessive computational overhead also makes the application of the model
difficult; the processing capability of long sequence data is thus limited in the Transformer
model.

Therefore, studying variants of the self-attention mechanism to achieve an efficient
Transformer has become an important research direction. The Informer algorithm model
has been preceded by equally many proposals to reduce memory usage and computation
and increase efficiency.

Sparse Transformer [20] combines row output and column input, where sparsity
comes from separated spatial correlations. LogSparse Transformer [21] notes the circular
pattern of self-attention and makes each cell focus on its previous cell in exponential steps.
Longformer [22] extends the first two works to more complex sparse configurations.

However, they use the same strategy to deal with each multi-headed self-attention, a
mode of thinking that makes it difficult to develop novel and efficient models. In order to
reduce memory usage and improve computational efficiency, researchers first qualitatively
evaluated the learned attention patterns of typical self-attention in the Informer algorithm
model, i.e., a few dot product pairs contribute major attention, while others produce very
little attention.

The following discussion focuses on the differences between the differentiated dot
products. From the above equation, the attention of the i-th query to all keys is defined as the
probability p(k j

∣∣qi) , and the output is its combination with the value V. The dominant dot
product pair encourages the attention probability distribution of the corresponding query
to be far from a uniform distribution. If p(k j

∣∣qi) is close to a uniform distribution, which
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is p(k j
∣∣qi) = 1/LK , then the result of the self-attention calculation becomes a numerically

small sum of V values, which is redundant for the input. Therefore, the “similarity” between
distributions p and q can be used to distinguish “important” queries. The “similarity” can
be measured by the Kullback–Leibler scatter:

KL(q||p) = ln
Lk

∑
l=1

eqikl
>/
√

d − 1
Lk

LK

∑
j=1

qik>j /
√

d− ln Lk (2)

removing the constants, the sparsity measure for the i-th query is defined as the following
equation:

M(qi, K) = ln
LK

∑
j=1

e
qikj
>

√
d − 1

LK

LK

∑
j=1

qiKj
>

√
d

(3)

where the first term is the Log-Sum-Exp of all keys qi and the second term is their arithmetic
mean. If the i-th query obtains a larger M(qi, K), it has a more diverse attention probability
p and is likely to contain dominant dot product pairs in the head fields of the long-tailed
self-attention distribution. Additionally, ProbSparse self-attention is achieved by allowing
each key to focus on only u primary queries:

A(Q, K, V) = So f tmax(
QK>√

d
)V (4)

where Q is a sparse matrix of the same size as q, which contains only the Top-u queries un-
der the sparse metric M(q, K). Under the control of a constant sampling factor c, u = c · ln LQ
is set in such a way that ProbSparse self-attention only needs to compute O(ln LQ) dot
products for each query-key lookup, and memory usage per layer is kept at O(LK ln LQ).

In the multi-head perspective, this attention generates different sparse query-key pairs
for each head, thus avoiding severe information loss. Additionally, to address the quadratic
complexity problem and the fact that LSE operations have potential numerical stability,
researchers proposed an empirical approximation for efficiently obtaining query sparsity
measures.

Lemma 1. For each qi ∈ Rdin the set K as well as k j ∈ Rd, the bound is the following equation:

ln LK ≤ M(qi, K) ≤ maxj{qik>j /
√

d} − 1
LK

LK

∑
j=1
{qik>j /

√
d}+ ln LK (5)

This equation also holds when qi ∈ K, starting with Lemma 1, and the maximum mean
measure is proposed as the following equation [11]:

M(qi, K) = max
j
{

qik j
>

√
d
} − 1

LK

LK

∑
j=1

qik j
>

√
d

(6)

randomly selected U = LK ln LQ dot product pairs are used to compute M(qi, K), meaning
that the other pairs are filled with zeros, from which the sparse Top-u is selected as Q. The
maximum operator in M(qi, K) is less sensitive to zero values and is numerically stable. In
practice, the input lengths of queries and keys are usually equivalent in the self-attention
computation, which means that LQ = LK = L. This makes the total time complexity and
space complexity of ProbSparse self-attention O(L ln L).

2.3. Encoder

In Figure 1, it can be seen that Encoder receives a large number of long sequence inputs,
while the model uses ProbSparse self-attention instead of self-attention in Transformer.
The green trapezoid is the extraction operation of self-attention, which mainly extracts
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the dominant attention and drastically reduces the amount of computation and memory
occupied. Additionally, the layer-stacked copies increase the robustness.
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The encoder is designed to extract robust remote dependencies for long sequence
inputs. After the input representation, the t-th sequential input Xt has been shaped into a
matrix Xt

en ∈ RLx×dmodel , and the following diagram shows the structure of a single stack of
the encoder:

In the above figure, the horizontal stack represents one of the copies of a single encoder.
The one presented in Figure 2 is the main stack that receives the entire input sequence. The
second stack then acquires half of the slices of the input, and the subsequent stacks are
repeated. The red layer is a dot product matrix, and the red layer is reduced in cascade
by performing self-attention extraction on each layer. The output of the encoder is then
performed by connecting the feature maps of all stacks.
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Figure 2. Individual stacks in the Informer encoder.

As a natural consequence of the ProbSparse self-attention mechanism, the feature
maps of the encoder have redundant combinations of values V. The distillation operation
is used to assign weights to the values with dominant features and to produce a new self-
attention feature map at the next level. This operation substantially prunes the temporal
dimension of the input, and the n-head weight matrix of the attention block is seen in
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Figure 2. Inspired by the expansion convolution [23], the “distillation” process advances
from the j-th layer to the (j + 1) layer, as follows:

Xt
j+1 = MaxPool

(
EIU

(
Conv1d

([
Xt

j

]
AB

)))
(7)

where [·]AB represents the attention block. It contains the multi-headed ProbSparse self-
attention and the basic operations, where Conv1d(·) performs a one-dimensional convolu-
tional filter in the time dimension using the ELU(·) activation function [24].

The Researchers add a maximum pooling layer spanning 2 and down-sample Xt

into half of its slices after stacking one layer, which reduces the overall memory usage to
O((2− ε)L log L), where ε is a small number. To enhance the robustness of the extraction
operation, copies of the main stack is also constructed using halved inputs, and the number
of self-focused extraction layers is gradually reduced by performing one layer at a time,
aligning their output dimensions and joining the outputs of all stacks to obtain the final
hidden representation of the encoder.

2.4. Decoder

A standard decoder structure is used in the Informer algorithm model, which consists
of two identical multi-headed attention layers. However, the generative inference is
used to mitigate the speed plunge in long series time forecasting. The decoder takes
the long sequence input, fills the target elements with zeros, measures the weighted
attention composition of the feature map, and immediately predicts the output elements in
a generative manner.

In Figure 1, the decoder receives the long sequence input, fills the target elements
with zero, measures the weighted attention composition of the feature map, and instantly
predicts the output elements in a generative style. Regarding the implementation principle
of the decoder, the following vectors are first provided to the decoder:

Xt
de = Concat

(
Xt

token, Xt
0
)
∈ R(Ltoken+Ly)×dmodel (8)

where Xt
token ∈ RLtoken×dmodel is the start marker and Xt

0 ∈ RLy×dmodel is a placeholder for the
target sequence (setting the scalar to 0). By setting the masked dot product to negative infin-
ity, a multi-headed masked attention mechanism is applied in the ProbSparse self-attention
calculation. It prevents each position from paying attention to the upcoming position, thus
avoiding the autoregression. The fully connected layer obtains the final output, whose size
dy depends on whether univariate or multivariate prediction is performed.

Regarding the problem of long output length, the original transformer has no way to
solve this problem; it is dynamically output with the same cascade output as the RNN-like
model, which cannot handle long sequences. A start token in the dynamic decoding process
of NLP is a great trick [25], especially for the pre-training model stage, and the concept is
extended in the Informer algorithm model for the long series time forecasting problem by
proposing a generative decoder for the long sequence output problem, that is, generating
all the predicted data at once. The Q, K, and V values in the first masked attention layer
are obtained by multiplying the embedding values from the decoder input by the weight
matrix, while the Q values in the second attention layer are obtained by multiplying the
output of the previous attention layer by the weight matrix, and the K and V values are
obtained by multiplying the output of the encoder by the weight matrix.

2.5. Informer Algorithm Model Values

The ProbSparse self-attention mechanism in the Informer algorithm model can achieve
O(L/ log L) in terms of time complexity and memory usage, making a large adjustment
relative to transformer in terms of time complexity and memory, while the self-attention
mechanism highlights the cascade layer input by halving the dominant attention and
efficiently handle overly long input sequences. The proposed generative decoder performs



Symmetry 2023, 15, 951 8 of 45

one forward operation on long sequences instead of prediction by stepping, which greatly
improves the inference speed of long sequence forecasting.

First, the improved attention mechanism reduces the complexity and memory, but
there is still room for improvement in reducing the complexity and memory consumption;
second, although the efficiency is improved, there are still problems with the backward
and forward time dependence, which leads to some errors between the prediction results
and the actual results, and the accuracy still needs to be improved. Finally, the structure
of the generative decoder is too simple, with few innovations, and similar to that of the
transformer, so there is still room for structural adjustment.

3. Relevant Model Development
3.1. TCCT Algorithmic Model

Time series forecasting is crucial for a wide range of practical applications. models
such as Informer are superior in handling such problems, especially long series time input
(LSTI) and long series time forecasting (LSTF) problems. To improve the efficiency and
enhance the localization of this class of models, some researchers have combined the models
with CNNs [26–28] to varying degrees. However, their combinations are loosely coupled
and do not take full advantage of CNNs, whereas three architectures of TCCT algorithmic
models can be a good solution to the above problem. This section focuses on three TCCT
algorithm model architectures. These architectures not only enhance the local performance
of the Transformer, but also enhance the learning capability of the Transformer and reduce
the computational cost and memory usage. It can also handle other time series forecasting
models similar to Transformer algorithm models.

This section also elaborates the principle of the passthrough mechanism. Its main
purpose is to obtain finer-grained information by connecting the feature maps of self-
attention blocks at different scales. It is similar to CNN and features pyramids commonly
used in image processing. As it extends the feature graph, it improves the prediction
performance of the Transformer model.

3.1.1. Dilated Causal Convolutions

Stacking multiple self-attention blocks facilitates the extraction of deeper feature maps
but introduces more time and space complexity. To further reduce memory usage, the
Informer algorithm model uses a self-attention distilling operation. the Informer algorithm
model uses a convolutional layer and a maximum pooling layer to trim the input length
between every two self-attention blocks. A kernel of step size 1 and a convolutional layer
of size 3 follow the previous self-attention block to make the features more aware of local
contextual information. A kernel of step size 2 and a max-pooling layer of size 3 are then
used to privilege locally dominant features and provide a smaller but more focused feature
map for the latter self-attention block. However, canonical convolutional layers have two
main drawbacks when applied to time series prediction.

First, it can only review the history of linear size as the depth of the network grows. In
the Informer algorithm model, it mainly deals with long series time forecasting problem,
but it is also not powerful enough in dealing with very long series. As the computational
cost grows, the advantages of stacking self-attention blocks with canonical convolutional
layers are gradually overshadowed by the disadvantages, which may lead to repetitive
and meaningless computations due to the limited perceptual field. Second, the canonical
convolution layer in the informer algorithm model does not consider the time perspective,
which will inevitably lead to future information leakage in time series prediction and
reduce the time perception field.

To address the above problem, the solution is inspired by TCN and replaces the
canonical convolution with a dilated causal convolution to obtain the growth of the feeling
field. More precisely, for the i-th convolutional layer after the i-th self-attention block, the
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dilated causal convolution operation C with kernel size k on element xn ∈ Rd of sequence
X ∈ RL×d is defined as:

C(xn) =


xn

xn−i
...

xn−(k−1)×i

Wd×d′ (9)

where d′ is the output dimension, where the number i is also used as the expansion factor.
The filter of the i-th expanded causal convolution layer skips (2 i−1 − 1) elements between
two adjacent filter taps.

Due to the nature of causality, each element x at time t of the sequence is only convolved
with the element at or before t, ensuring that there is no information leakage in the future.
When i = 1, the dilated causal convolution degenerates to a normal causal convolution.

An illustration of a self-attention network stacked with three self-attention blocks and
using the dilated causal convolutional layer of kernel 3 is provided in Figure 3. Researchers
stacked such self-attention networks with three self-attention blocks that are connected
to the dilated causal convolution layer and the max-pool layer. It can be seen that the
application of the dilated causal convolutions layer can bring a wider feeling field and
avoid future information leakage.
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Figure 3. Visualization of a self-attention network.

Dilated causal convolution uses padding only at the front end of time to prevent
the leakage of future information. Even with only two convolutional layers, the output
perceptual field of the network in this figure is significantly larger than the one above.
Therefore, stacking more self-attention blocks, the gap will be larger and, therefore, the
two networks will perform better. In addition to this, the application of Dilated causal
convolution will only incur a negligible amount of computational cost and memory usage.
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3.1.2. TCCT Architecture and Passthrough Mechanism

Feature pyramids are commonly used to extract features in computer vision and
CNNs. A similar concept can be applied to Transformer-based networks. According to the
studies related to the Yolo series of target detection CNN networks [29,30], a passthrough
mechanism is proposed to obtain feature maps from the earlier networks and merge them
with the final feature maps to obtain finer-grained information.

In Transformer-based networks, a passthrough mechanism is used to merge feature
maps of different scales. Assuming that the encoder stacks n self-focused blocks, each self-
focused block will produce a feature map. The k-th (k = 1, 2. . . , n) feature map has length
L/2k−1 and dimensionality d. Assume that CSPAttention and dilation causal convolution
have been applied to this encoder. In order to connect all feature maps of different scales,
the k-th feature map is equivalently partitioned by length into 2n−1 feature maps of length
L/2n−1. In this way, all feature maps can be connected by dimension.

However, the tandem graph has dimension (2n − 1)× d. Therefore, a transition layer
needs to be employed to ensure that the entire network outputs feature maps are of the
appropriate dimension. The above problem can be solved by stacking three self-attention
blocks and using the TCCT algorithm model architecture, as shown in Figure 4.
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The passthrough mechanism works similarly to the full distillation operation in the
Informer algorithm model. However, the Informer algorithm model with full distillation
requires as many encoders as the number of self-attention blocks of the main encoder,
whereas the Informer algorithm model with straight-through mechanism requires only one
encoder.

This is despite the fact that the Informer algorithm model with full distillation has
encoders with decreasing input length and it draws more attention from the model to
the later timing data. For example, assuming that Informer stacks k encoders, the first
half of the input sequence exists only in the main encoder, and conversely, the 1/2k−1 of
the later part of the input sequence exists in each individual encoder. The passthrough
mechanism has no such deficiency. More importantly, the passthrough mechanism imposes
almost no additional computational cost on the Informer algorithm model, whereas the
Informer algorithm model with full distillation operation incurs considerable additional
computational cost due to its multi-coder architecture.
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3.1.3. Transformer with TCCT Architectures

CSPAttention, passthrough mechanism architecture, and dilated causal convolu-
tion [12] all work seamlessly with canonical Transformer, LogTrans, Informer, and other
time series algorithm prediction models. A simple example of collaboration with the In-
former algorithm model is shown in the Figure 5, and a detailed encoder example can be
seen in the final figure in this section. Note that the Informer algorithm model in the figure
below has only one encoder, which means that it does not use the full distillation operation
but replaces it with a passthrough mechanism.
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Figure 5. Architecture of Informer combined with the TCCT algorithmic model architecture.

In the above figure within the blue trapezoid are encoders stacked with three prob-
abilistic sparse CSPAttention blocks which replace the probabilistic sparse self-attention
blocks from before the figure, employing an inflated causal convolutional layer instead of
the canonical convolutional layer, together with a max pooling layer in the green trapezoid
being used to connect every two self-attention blocks. Without adding additional encoders,
all three feature mappings of the output of the three self-attention blocks are fused and
then transitioned to the final output of appropriate size. The right panel makes no signifi-
cant changes compared to informer’s decoder, except that the masked probability sparse
self-attention blocks are replaced by masked probability sparse CSPAttention blocks.

Based on the Informer architecture, other similar architectures can easily work with
the TCCT algorithm model architecture. For example, to combine the TCCT algorithm
model architecture with the LogTrans algorithm model, the masked probabilistic sparse self-
attention block in the above figure will be replaced by the masked LogSparse self-attention
block, and the other architectures remain unchanged.

In Figure 6, each CSPAttention block is combined with Probsparse self-attention, which
is a typical architecture of Informer. Additionally, between each two CSPAttention blocks, a
connection is made using a dilated causal convolutional layer and a maxpooling layer. The
output feature map of the previous self-attention block is propagated through these two
layers and reduced to half the length, reflecting the original Informer while expanding the
perceptual field. The three feature maps of the output of the three self-attention blocks are
also fused by a passthrough mechanism to obtain more fine-grained information. Finally, a
transition layer is added to export the feature mappings of appropriate dimensions to the
decoder.
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Figure 6. A single Informer encoder stacks three self-attention blocks that work in concert with all
TCCT model architectures.

3.1.4. TCCT Algorithm Model Value

The concept of tightly coupled convolutional Transformer and three TCCT algorithm
model architectures proposed by shen et al. [12] improves the predictive power of models
such as Informer for time series prediction. Especially, the CSPAttention is designed
to reduce the computational cost and memory usage of the self-attention mechanism
without degrading the prediction accuracy. In addition, the application of dilated causal
convolution enables models such as Informer to obtain exponential receptive field growth.
A passthrough mechanism is also employed to help individual models obtain more fine-
grained information. Individual and extensive experiments on real data sets show that all
three TCCT algorithm model architectures can improve model performance in time series
forecasting in different ways.

3.2. Autoformer

This section introduces the structure and principles of the Autoformer algorithm
model and disassembles and analyzes the deep decomposition architecture of Autoformer
as well as the encoder–decoder architecture.

The related research based on the Transformer prediction model is to capture the inter-
moment dependence through the self-attention mechanism, thus making some progress on
the temporal sequence prediction. However, in long series time forecasting, the complex
temporal patterns in long sequences make it difficult for the attention mechanism to
discover reliable temporal dependencies, and the Transformer-based model has to use a
sparse form of the attention mechanism to cope with the quadratic complexity, and the
processing approach adopted in the above studies creates a bottleneck in information
utilization. To break through the above problems, researchers propose an algorithmic
model called Autoformer based on the basic Transformer architecture, which innovates the
original sequence decomposition as a traditional method of preprocessing and proposes a
deep decomposition architecture where the model is able to decompose more predictable
components from complex temporal patterns.

3.2.1. Deep Decomposition Architecture

The encoder eliminates the long-term trend cycle component through the series de-
composition block and focuses on seasonal pattern modeling. The decoder progressively
accumulates the trend component extracted from the hidden variables. The past seasonal
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information of the encoder is utilized through encoder–decoder auto-correlation, and the
architecture of the AutoFormer algorithm model is shown in Figure 7.
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Time series decomposition is the decomposition of time series into several components.
Each component represents a class of potential time patterns, such as seasonal, trend-
cyclical terms. Due to the unpredictability of the future in forecasting problems, the
past series are usually decomposed first and then forecasted separately. However, this
causes the prediction results to be limited by the decomposition effect and ignores the
interactions between the future components. The deep decomposition architecture embeds
sequence decomposition as an internal unit of the Autoformer algorithm model in the
encoder–decoder. In the prediction process, the model alternates between prediction
result optimization and sequence decomposition, which means that the trend term and
the period term are gradually separated from the hidden variables to achieve progressive
decomposition.

3.2.2. Encoder

The input to the model uses the second half of the encoder input as input to provide
the most recent information, represented by Xen I

2 :I . In Figure 7, the series decomposition
block is based on the idea of a sliding average, smoothing the period term and highlighting
the trend term. The model input formula is the following formula:

Xt = AvgPool(Padding(X ))
Xs = X −Xt

(10)

where X is the hidden variable to be decomposed, Xt and Xs are the trend term and the
period term, respectively, and the above equation is written as:

Xs,Xt = SeriesDecomp(X ) (11)



Symmetry 2023, 15, 951 14 of 45

the above sequence decomposition unit is embedded between Autoformer layers. The
input to the encoder part is the time step Xen ∈ RI×d of the past i-th. As a decomposition
structure in Figure 7, the input contains both the season part Xdes ∈ R( I

2+O)×d and the
trend recurrence part Xdet ∈ R( I

2+O)×d. Each initialization part consists of two parts: a
decomposition from the second half of the encoder input Xen, of length I

2 , to provide the
most recent information, and a placeholder of length O filled by a scalar. The format is as
follows:

Xens,Xent = SeriesDecomp(Xen I
2 :I)

Xdes = Concat(Xens,X0)
Xdet = Concat(Xent,XMean),

(12)

where Xens,Xent ∈ R I
2×d denote the seasonal and trend cycle components of Xen, respec-

tively, and X0,XMean ∈ RO×d denote the mean and zero placeholder of Xen, respectively.
As shown in Figure 7, the encoder focuses on seasonal component modeling. The out-

put of the encoder contains past seasonal information and uses it as crossover information
to help the decoder refine the prediction results. Assume that there are N encoder layers.
The overall equation for the l-th encoder layer is summarized as X l

en = Encoder(X l−1
en ).

Details are as follows:

Sl,1
en , _ = SeriesDecomp(Auto-Correlation(X l−1

en ) +X l−1
en ),

Sl,2
en , _ = SeriesDecomp(FeedForward(Sl,1

en) + Sl,1
en),

(13)

where “_“ is the part of the trend that is eliminated. X l
en = S l,2

en , l ∈ {1, · · · , N} denotes
the output of the l-th encoder layer and X 0

en is the embedded Xen. Sl,i
en, i ∈ {1, 2} denotes

the seasonal component after the i-th sequence decomposition block of the L-th layer,
respectively.

The Xen I
2 :I signal involved above is used as input, and the results before and after

the auto-correlation are summed up and then enter the sequence decomposition module.
The encoder part of the Autoformer algorithm model is more concerned with the seasonal
decomposition part, and the trend decomposition part is removed. The encoder wants to
optimize the cycle transformation learning process, and through the encoding process, the
results before the encoding are summed up with the results after the encoding, and then go
through the sequence decomposition in order to reduce the computational complexity and
computational time.

3.2.3. Decoder

The decoder contains two components: an accumulation structure for the trend cycle
component and a stacked auto-correlation mechanism for the seasonal component. Each
decoder layer contains internal autocorrelation and encoding–decoding auto-correlation,
refining the predictions and using past seasonal information, respectively. The decoder
structure is shown in Figure 7. Note that the model extracts potential trends from inter-
mediate hidden variables during the decoder process, allowing the Autoformer algorithm
model to progressively refine the trend predictions and eliminate confounding information
for cycle-based dependence in auto-correlation discovery. Assume that there are m decoder
layers. Using the latent variable X N

en of the encoder, the equations for the l-th decoder layer
can be generalized to X l

de = Decoder(X l−1
de ,X N

en). The decoder can be formalized as:

Sl,1
de, T l,1

de = SeriesDecomp(Auto-Correlation(X l−1
de ) +X l−1

de ),
Sl,2

de, T l,2
de = SeriesDecomp(Auto-Correlation(Sl,1

de,X N
en) + Sl,1

de),
Sl,3

de, T l,3
de = SeriesDecomp(FeedForward(Sl,2

de) + Sl,2
de),

T l
de = T

l−1
de +Wl,1 · T l,1

de +Wl,2 · T l,2
de +Wl,3 · T l,3

de ,

(14)

where X l
de = S l,3

de , l ∈ {1, · · · , M} denotes the output of the l-th decoder layer. X 0
de is

embedded from Xdes, which is used for depth transformation, and T 0
de = Xdet is used
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for accumulation. Sl,2
de, T l,2

de , i ∈ {1, 2, 3} denotes the seasonal component and trend cycle
component of the l-th layer after the i-th sequence decomposition block, respectively.
Wl,i, i ∈ {1, 2, 3} denotes the projector of the i-th extracted trend T l,i

de . The final projection is
the sum of the components of the two refined decompositions, asWS ∗ XM

de + T M
de , where

WS is the projection of the depth-transformed seasonal component XM
de into the target

dimension.

3.2.4. Autoformer Algorithm Model Architecture Value

To address the problem of complex time patterns in long series time forecasting
that are difficult to handle and computationally efficient, Wu et al. [15] proposed the
Autoformer algorithm model based on the deep decomposition architecture and auto-
correlation mechanism. FFT is a widely used algorithm [31,32] that still plays its core value
today, and the Autoformer algorithm model combining the encoder–decoder mechanism is
improved and updated. By progressive decomposition and sequence-level concatenation,
the long series time forecasting efficiency is significantly improved.

At the same time, the Autoformer algorithm model shows excellent long series time
forecasting results in the five mainstream fields of energy, transportation, economy, me-
teorology, and disease, and the model has good effect robustness with strong application
landing value.

3.3. FEDformer

Although models such as Informer have made relevant structural improvements to the
transformer that significantly improve long series time forecasting results, they still suffer
from high computational cost and the inability to capture a global view of the time series,
among other problems. This section focuses on the encoder and decoder architectures in the
FEDformer algorithmic model. The algorithmic features of frequency domain operations
and the use of expert mixture blocks for seasonal trend decomposition are explained.

3.3.1. Application of Neural Networks in Frequency Domain Operations

The work carried out by the researchers differs slightly from other long time forecasting
algorithms in that it mainly uses neural networks for frequency domain operations and
takes the approach of using Fourier’s algorithm to represent the information in the time
series for time series forecasting [14]. In frequency domain operations, simply retaining
all frequency components may result in less accurate representations because many of
the high-frequency changes in the time series are due to noisy inputs. Retaining only the
low-frequency components may also be unsuitable for series prediction since some trend
changes in the time series represent significant events. Instead, maintaining a compact
representation of the time series using a small number of selected Fourier components can
make the computation efficient, which is crucial for long series time forecasting. In contrast,
the FEDformer algorithm model takes the approach of representing the time series by
randomly selecting a fixed number of Fourier components (both high- and low-frequency),
which, in layman’s terms, means performing a Fourier transform on each time series.

The researchers verify the feasibility and necessity of the FEDformer algorithm model
by relevant calculations in the process of proposing the algorithm model. A time series
is first transformed into a vector Xi(t)→ai = (ai,1, · · · , ai,d)

T ∈ Rd and then obtained by
substituting all the transformed vectors into a matrix A = (a1, a2, · · · , am)

> ∈ Rm×d, each
row corresponding to a different time series and each column corresponding to a different
Fourier component. Although using all the Fourier components can better preserve the
historical information in the time series, it may lead to the overfitting of the historical
data, which can lead to poor predictions of future signals. Therefore, a subset of Fourier
components needs to be chosen that is small enough to avoid the overfitting problem on
the one hand and capable of preserving most of the historical information on the other.
Consequently, researchers proposed to select s components (s < d) uniformly and randomly
from d Fourier components. Specifically, i1 < i2 < · · · < is is used to denote the randomly
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selected components. The matrix S ∈ {0, 1}s×d is established. If i = ik, then Si,k = 1,
otherwise Si,k = 0. Thus, the representation of the multivariate time series becomes
A′ = AS> ∈ Rm×s.

To measure the ability of A′ to preserve information from A, each column vector of A
is projected into a subspace consisting of the column vectors in A′. The result matrix after
projection is denoted by PA′(A), where PA′(·) denotes the projection operator. The error
between A and PA′(A) is expected to be small if A′ retains most of the information of A. Let
Ak represent the approximation of A using the first k largest single-value decompositions of
A. If the Fourier component s of random sampling is of the order of k2, then |A− PA′(A)|
and |A−Ak| are close.

For multivariate time series, the matrix A corresponding to the Fourier transform
tends to exhibit low-rankness because the univariate variables in a multivariate time series
not only depend on their past values, but the variables have dependencies on each other
and share similar frequency components. Therefore, a subset of randomly selected Fourier
components can properly represent information in the Fourier matrix A. Similarly, wavelet
canonical polynomials [33], such as Lejeune polynomials, obey the property of restricted
isometry and can be used for information capture in time series. Compared to Fourier
bases, wavelet representations are more effective in capturing the local structure in time
series and therefore more efficient in certain prediction tasks.

Additionally, the researchers found that in various cases, the distribution of model
inputs and true values differed significantly, leading to inaccurate predicted values of the
model. To solve this problem, the FEDformer algorithm model is structured to reduce the
differences in the distributions of the inputs and outputs by decomposing the periodic
trend terms; to better capture the global characteristics of the time series, the seasonal
trend decomposition is incorporated, and, inspired by the seasonal trend decomposition
and distribution analysis, the depth of the Informer architecture and the transformer
architecture are updated based on the original decomposition architecture, including
frequency enhanced block (FEB), frequency enhanced attention (FEA) connecting encoder
and decoder, and mixture of expert decomposition blocks (MOEDecomp).

3.3.2. FEDformer Algorithm Model Architecture

FEDformer’s encoder uses a multilayer structure X l
en = Encoder

(
X l−1

en

)
. n denotes

the output of the l-th encoding layer, X 0
en is the embedded history sequence, formalized as

follows:
Sl,1

en , _ = MOEDecomp(FEB(X l−1
en ) +X l−1

en ),
Sl,2

en , _ = MOEDecomp(FeedForward(Sl,1
en ) + Sl,1

en ),
X l

en = S l,2
en

(15)

where Sl,i
en, i ∈ {1, 2} denotes the seasonal component after the i-th decomposition block

of the first and second layers, respectively. For the FEB module, it has two different
versions (FEB-f and FEB-w) which are implemented by the discrete Fourier transform
(DFT) and discrete wavelet transform (DWT) mechanisms, respectively, and can replace
the self-attention blocks.

The decoder also uses a multi-layer structure: X l
de, T

l
de = Decoder

(
X l−1

en , T l−1
de

)
.

Where A denotes the output of the layer l decoder, Decoder(·) is formalized as follows:

Sl,1
de , T l,1

de = MOEDecomp(FEB(X l−1
de ) +X l−1

de ),
Sl,2

de , T l,2
de = MOEDecomp(FEA(Sl,1

de ,X N
en ) + Sl,1

de ),
Sl,3

de , T l,3
de = MOEDecomp(FeedForward(Sl,2

de ) + Sl,2
de ),

X l
de = S

l,3
de ,

T l
de = T

l−1
de +Wl,1 · T l,1

de +Wl,2 · T l,2
de +Wl,3 · T l,3

de ,

(16)
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where S l,i
en, i ∈ {1, 2} denotes the seasonal component after the i-th decomposition block

of the l-th layer, respectively, and the trend componentWl,i denotes the mapping of the
extracted i-th trend T l,i

de .
The Figure 8 shows that the FEDformer algorithm model consists of N encoders and

M decoders. Frequency enhancement blocks (FEB) and frequency enhancement attention
(FEA) are used for representation learning in the frequency domain. Both FEB and FEA
have two forms (FEB-F&FEB-W or FEA-F&FEA-W), where -F indicates that the Fourier
basis is used and -W indicates that the wavelet basis is used. Seasonal trend patterns are
extracted from the input data using a mixture of decomposition blocks.
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The main structure of the FEDformer algorithm model uses an encoder–decoder struc-
ture, which internally includes four sub-modules: a frequency domain learning module, a
frequency domain attention module, a period-trend decomposition module, and a forward
propagation module. The input goes through two MOEDecomp layers in the encoder,
and the MOEDecomp module decomposes the sequence into a sequence of period and
trend terms. Additionally, this decomposition is not performed only once, but also in an
iterative decomposition mode. The trend term component is discarded, and the period
term component is given to the next layers for learning and finally passed to the decoder.
In the decoder, the encoder input passes through three MOEDecomp layers and is decom-
posed into periodic and trend term components, where the periodic term component is
passed to the next layers for learning, where the frequency-domain correlation between
the periodic term of the encoder and decoder is learned through the frequency-domain
attention algorithm layer, and the trend term component is accumulated and finally added
back to the periodic term to restore the original sequence.
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Extracting trends in a fixed-window averaging pooling is more difficult because of the
complex periodic patterns usually observed in combination with trend components on real
data. To overcome such a problem, the FEDformer algorithm model adds mixture of expert
decomposition blocks, which contain a set of averaging filters of different sizes, multiple
trend components extracted from the input signal, and a set of data-dependent weights
that combine them into a final trend. The formulation is as follows:

Xtrend= Softmax(L(x)) ∗ (F(x)), (17)

where F(·) is a set of average pool filters, and Softmax(L(x)) is the weight of the trend of
mixing these extractions.

3.3.3. Learning Principles for Models in the Frequency and Time Domains

The Fourier transform and the inverse Fourier transform can transform signals be-
tween each other in the time domain and the frequency domain. The general signal is
sparse in the frequency domain, which means that only a few points need to be retained in
the frequency domain to restore the time domain signal almost lossless. The principle and
flow of FEB operation is mainly in the following order.

The input sequence on the original time domain is first projected to the frequency
domain. Then, random sampling is performed in the frequency domain. This has the
advantage of greatly reducing the length of the input vector and thus the computational
complexity; however, this sampling must be lossy to the input information. However, it is
experimentally proven that this loss has little impact on the final accuracy. This is because
the general signal can be more sparsely represented in the frequency domain compared to
the time domain. A large amount of information in the high-frequency part is so-called
“noise”, which can often be discarded in time series prediction problems, because “noise”
often represents randomly generation and is therefore difficulties in forecasting. In contrast,
in the image domain, the high frequency part of the “noise” may represent picture details
that cannot be ignored. In the learning phase after this, FEB uses a fully concatenated layer
R as a learnable parameter. FEA, on the other hand, cross-notes the signals from the encoder
and decoder in order to learn the intrinsic relationship between the two parts of the signals.
The frequency domain complementation process afterwards is relative to the frequency
domain sampling in the previous steps, and in order to enable the signal to be restored back
to its original length, the frequency points not picked up by the sampling need to be zeroed.
Finally, the signal is projected back to the time domain, and because of the complementary
operation in the previous step, the signal projected back to the frequency domain is exactly
the same as the previous input signal dimension.

3.3.4. FEDformer Algorithm Model Values

The FEDformer algorithm model uses a decomposed encoder–decoder overall archi-
tecture such as the Autoformer algorithm model. To improve the efficiency of subsequence-
level similarity computation, the FEDformer algorithm model uses methods such as Fourier
analysis. In general, the Autoformer algorithm model can be said to decompose the
sequence into multiple time-domain subsequences for feature extraction, whereas the
FEDformer algorithm model uses frequency transform to decompose the sequence into
multiple frequency domain modes for feature extraction. In particular, instead of using
selective methods in subsequence selection, It calculates the significant frequency features
in the whole sequence, and this global feature gives the model better performance for long
sequences.

3.4. Pyraformer

Researchers proposed the Pyraformer algorithm model based on pyramidal atten-
tion [16]. This section introduces the performance of the Pyraformer algorithm model in
terms of temporal and spatial complexity as well as long-range dependencies, and also
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introduces and elaborates on the overall architecture of the Pyraformer model as well as
the structure and principle of the encoder–decoder.

Firstly, it is known from previous studies that the Transformer can effectively capture
long-range dependencies and has a maximum path length of O(1 ), but its time and space
complexity is O(L2). Therefore, there are many Transformer variants that have explored
this drawback of high space–time complexity to some extent; for example, Informer proves
the sparsity of attention and reduces the complexity from O(L2) to O(L/ log L), but it
introduces a longer maximum path length because a part of nodes far from the uniformly
distributed attention fraction is selected as query nodes.

Some of the existing models are sparse Transformer models; for example, the Long-
former [22] algorithm model uses a local window similar to CNN to reduce the complexity
to O(AL), where A is the local window size, but the limited window size makes it difficult
to exchange information globally. In contrast, the Reformer [34] algorithm model uses
locally sensitive hashing to divide the sequence into parts, and the maximum path length
of Reformer is proportional to the number of separated parts, so it also leads to the need for
a large number of components to reduce the complexity, while the number of global tokens
designed by ETC is G, which usually increases with L and the consequent complexity is
still more than linear.

Another class is the hierarchical Transformer, and there are two main types of such
methods to improve the Transformer’s ability to capture natural language hierarchies: the
Multi-scale Transformer [35] and the BP-Transformer [36]. The Multi-scale Transformer
uses top-down and bottom-up network structures to learn multi-scale representations of
sequential data, which can appropriately reduce the complexity of the original Transformer,
but still fall into O(L2) complexity. In contrast, the BP-Transformer recursively divides
the entire input sequence into two until the last partition contains only one token. Then,
the partitioned sequence forms a binary tree, closely related to the graph. the Pyraformer
algorithm also models the partitioned sequence to form a binary tree. However, the graph
associated with Pyraformer can obtain a more sparsely representation, and it reduces the
maximum path length while greatly reducing the time and space complexity. It is also
possible to capture the gap between remote dependencies and achieve low time and space
complexity.

3.4.1. Pyraformer Algorithm Model Architecture

The structure of the Pyraformer algorithm model is presented in Figure 9, where
the CSCM summarizes the embedded sequences at different scales and builds a multi-
resolution tree structure. PAM is then used to exchange information between nodes
efficiently.
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As can be seen from Figure 9, firstly, the input historical observations embedding
features, global time covariates embedding features, and position encoding are summed
together, which is the same as that of the long-range time series prediction model Informer.
Then, the coarse-scale construction module is used to construct a multi-resolution convo-
lution module, and the original sequence nodes under the fine scale are used to generate
the parent nodes under the coarser scale, and the number of child nodes is C times that
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of the parent nodes, which finally forms a C-element tree at the fine and coarser scales,
with the coarser scale nodes aggregating the feature information of the C child nodes in the
previous layer. To further capture the temporal dependencies at different scales, the coarse
and fine scale temporal node features generated by CSCM are passed into the pyramidal
attention module for inter- and intra-scale information transfer among nodes based on the
attention mechanism. Finally, different prediction methods are used to predict the results
for single-step prediction and multi-step prediction.

3.4.2. Coarser Scale Construction Module (CSCM)

The goal of CSCM is to initialize nodes at the coarser scales of the pyramidal graph so
that subsequent PAMs can exchange information among these nodes. Specifically, coarse-
scale nodes are introduced from the bottom to the top by convolving the corresponding
sub-nodes C(s)`.

As shown in Figure 10, B in the figure is the batch size and D is the dimension of
the node. Several convolutional layers with kernel size C and step size C are applied
sequentially to the embedded sequence in the time dimension. A sequence of length is
generated at scale s. The dimensionality of each node is reduced by a fully connected layer
before feeding the sequence into the stacked convolutional layers and recovering it after all
convolutions. These sequences, ranging from fine to coarse, are connected before feeding
them into the PAM. Such a structure significantly reduces the number of parameters in the
module and prevents overfitting.
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3.5. Triformer

This section introduces the advantages of the Triformer algorithm model over other
transformer models in terms of the structure and principles of the Triformer algorithm
model, using long- and short-term forecasting as an entry point. Existing models generally
use uniform, often Q, K, and V projection functions for variables in time series forecasting
that are not perceptible to the variables. In the Triformer algorithm model, the authors
propose an innovative method of variable-specific modeling to improve the traditional
attention, which has a certain improvement on the prediction accuracy.

3.5.1. Variable Agnostic and Variable-Specific Modeling

In this section, we first introduce the difference between long- and short-term pre-
diction and the problem of choosing a prediction model, followed by an overview for the
modeling aspects of the variables.

For short-term prediction (after 12–48 time slices), it is possible to use RNN [37]
or TCN [38], but for long time series forecasting, both RNN and TCN have only very
limited capabilities because they have to rely on intermediate steps to pass the temporal
information little by little, so it can be seen that RNN and TCN are not very suitable for
long time series forecasting.
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For long time series forecasting, self-attention is outstanding in accuracy, but it is O(n2)
complex in time and space. In recent years, there are some papers devoted to finding sparse
attention, such as the LogTrans algorithm model with space-time complexity O(H(log H)2)
and the Informer algorithm model with space-time complexity O(H(log H)).

When iterating over multiple layers of attention, the above methods use an additional
pooling layer to help reduce the size of the input to the same size as the next layer of
attention, while the Triformer algorithm model proposed by Cirstea et al. [17] can reduce
the number of elements in each layer by itself without the pooling operation.

Most of the research is conducted on unknown variables, which means that different
time series of different variables may exhibit different temporal patterns, but they share
the same set of model parameters, such as the same weight matrix in RNN, the same
convolution kernel in TCN, or the same projection matrix in attention. Some studies
have proposed variable-specific modeling for RNN. Researchers have used additional
information to generate variable-specific weight matrices [39], such as using interest point
categories around the deployed sensor location to generate specific matrices. However,
such additional metadata may not always be available. Other researchers have learned
variable-specific weight matrices in a purely data-driven manner, without the need for
additional information [40].

If each variable has the same parameters, the model may only learn the average
sample. As shown in the example of variable time series, each variable has different
temporal patterns. In variable-agnostic modeling, all variables use the same projection
matrix. In variable-specific modeling, different projection matrices are used for different
variables, so that different temporal patterns of different variables can be captured. The
projection matrix is decomposed into a variable-agnostic matrix and a variable-specific
matrix, with the former being shared among all variables and the latter being specific
to each variable. The Triformer algorithm makes the variable-specific matrix extremely
compact, avoiding an increase in parameter space and computational costs.

3.5.2. Triangular Stacking Attention

Self-attention is a core operation based on the attention model, and this section focuses
on the structure of the Triformer algorithm model. Figure 11 shows the model structure of
the Triformer algorithm:
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In traditional self-attention models, the same input and output have the same shape.
In contrast, pooling-based methods apply one-dimensional convolution to the output to
reduce the time range. When using patch attention, the Triformer algorithm model only
feeds the pseudo time stamps from the patches to the next layer, which exponentially
reduces the layer size. More specifically, the dimension of the (L + 1)-th layer is only 1

Sl
of

the dimension of the L-th layer, where Sl is the patch dimension of the L-th layer.
In a multi-layer Triformer algorithm model, each layer consists of a different number

of patches, resulting in a varying number of outputs, or pseudo timestamps. Instead of only
using the last pseudo timestamp from each layer as the final output, the Triformer model ag-
gregates all pseudo timestamps from each layer into a single aggregate output. Specifically,
the aggregate output Ol of the L-th layer is defined as Ol = θl(Tl

1, · · · , Tl
k, · · · , Tl

P).
O is a neural network, where T represents the pseudo time-stamps for each patch p

∈ [1, p] in the l-th layer. Finally, all aggregated outputs of the layers are connected to the
predictor, which has two advantages over using only the last layer’s aggregate output.
Firstly, the set output represents features at different time scales, contributing to different
time views. Secondly, it provides multiple gradient feedback shortcuts, simplifying the
learning process. A fully connected neural network is used as the predictor in the model
because it has high prediction efficiency and is suitable for long time series forecasting.

3.5.3. Lightweight Modeling for Generating Variable-Specific Parameters

Modeling of variables can be achieved by introducing different projection matrices
for each variable, leading to a very large computational space requirement. Traditional
methods require learning n · d2 parameters for each projection matrix, which may lead to
overfitting and high memory usage. To address this issue, researchers have proposed a
lightweight method to generate variable-specific parameters [41]. Additionally, this method
is data-driven and dependent on the time series itself. The Triformer algorithm model
refers to this approach to reduce the size of the parameter space. The entire process is
illustrated in Figure 12.
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In Figure 12, different colors represent matrices for different variables, where L and
R are unknown variables. For the i-th variable, the naive method directly learns the
matrix K(i), whereas the lightweight method learns K(i) through L× B(i) × R. Here, B(i) is
generated from the memory M(i) through a generator G.

First, introduce an m-dimensional memory vector M(i) ∈ Rm for each variable, where
i ∈ [1, N]. The memory is randomly initialized and is learnable. This makes the method
purely data-driven and can learn the most salient features for each variable. The key
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matrix W(i)
K ∈ Rd×d is decomposed into three matrices, the left variable-independent

matrix LK ∈ Rd×a, the middle variable-independent matrix B(i) ∈ Ra×a, and the right
variable-independent matrix RK ∈ Ra×d. This makes the middle matrix compact, i.e., a < <
d, and the method lightweight.

The left and right matrices are variable-independent, and therefore shared among all

variables. Different variables have their own intermediate matrix {B(i)}N
i=1, which gives the

intermediate matrix variable specificity. Specifically, the intermediate matrix B(i) for the i-th
variable is generated using a generator g(·), which maps N·m to N·a2. Compared to using
a single generator, this requires N·m memory for the generator and incurs an additional
cost of m·a2.

Since the time series of all variables share the variable agnostic matrices L and R,
Equation (17) summarizes the generation of the variable-specific key and value matrices
W(i)

K and W(i)
V , replacing WK and WV in the traditional algorithmic model, while eliminating

the need for Q, since patch attention does not require it, using the pseudo-timestamp TP:[
W(i)

K
W(i)

V

]
=

[
LKG(M(i))RK

LVG(M(i))RV

]
(18)

4. Innovation of Attention Algorithms
4.1. Innovation of Attention in the TCCT Algorithm Model
4.1.1. CSPAttention

CSPAttention is a self-attention mechanism that mirrors CSPNet. It reduces the time
complexity of the self-attention algorithm while achieving equivalent or higher prediction
accuracy. This section mainly introduces the structure and principle of CSPAttention.

In Figure 13, the input of a single CSPAttention block is divided into two parts. The first
part is propagated through an A convolutional layer, which is actually a 1× 1 convolutional
layer. The other part is propagated through a B module, which is a self-attention block.
Finally, the outputs of the two parts are concatenated together to serve as the final output
of the entire CSPAttention block.
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Figure 13. A single CSPAttention block.

In the CSPAttention block, the input is RL×d, where L is the input length and d is the
input dimension, which is divided into two parts through dimension X = [XL×d1

1 , XL×d2
2 ].

X1 passes through a 1 × 1 convolutional layer A and is then concatenated to the end of the
block, while X2 serves as the input to the self-attention block B. The outputs of A and B are
combined as the output of the entire block, excluding bias. The output matrix of one stage
of CSPAttention is given by the following formula:

Y =

[
Y1

Y2

]
=

[
X1Wc

Concat(A(X2h)Wh)
H
h=1

]
(19)

where A(X2h) is the scaled dot-product of the h-th self-attention block. Wh is the linear
projection matrix of dh × dh. H is the number of attention heads, and dh is the size of each
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head (assuming each head is of the same size). W is the d/2× d/2 value weight matrix of
the 1 × 1 convolution layer.

The way CSPAttention handles the token dimension is mainly inspired by the way
CSPNet [42] handles image channels. The entire output Y can be written as a sub-block
matrix, so that the two split parts do not contain duplicated gradient information belonging
to the other part. Additionally, when the output dimension is different from the input
dimension, an extra 1 × 1 convolutional layer is added to project the first part to the
appropriate dimension. The weight update for CSPAttention is given by the following
formula:

W ′h = f (g2, Wh)
W ′c = f (g1, Wc)

(20)

the weight updating function is denoted by f and g represents the gradient propagated
to the i-th path. It can be seen that the gradients of the partitioned parts are integrated
separately. CSPAttention alleviates the memory and computational efficiency issues of the
self-attention mechanism and reduces the memory and time complexity of self-attention.

Assuming that the input and output dimensions of a standard self-attention block
are both d and there is only one input token, a self-attention block consists of four linear
projection layers, with input and output dimensions both being d, so the memory con-
sumption is 4d2. However, if CSPAttention splits the input dimension into two parts, one
part in CSPAttention has only one linear projection layer, while the other part has four
linear projection layers. Therefore, the memory consumption of a CSPAttention block
is only 31.25% of the classic self-attention block. The corresponding comparison of the
self-attention block structures is shown in Figure 14.
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In Figure 14, the left (a) is a classic multi-head self-attention architecture, assuming 
each head has the same dimension. The right (b) is a CSPAttention block that divides the 
input into two parts by dimension. The first left part is actually a self-attention block with 
half the input dimension, and the other right part is linked to the end of the entire block 
by a 1 × 1 convolution layer. If CSPAttention divides the input dimension into two halves, 
this method reduces the time complexity by at least 50% compared with a standard self-
attention block. CSPAttention not only reduces memory usage but also significantly low-
ers time complexity. 
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head self-attention architecture. (b) a CSPAttention block.

In Figure 14, the left (a) is a classic multi-head self-attention architecture, assuming
each head has the same dimension. The right (b) is a CSPAttention block that divides
the input into two parts by dimension. The first left part is actually a self-attention block
with half the input dimension, and the other right part is linked to the end of the entire
block by a 1 × 1 convolution layer. If CSPAttention divides the input dimension into two
halves, this method reduces the time complexity by at least 50% compared with a standard
self-attention block. CSPAttention not only reduces memory usage but also significantly
lowers time complexity.

4.1.2. CSPAttention Model Applications

CSPAttention can also be applied to other similar architectures and upgrade them
to tightly coupled convolutional Transformer architectures. The combined LogSparse
CSPAttention block is shown in the figure. LogTrans optimizes the query length during the
scaling dot product, and CSPAttention optimizes the input, both of which are independent.
Similarly, when CSPAttention is applied to the Informer algorithm model, ProbSparse
self-attention will be upgraded to ProbSparse CSPAttention. Moreover, like CSPNet,
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CSPAttention increases the number of gradient paths to ensure that the model achieves the
same or higher prediction accuracy with less computation and memory usage.

In Figure 15, the conventional self-attention block in LogSparse CSPAttention is re-
placed with the LogSparse self-attention block.
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4.2. Autoformer

In recent years, traditional time series prediction models such as the Informer algo-
rithm model have relied on self-attention mechanisms to capture dependencies between
time steps. However, in long time series forecasting, there still exist complex temporal
patterns in long sequences that make it difficult for attention mechanisms to discover
reliable temporal dependencies. Furthermore, using a sparse form of attention mechanism
to address the issue of quadratic complexity creates a bottleneck for information utilization.

Wu et al. [15] auto-correlation mechanism based on the theory of random processes to
address the trade-off between quadratic complexity and information utilization bottleneck.
The auto-correlation mechanism replaces the pointwise connection of attention mechanisms,
enabling sequence-level connections and achieving O(L/ log L) time–space complexity,
thereby breaking through the bottleneck of information utilization.

4.2.1. Auto-Correlation Algorithm

Auto-correlation is the dependency relationship between the instantaneous values
of a signal at one time and the instantaneous values at another time and is a temporal
description of a random signal. Auto-correlation, also known as sequence correlation,
is the cross-correlation of a signal with itself at different time points. In simpler terms,
auto-correlation evaluates the similarity between two observations of the same signal at
different times. The result obtained through the auto-correlation function is the average of
the product of the signal x(t) and its time-shifted signal x(t–τ), which is a function of the
time-shift variable τ. As shown in Figure 16, the information utilization rate is extended
through a serially connected auto-correlation algorithm. The auto-correlation algorithm
discovers periodic-based correlations by computing the auto-correlations of a sequence,
and aggregates similar subsequences through time-delayed aggregation.

To compute the autocorrelation R(τ), fast Fourier transform is used, which reflects the
similarity in time delays. Then, similar sub-sequences are rolled onto the same index based
on the selected time delay τ and aggregated using R(τ). The relevant formula is as follows:

RXX (τ) = lim
L→∞

1
L

L

∑
t=1

Xt−τ (21)

the parameter τ represents the length of the cycle and indicates how much delay there is.
In the case of τ = 1, it represents a lag of 1. This function can be used as a criterion in this
process to select the most likely k cycle lengths, τ1, · · · , τk. Based on the estimated cycles,
the periodicity-based correlation is derived, which can be weighted by the correspond-
ing autocorrelation. The autocorrelation function RXX (τ) is used to identify historical
subsequences that are similar to the current sequence. If two subsequences are not highly
corresponding,RXX (τ) will decrease.
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To compute the autocorrelation R(τ), fast Fourier transform is used, which reflects 
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The auto-correlation algorithm in Autoformer can be compared to the traditional
Transformer model, where the auto-correlation structure in the model is equivalent to the
attention block between the encoder and decoder in Transformer. The K and V come from
X N

en in the encoder and are scaled to a length of O, whereas Q comes from the previous
decoder module X l

de. Regarding the efficiency of this model, if the sequence length is n, it
needs to perform N lags, and each lag requires a correlation calculation with the original
sequence. This results in a time complexity of O(n2 · d), which is relatively high. To speed
up the process, the auto-correlation mechanism uses FFT to calculate the correlation, and
the formula for calculating the correlation is as follows:

SXX ( f ) = F (Xt)F ∗(Xt) =
∫ ∞
−∞ Xte−i2πt f dt

∫ ∞
−∞ xte−i2πt f dt

RXX (τ) = F−1(SXX ( f )) =
∫ ∞
−∞ SXX ( f )ei2π f τd f ,

(22)

where τ ∈ {1, · · · L}, F represents the FFT algorithm and F−1 is the inverse of F . “*”
indicates that the conjugate operation is performed and SXX ( f ) is in the frequency domain.
The serial autocorrelation of all lags in {1, · · · L} can be computed once by FFT. Therefore,
the time complexity is reduced to O(L · log L).

The Autoformer algorithm model uses a multi-headed version with hidden variable
dmodel , number of heads h, and the query, key, and value of the i-th head Qi,Ki,Vi ∈
RL× dmodel

h , i ∈ {1, · · · , h}. The process is the following equation:

MultiHead(Q,K,V) =Woutput ∗Concat(head 1, · · · headh
)

where headi= Auto-Correlation(Qi,Ki,Vi).
(23)

4.2.2. Time Delay Aggregation

The main goal of time-delay aggregation is to estimate correlated sub-sequences
through the connectivity property of correlation. In this process, the signal is rolled based
on the selected time delay τ to align similar sub-sequences located in the same estimated
period. This is different from the point-wise product aggregation in self-attention. Finally,
a softmax function is used to aggregate sub-sequences and obtain normalized confidence
scores. The specific process is shown in Figure 17.
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This operation involves rolling similar sub-processes to the same index based on the
selected time delay τ, and then aggregating them usingR(τ). See the formula below for
details:

τ1, · · · , τk = argTopk(RQ,K(τ)), τ ∈ {1, · · · , L}
R̂Q,K(τ1), · · · , R̂Q,K(τk) = SoftMax(RQ,K(τ1), · · · ,RQ,K(τk))

Auto-Correlation(Q,K,V) =
k
∑

i=1
Roll(V , τi)R̂Q,K(τi)

(24)

as we can see, the Roll function is used in the time delay aggregation, and the delayed se-
quence is obtained by rolling the original sequence. Then, the correlationR(τ1),R(τ2), · · · ,
R(τk) between the original sequence and sequence [τ1], [τ2], · · · , [τk] is calculated, and the
resulting correlation is passed through a softmax function to convert it into a probability
distribution:

Softmax(zi) =
ezi

∑C
c=1 ezc

(25)

the output value zi of the i-th node is a weighted sum of the lagged subsequence [τ1], [τ2], · · · ,
[τk] through Fusion. C is the number of output nodes, which is the number of classification
categories. The Softmax function is used to transform the output values of the multi-
classification into a probability distribution with a range of [0, 1] and a sum of 1. In simple
terms, the process first uses the Top-k operator to obtain [τ1], [τ2], · · · , [τk], and then uses
SoftMax to obtain probabilities, which are then used for weighted fusion averaging to
obtain Auto-Correlation(Q,K,V). This operation replaces the self-attention mechanism
used in the previous Informer algorithm model. The Fusion weighted averaging operation
used is equivalent to an attention-scorex sequence (autocorrelation coefficient x sequence)
in which a series of operations are performed to obtain the autocorrelation sequence.

4.2.3. Autocorrelation Algorithm Note Innovation Points

The main difference between the autocorrelation and self-attention families lies in
their connection scheme. Autocorrelation connects sub-sequences through concatenation.
In layman’s terms, for time-dependent data, autocorrelation determines the dependencies
between sub-sequences based on periodicity. In contrast, a self-attention family, such as
the Informer model, only computes relationships between scattered data points. In terms
of information aggregation, autocorrelation uses time-delay blocks to aggregate similar
sub-sequences within potential periods, whereas self-attention aggregates selected data
points through dot products. The autocorrelation algorithm utilizes inherent sparsity
and sub-sequence-level representation aggregation, which can simultaneously improve
computational efficiency and information utilization.
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4.3. FEDformer
4.3.1. Discrete Fourier Transform

The Fourier enhancement structures used in the FEDformer algorithm model are
based on the discrete Fourier transform (DFT). Let F denote the Fourier transform and F−1

denote the inverse Fourier transform. An xn sequence of real numbers in the time domain,
where n = 1, 2 . . . N. The discrete Fourier transform is defined as Xl = ∑N−1

n=0 xne−iωln,
where i is the imaginary unit, and Xl , l = 1, 2 . . . L is a complex sequence in the frequency
domain.

Similarly, the inverse DFT is also defined as xn = ∑L−1
l=0 Xleiωln. The computational

complexity is O(N2). When using fast Fourier transform, the computational complexity
can be reduced to O(N · log N). During the transformation process, a random subset of
Fourier bases is used, and the scale of the subset is constrained by a scalar. When selecting
mode indices before DFT and inverse DFT operations, the computational complexity can
be further reduced to O(N).

4.3.2. Frequency Enhanced Block of Fourier Transform

As shown in Figure 18, the frequency enhancement block of the Fourier transform is
applied in the encoder and decoder:
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Figure 18. Frequency enhancement block of Fourier transform.

The input x ∈ RN×D of the block is first linearly projected by ω ∈ RD×D, hence
q = x · w. Then, q is transformed from the time domain to the frequency domain. The
Fourier transform of q is denoted as Q ∈ CN×D. In the frequency domain, only randomly
selected M modes are kept, using a selection operator Q̃ = Select(Q) = Selec(F (q)), where
Q̃ ∈ CM×D and M << N.

The FEB-f module is defined as FEB − f(q) = F−1(Padding(Q̃ � R)), where R ∈
CD×D×M is a randomly initialized parameterized kernel. The product operator� is defined
as Ym,do = ∑D

di=0
Qm,di

· Rdi ,do ,m (di is the input channel; do is the output channel). The result
of Q� R is zero-padded to CN×D before performing the inverse Fourier transform back to
the time domain.

4.3.3. Fourier Transform Frequency Enhancement Attention

FEDformer algorithm uses Fourier transform frequency-enhanced attention to replace
traditional attention. In the Transformer expression, which is the expression of the reg-
ular transformation, the input queries, keys, and values are represented as q ∈ RL×D,
k ∈ RL×D, v ∈ RL×D.

In cross-attention, the queries come from the decoder and can be calculated by
q = xen · wq, where wq ∈ RD×D. The keys and values come from the encoder and can
be obtained by k = xde · wk and v = xde · wv, where wk, wv ∈ RD×D. Therefore, the formula

for standard attention used to be Attention(q, k, v) = Softmax( qkT√
dq
)v.

In FEA-f, the traditional attention calculation mode has been changed. FEA-f uses
Fourier transform to transform queries, keys, and values, and performs a similar attention
mechanism in the frequency domain by randomly selecting M patterns. After the Fourier
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transform, queries, keys, and values are represented by Q̃ ∈ CM×D, K̃ ∈ CM×D, Ṽ ∈ CM×D.
FEA-f can be defined as:

Q̃ = Select(F (q))
K̃ = Select(F (k))
Ṽ = Select(F (v))

(26)

FEA-f(q, k, v) = F−1(Padding(σ(Q̃ · K̃>) · Ṽ)) (27)

the activation function σ is used in the calculation, and softmax or tanh is used for activation
because their convergence performance may vary on different data sets. Before performing
the inverse Fourier transform, let Y = σ(Q̃ · K̃>) · Ṽ, Y ∈ CM×D, and zero-padding is
required for CL×D. The overall structure is shown in the Figure 19 below:
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4.3.4. Discrete Wavelet Transform

The Fourier transform introduced above actually creates a signal in the frequency
domain, whereas wavelet transform creates a signal between both the frequency domain
and the time domain. Wavelet transform allows efficient access to localized information
of the signal and can be widely applied in time series prediction [43]. Multi-head wavelet
transform combines the advantages of orthogonal polynomials in traditional methods and
wavelets. For a given f (x), the multi-head wavelet coefficients with a scale of n can be
defined as:

sn
l =

[
〈 f , φn

il〉µn

]k−1

i=0
, dn

l =
[
〈 f , ψn

il〉µn

]k−1

i=0
(28)

the measure of µn is calculated using sn
l , dn

l ∈ Rk×2n
. φn

il is the standard orthogonal basis of
the piecewise polynomial wavelet. The cross-scale decomposition and reconstruction are
defined as follows:

sn
l = H(0)sn+1

2l + H(1)sn+1
2l+1

sn+1
2l = Σ(0)

(
H(0)Tsn

l + G(0)Tdn
l

)
,

dn
l = G(0)sn+1

2l + H(1)sn+1
2l+1,

sn+1
2l+1 = Σ(1)(H(1)Tsn

l + G(1)Tdn
l )

(29)

where (H(0), H(1), G(0), G(1)) is the linear coefficients of the multi-head wavelet decomposi-
tion filter. They are fixed matrices used for wavelet decomposition. The multi-head wavelet
representation of a signal can be obtained by the tensor product of multi-scale and multi-
head wavelet bases. Since the bases at different scales are coupled by tensor products, they
need to be separated. The FEDformer algorithm model uses a non-standard wavelet [44]
representation to reduce model complexity. For the mapping function F(x) = x′, the
mapping in the multi-head wavelet domain can be written as:

Un
dl = Andn

l + Bnsn
l , Un

ŝl = Cndn
l , UL

sl = FsL
l , (30)
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where (Un
sl , Un

dl , sn
l , dn

l ) is the multiple wavelet coefficients, L is the coarsest scale under
recursive decomposition, and An, Bn, Cn are three independent FEB-f blocks that handle
different signals during decomposition and reconstruction. F is a single-layer perceptron
that processes the remaining coarsest signal after L decomposition steps.

4.3.5. Frequency Enhancement Block of Wavelet Transform

The recursive mechanism of FEB-f involves dividing the input into three parts and
processing them independently. As for the wavelet decomposition part, FEB-w uses a fixed
Legendre wavelet decomposition basis decomposition matrix. The three FEB-f modules are
used to process the high-frequency part, the low-frequency part, and the residual part left
in the wavelet decomposition, respectively.

For each cycle L, FEB-w generates a processed high-frequency tensor Udl , a pro-
cessed low-frequency tensor Usl , and an original low-frequency tensor X(L + 1). This is
a downsampling where the decomposition phase performs signal extraction with a 1/2
factor, running for a maximum of L cycles. The input sequence size is given as M, where
L < log2(M). In practice, L is set as a fixed parameter, and the three sets of FEB-f modules
are shared across different decomposition cycles with varying L values.

The wavelet reconstruction part also recursively constructs the output tensor. Each
iteration combines X(L + 1), Usl , and Udl generated by the decomposition part. For each
iteration, the length dimension of the signal tensor is doubled.

FEA-w, like FEB-w, consists of a decomposition phase and a reconstruction phase. The
only difference between FEA-w and FEB-w lies in the decomposition phase. FEA-w uses
the same decomposition matrix to decompose the q, k, and v signals, and these signals are
processed by the same group of modules. A frequency enhancement block (FEB-w) with
a wavelet decomposition block contains three FEB-f blocks for signal processing. FEB-f
can be regarded as a substitute for the self-attention mechanism. In FEA-w, each FEB-f
module is replaced by an FEA-f module, and a wavelet decomposition is used to establish
frequency-enhanced cross-attention. In addition, an FEA-f module is added to process the
remaining coarsest q(L), k(L), and v(L) signals.

In Figure 20, the left diagram shows the decomposition stage of the wavelet frequency
enhancement block, which includes three FEB-f modules. The middle diagram shows
the decomposition stage of the wavelet frequency enhancement cross-attention. The right
diagram shows the wavelet block reconstruction stage shared by FEB-w and FEA-w.
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4.4. Pyraformer

This section mainly introduces the operation mechanism and principle of the Pyramid
Attention Module (PAM) in the Pyraformer algorithm model. Figure 21 shows the process
of message passing in the pyramid attention algorithm:
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In Figure 21, the Pyraformer algorithm model uses a pyramid-like structure to describe
the temporal correlation of observed time series in a multi-resolution manner. The connec-
tions in the figure can be divided into inter-scale connections and intra-scale connections.
The inter-scale connections form a C-ary tree, where each parent node has C child nodes.
In addition, by simply connecting adjacent nodes with intra-scale connections, it is easier
to capture long-term dependencies at coarser scales.

4.4.1. Traditional Attention Model and Patch Attention Structure

In traditional attention mechanisms, assuming X and Y are the input and output of a
single attention, X is linearly transformed into three independent matrices, with the query
matrix Q = XWQ, the key matrix K = XWK, and the value matrix V = XWV . The output
of the traditional attention mechanism is as follows:

yi =
L

∑
l=1

exp(qikT
l /
√

DK)vl

∑L
l=1 exp(qikT

l /
√

DK)
, (31)

where kT
l represents the transpose of the l-th row of K, and

√
DK is the square root of the

feature dimension. It is worth noting that the time and space complexity of attention is
determined by the number of query-key dot products. From another perspective, this
number is directly proportional to the number of edges in the graph. Since all query-key
dot products are calculated and stored in the full attention mechanism, the time and space
complexity obtained is O(L2).

The patch attention model (PAM) differs from the full attention mechanism described
above. Each node in the PAM attends only to a limited set of keys. In fact, it utilizes a pyra-
mid architecture to describe the dependencies of time series in a multi-resolution manner.
The multi-resolution structure is an effective tool for modeling long-range interactions, and
the multi-resolution pattern is an effective tool for modeling pixel-long-range interactions
in computer vision.

From Figure 22, it can be seen that the pyramid graph can be decomposed into two
parts: inter-scale connections and intra-scale connections. The definitions of the nodes in
the graph are as follows: let n(s)

l be the l-th node at scale s, where s = 1, · · · , S represents

the order of scales from bottom to top. N(s)
l represents a set of neighboring nodes of node

n(s)
l , including three groups of nodes A(s)

l , C(s)
l , and P(s)

l , where A(s)
l represents the set of
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neighboring nodes including itself in the same scale, C(s)
l represents C child nodes in the

C-ary, and P(s)
l represents the parent node. The formulas for each node are as follows:

N(s)
l = A(s)

l ∪C
(s)
l ∪ P

(s)
l

A(s)
l = {n(s)

j :
∣∣∣j− l

∣∣∣≤ A−1
2 , 1 ≤ j ≤ L

Cs−1 }

C(s)
l = {n(s−1)

j : (l − 1)C < j < lC} if s ≥ 2 else

P(s)
l = {n(s+1)

j : j = [ l
C ]} if s ≤ S− 1 else

(32)

from the above equation, it can be derived that the attention at node n(s)
l can be simplified

as:

yi = ∑
l∈N(s)

l

exp(qikT
l /
√

dK)vl

∑l∈N(s)
l

exp(qikT
l /
√

dK)
, (33)

assuming N is the number of attention layers and L is divisible by CS−1. According to the
definition of the PAM pyramid, we obtain Lemma 2, where A is the number of middle
nodes in the same scale sequence that can be classified as neighbor nodes, C is the number
of finer scale nodes that a coarser scale node can aggregate, L is the input sequence length
(i.e., the first layer of the pyramid attention), N is the number of attention layers, and S is
the number of scales (i.e., the number of layers in the pyramid).

Symmetry 2023, 15, x FOR PEER REVIEW 35 of 49 
 

 

 
Figure 22. Full attention neural network architecture. 

( ) ( ) ( ) ( )

( ) ( )
1

( ) ( 1)

( ) ( 1)

if s 2 else 

if 

1{ :| | ,1 }
2

{ : ( 1) }

{ : [ ]} 1 else 

s s s s

s

l l l

s s
j s

s
j

s
j

l

s

l

l

l

A Ln j l j
C

n l C j lC

n j s Sl
C

−

−

+

=
−= − ≤ ≤ ≤

− < < ∅

= ≤ − ∅

= ≥

=

   







∪ ∪

 (32) 

from the above equation, it can be derived that the attention at node ( )
l

sn  can be simplified 
as: 

( )
( )

exp( / )
,

exp( / )s
l

l
s

l

l K

T
i K l

i T
l il

q k d v
y

q k d∈ ∈

=   

 (33) 

assuming N is the number of attention layers and L is divisible by 1SC − . According to the 
definition of the PAM pyramid, we obtain Lemma 1, where A is the number of middle 
nodes in the same scale sequence that can be classified as neighbor nodes, C is the number 
of finer scale nodes that a coarser scale node can aggregate, L is the input sequence length 
(i.e., the first layer of the pyramid attention), N is the number of attention layers, and S is 
the number of scales (i.e., the number of layers in the pyramid). 

Lemma 1: Given A, C, L, N, and S in the following equation, the coarsest scale node can obtain 
the global perceptual field after N stacked attention operations are performed: 

1
( 1)1

2S
L A N

C −

−− ≤  (34) 

in addition, when the number of scales S is fixed, the following two propositions summa-
rize the time and space complexity as well as the order of maximum path length of the 
proposed pyramid attention mechanism: 

Proposition 1: For a given A and L, the time and space complexity of the pyramid attention mech-
anism is O( )AL . When A is a constant, the time and space complexity is O( )L . 

Proposition 2: For a given A, C, L, and S, the maximum length of the signal traversal path be-
tween any two nodes in the pyramid graph is 1O( / / )SS L C A−+ . Assuming A and S are fixed, for 
a time series of length L, the maximum path length is O(1)  when C satisfies the following equa-
tion. The following equation explains the relationship between the given A, C, L, and S: 

Figure 22. Full attention neural network architecture.

Lemma 2. Given A, C, L, N, and S in the following equation, the coarsest scale node can obtain the
global perceptual field after N stacked attention operations are performed:

L
CS−1 − 1 ≤ (A− 1)N

2
(34)

in addition, when the number of scales S is fixed, the following two propositions summarize
the time and space complexity as well as the order of maximum path length of the proposed
pyramid attention mechanism:

Proposition 1. For a given A and L, the time and space complexity of the pyramid attention
mechanism is O(AL). When A is a constant, the time and space complexity is O(L).

Proposition 2. For a given A, C, L, and S, the maximum length of the signal traversal path between
any two nodes in the pyramid graph is O(S + L/CS−1/A). Assuming A and S are fixed, for a time
series of length L, the maximum path length is O(1) when C satisfies the following equation. The
following equation explains the relationship between the given A, C, L, and S:

s−1√L ≥ C ≥ s−1

√
L

(A− 1)N/2 + 1
(35)

in PAM, a node can handle up to A + C+1 children. However, currently available deep learn-
ing libraries (e.g., TensorFlow) do not support this sparse attention mechanism. Therefore,
the tensor operation framework can be fully utilized. A simple implementation of PAM is



Symmetry 2023, 15, 951 33 of 45

to first compute the product between all Q–K pairs, which is qikT
l , where l = 1, . . . , L, and

then mask out l /∈ N(s)
l . The time and space complexity obtained by this implementation is

still O(L2). Researchers used TVM to build a CUDA kernel dedicated to PAM [45]. This
operation reduces the computation time and storage cost, making the proposed model
more suitable for long time sequences. Additionally, the operation provides more informa-
tion and the longer historical input data usually help to improve the prediction accuracy,
especially in aspects where long-term correlations need to be considered.

4.4.2. Forecasting Module

The experimental procedure of the Pyraformer algorithm model divides the prediction
module into single-step prediction and multi-step prediction. The single-step prediction is
to add the ending token to the embedding layer first, and then to aggregate the nodes of all
scales into the fully connected layer after being encoded by PAM. Multi-step prediction,
on the other hand, is divided into two prediction modules. The first prediction head is a
single-step prediction module similar to the one described above but maps the last node of
all scales to all M future time steps in the batch, that is, M nodes. The second prediction
head is two attention layers. The query value of the first attention layer is the sum of the
zero-padding observations, covariates, and position encoding of the prediction sequence,
and the key sum is the output Fe of the encoder, and the attention query of the second layer
is the output Fd1 of the first attention layer, and the key and value is the sum of Fd1 and Fe.
The second layer has Fd1 as the query and Fd1 and Fe as the key and value of the cascade.
The historical information Fe is fed directly into the two attention layers, as this information
is critical for accurate long time series forecasting. The final prediction is obtained by a
fully connected layer across channel dimensions. All future predictions are then output
together to avoid the error accumulation problem in transformer autoregressive decoders.

4.5. Triformer

The Triformer algorithm model has unique strengths in capturing the long-term and
multi-scale dependencies of multivariate time series. This section introduces an efficient
patch attention algorithm as the fundamental building block, with linear complexity. The
Triformer model also features a triangular structure, achieved by stacking multiple layers
of patch attention in a way that exponentially reduces the layer size. This ensures the linear
complexity of the multi-layer patch attention and enables the extraction of multi-scale
features.

4.5.1. Linear Patch Attention

To address the issue of excessive complexity in traditional attention mechanisms,
the Triformer algorithm model proposes a patch attention algorithm with linear com-
plexity, which improves computational efficiency and mitigates the problem of excessive
complexity.

In Figure 11, the input sequence of length H is divided into P = H/S blocks along
the time dimension, where S is the block size. This approach is mainly based on Pan
et al.’s study [46]. The figure shows an example of an input time series of length H = 12,
which is partitioned into P = 4 patches with patch size S = 3. The p-th patch is denoted as
xp =< x(p−1)·S+1 · · · , xp·S >. The model’s attention is computed based on these patches to
derive the attention data for each patch. If one simply applies self-attention within a single
patch, the resulting complexity would still be high, as shown in Figure 23.
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The complexity of SA is O(L2) since each timestamp attends to all other timestamps.
In contrast, the complexity of PA is O(L) because each timestamp attends only to the
corresponding pseudo-timestamp. The computation of PA for the pseudo-timestamp TP is

detailed in the following equation, where Tp = {T(i)
p }

N

i=1 and each variable has a specific
pseudo-timestamp TP

(i), making them unique:
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although the PA mechanism reduces complexity, it can create difficulties when the patch size
is reduced to S, as H no longer covers all timestamps. This makes it challenging to capture
relationships between different patches and to capture long-term dependencies, which can
negatively impact model accuracy. To address this issue and compensate for the reduced
perceptual field, the Triformer algorithm model introduces a recurrent connection that
connects the output of patches and maintains the flow of temporal information based on
the pseudo-timestamps updated by the equation mentioned earlier. The gating mechanism
is a critical component of recursive networks and has been shown to effectively control
information flow [47]. The gating rule for the recursive connection is presented in the
following equation:

Tp+1 = g(Θ1Tp + b1)� σ(Θ2Tp + b2) + Tp+1 (37)

where Θ1, Θ2, b1, and b2 represent the learning parameters of the recursive gate, � denotes
the element-wise product, g(·) is the hyperbolic tangent activation function, and σ(·) is the
S-shaped function that controls the information flow ratio to the next pseudo-timestamp.

4.5.2. Triangular Stacking

In traditional self-attention models, the input and output have the same shape. How-
ever, in some models, such as those using a pooling-based approach or one-dimensional
convolution, the output uses a different approach to reduce the time horizon. Conversely,
with PAS, only pseudo-timestamps are fed from the patch to the next layer, which exponen-
tially reduces the layer size. Specifically, the size of the (L + 1)-th layer is only 1

Sl
times the

size of the L-th layer, where Sl is the patch size of the L-th layer.
In the Triformer algorithm model, each layer consists of a different number of patches

and, therefore, has a different number of outputs, i.e., pseudo-timestamps. Instead of using
only the last pseudo-timestamp of each layer in the PA, all the pseudo-timestamps of each
layer are aggregated into one output. Specifically, the aggregated output Ol at layer L is
defined as follows:

Ol = θl(Tl
1, · · · , Tl

k, · · · , Tl
P) (38)

where θl is the neural network, p ∈ [1, P], and Tl
P denotes the pseudo-timestamp of the

patch at the L-th layer. The Triformer algorithm model uses the aggregated outputs of all
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layers to connect to the predictor, instead of just the last layer’s aggregated output as in
some other models. This approach offers two main advantages. First, since the aggregated
outputs capture features at different time scales, they contribute different temporal views,
which can lead to improved prediction accuracy. Second, it enables multiple gradient
feedback short circuits, simplifying the learning process. In the Triformer model, a fully
connected neural network is used as the predictor, as it is efficient and well-suited for long
time series forecasting.

5. Experimental Evaluation and Discussion

In this section, we will analyze how related models such as the Informer algorithm
work on time series correlation data based on previous experiments and studies. Specifically,
we will compare the progress and research results of each model in terms of experimental
data, divided into two parts: Transformer models compared to the Informer algorithm.

Regarding the experimental procedure of the Informer algorithm model, the re-
searchers conducted a grid search over the hyperparameters. Hyperparameters are param-
eters that are set before the training of a model and affect its performance. The researchers
conducted a grid search over the hyperparameters, meaning that they tried different
combinations of hyperparameters to find the best ones.

The Informer has a specific architecture. The encoder has a three-layer stack and
a one-layer stack (1/4 input), while the decoder has a two-layer stack. The researchers
optimized their proposed methods using the Adam optimizer, a popular optimization
algorithm used in deep learning. The learning rate started from 1e-4 and decayed two
times smaller every epoch. An epoch is a complete pass through the training data. The
total number of epochs used in the study was eight, and proper early stopping was used
to prevent overfitting. The structure diagram of Informer’s algorithm model is shown in
Figure 1.

The researchers set the batch size to 32, which means that the model processes 32 sam-
ples at a time during training. The comparison methods used in the study were set as
recommended, meaning that the researchers used the methods commonly used in the field
for comparison.

The input of each data set was zero-mean normalized, meaning that the mean of the
input data was subtracted from each data point. The researchers also used a rolling window
approach with a stride of 1 to process the input data. The ETT data sets (ETTh1, ETTm1) are
used for comparison and analysis. ETT (electricity transformer temperature): The ETT is a
crucial indicator in the electric power long-term deployment. The data were collected from
two counties in China and include two separate data sets: ETTh1 and ETTh2 for 1-h-level
granularity and ETTm1 for 15-min-level granularity. Each data point includes the target
value “oil temperature” and six power load features. The train/val/test split for the data is
12/4/4 months. This means that the model was trained on data from 12 months, validated
on data from 4 months, and tested on data from another 4 months. The purpose of creating
separate data sets with different granularities is to explore the impact of granularity on the
LSTF problem.

The electricity transformer temperature data set is advantageous as it has high-
dimensional, multivariate, nonlinear, and periodic characteristics, which can evaluate
the performance of different models on long series time series prediction problems. ETT is
a significant metric for the long-term deployment of electricity. The data set has varying
degrees of granularity, which enables the exploration of LSTF problems at different levels
of detail and provides a rich feature set for analysis. These data sets have different time
scales, numbers of features, and numbers of targets, providing the ability to test the fitness
of different models in various scenarios. They have been extensively studied in the field of
time series forecasting, and researchers have used them to analyze different algorithms for
various configurations.
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5.1. Experimental Analysis of TCCT-Related Model Data

The work described in previous sections on the TCCT algorithm model can be applied
to models such as the Informer algorithm model by improving the model structure and
attention module to reduce computational effort and complexity. Experimental data and
conclusions were drawn from published reference [12]. Tables 1 and 2 show prediction
data for the four models: Informer, TCCT_I, TCCT_II, and TCCT_III. Among them, TCCT_I
is the Informer algorithm model that applies the CSPAttention structure in TCCT. TCCT_II
is the Informer algorithm model with both CSPAttention and dilated causal convolution.
TCCT_III is the Informer algorithm model that applies all three TCCT structures.

Table 1. Univariate long series time series prediction results of the TCCT correlation model for ETTh1
and ETTm1.

Metric Length
Informer Informer+ TCCT_I TCCT_II TCCT_III

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

48 0.1821 0.3611 0.1552 0.3220 0.1761 0.3453 0.1589 0.3261 0.1245 0.2910
96 0.2173 0.3952 0.1811 0.3635 0.2027 0.3805 0.1979 0.3738 0.1862 0.3569

192 0.2618 0.4309 0.2402 0.4183 0.2416 0.4165 0.2121 0.3895 0.1995 0.3730
384 0.2719 0.4513 0.2611 0.4499 0.2652 0.4367 0.2240 0.3935 0.2154 0.3813

ETTm1

48 0.1121 0.2819 0.0603 0.1805 0.1022 0.2712 0.0751 0.2378 0.0612 0.1849
96 0.1557 0.3381 0.1265 0.2951 0.1454 0.3108 0.1362 0.3080 0.1245 0.2899

192 0.2636 0.4324 0.2257 0.3961 0.2495 0.4151 0.2560 0.4122 0.2186 0.3923
384 0.3762 0.5590 0.3543 0.5189 0.3811 0.5396 0.3659 0.5430 0.3502 0.5216

Table 2. Multivariate long series time series prediction results of the TCCT correlation model for
ETTh1 and ETTm1.

Metric Length
Informer Informer+ TCCT_I TCCT_II TCCT_III

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

48 1.1309 0.8549 0.9483 0.7157 0.9737 0.7839 0.9694 0.7724 0.8877 0.7537
96 1.2433 0.9132 1.0575 0.8184 1.0761 0.8477 1.0578 0.8142 1.0199 0.8069

192 1.3011 0.9324 1.1477 0.8566 1.2101 0.8745 1.1785 0.8715 1.1104 0.8458
384 1.3313 0.9340 1.2665 0.8810 1.2284 0.8825 1.1913 0.8520 1.1527 0.8356

ETTm1

48 0.5282 0.5170 0.4890 0.4887 0.5172 0.4941 0.5036 0.4732 0.4464 0.4354
96 0.6596 0.5915 0.5867 0.5646 0.6101 0.5649 0.5811 0.5440 0.5772 0.5424

192 0.7687 0.6699 0.6683 0.5992 0.6854 0.6153 0.6510 0.5947 0.6375 0.5823
384 0.7996 0.6754 0.7650 0.6463 0.7812 0.6744 0.7460 0.6222 0.7415 0.6250

TCCT_III outperforms the Informer algorithm model in most univariate cases and all
multivariate cases, indicating that the three TCCT structures improve the predictive power
of the Informer algorithm model for LSTF problems. Compared to the Informer algorithm
model, TCCT_I performs better in most cases for both univariate and multivariate settings,
suggesting that CSPAttention can help create a more lightweight architecture without
sacrificing prediction accuracy. TCCT_II outperforms the Informer algorithm model and
TCCT_I in almost all cases, showing that the use of the expanded causal convolution layer
further improves the prediction capability of TCCT_I. In the multivariate case, TCCT_II
performs better than the Informer+ algorithm model for nearly half of the data, especially
for prediction lengths of 192 and 384.

TCCT_III outperforms the other four methods, demonstrating the superiority of
applying the straight-through mechanism to the Informer algorithm model. This result
also indicates that the straight-through mechanism is more efficient and robust than the
full distillation operation. When considering multivariate conditions, the data show that
TCCT_III outperforms Informer, and that TCCT_II performs better as the prediction length
increases. This suggests that the TCCT algorithm model is stronger than the full distillation
operation in enhancing the predictive power of the Informer algorithm model as the
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complexity of the prediction sequence increases. Therefore, the TCCT algorithm model
architecture can help the Informer algorithm model handle more complex LSTF problems
compared to the full distillation operation. As shown in Tables 1 and 2:

Figure 24 presents the results of long series time forecasting using the Informer algo-
rithm model with a TCCT structure in both univariate and multivariate settings. Specifically,
(a,b) display the univariate time series forecasting results of the Informer algorithm model
and other models such as TCCT on the ETTh1 and ETTm1 data sets, respectively. On
the other hand, (c,d) exhibit the multivariate time series forecasting results on ETTh1
and ETTm1, respectively. For all four figures, MSE is used as the evaluation metric. As
demonstrated in the above figure, the optimization of the three TCCT architectures has
significantly enhanced the model performance across all cases compared to the original
Informer model.
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Figure 24. Comparison of MSE results between TCCT algorithm model and informer algorithm model
for univariate as well as multivariate long series time series forecasting with different prediction
length models. (a) Univariate long sequence time series forecasting results on ETTh1. (b) Univariate
long sequence time series forecasting results on ETTm1. (c) Multivariate long sequence time series
forecasting results on ETTh1. (d) Multivariate long sequence time series forecasting results on ETTm1.

5.2. Experimental Analysis of Other Algorithmic Model Data

For the experimental settings of the baseline and related models, this paper selects the
most reputable experimental data from recent years, including FEDformer, Autoformer,
Informer, and Pyraformer. All models follow the same experimental settings with predic-
tion lengths T ∈ {96, 192, 336, 720}. The baseline used in this study was from the study of
author Nie et al. [48]. Both MSE and MAE were used as metrics for multivariate time series
prediction.

Figure 25 and Table 3 suggest that each algorithm model has a relatively stable predic-
tion performance when the prediction length is short. However, as the prediction length
gradually increases, the prediction performance of each model is impacted. For exam-
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ple, the Informer and Pyraformer algorithm models both exhibit a significant increase in
MSE results at a prediction length of 720, which is a common issue for long series time
prediction models. In contrast, the FEDformer and Autoformer algorithm models in this
study demonstrate improved prediction performance compared to the Informer model.
These two algorithmic models have been optimized for the data set with respect to other
algorithmic models. Moreover, several recent algorithmic models have emerged, which
will be discussed in detail in a later section, along with their advantages and disadvantages.
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Figure 25. Prediction performance (MSE) of each algorithm model on ETTh1 as well as the ETTM1
data set.

Table 3. Algorithmic model in multivariate long series time series prediction results.

Metric Length
Informer Autoformer FEDformer Pyraformer

MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.941 0.769 0.435 0.446 0.376 0.415 0.664 0.612
192 1.007 0.786 0.456 0.457 0.423 0.446 0.790 0.681
336 1.038 0.784 0.486 0.487 0.444 0.462 0.891 0.738
720 1.144 0.857 0.515 0.517 0.469 0.492 0.963 0.782

ETTm1

96 0.355 0.462 0.205 0.293 0.180 0.271 0.435 0.507
192 0.725 0.586 0.278 0.336 0.252 0.318 0.730 0.673
336 1.270 0.871 0.343 0.379 0.324 0.364 1.201 0.845
720 3.001 1.267 0.414 0.419 0.410 0.420 3.625 1.451

Table 4 displays a performance comparison of various models on data sets used for
long series time forecasting. The data in the table are derived from the study conducted by
Zhou et al. [11]. They provide an evaluation of each model’s metrics on the respective data
set. Based on the data presented in the table, it can be inferred that Informer demonstrated
better performance when compared to several prior algorithmic models.
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Table 4. Algorithmic model in multivariate long series time series prediction results.

Methods Informer LogTrans Reformer LSTMa DeepAR ARIMA Prophet

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

24 0.098 0.247 0.103 0.259 0.222 0.389 0.114 0.272 0.107 0.280 0.108 0.284 0.115 0.275
48 0.158 0.319 0.167 0.328 0.284 0.445 0.193 0.358 0.162 0.327 0.175 0.424 0.168 0.330

168 0.183 0.346 0.207 0.375 1.522 1.191 0.236 0.392 0.239 0.422 0.396 0.504 1.224 0.763
336 0.222 0.387 0.230 0.398 1.860 1.124 0.590 0.698 0.445 0.552 0.468 0.593 1.549 1.820
720 0.269 0.435 0.273 0.463 2.112 1.436 0.683 0.768 0.658 0.707 0.659 0.766 2.735 3.253

ETTh2

24 0.093 0.240 0.102 0.255 0.263 0.437 0.155 0.307 0.098 0.263 3.554 0.445 0.199 0.381
48 0.155 0.314 0.169 0.348 0.458 0.545 0.190 0.348 0.163 0.341 3.190 0.474 0.304 0.462

168 0.232 0.389 0.246 0.422 1.029 0.879 0.385 0.514 0.255 0.414 2.800 0.595 2.145 1.068
336 0.263 0.417 0.267 0.437 1.668 1.228 0.558 0.606 0.604 0.607 2.753 0.738 2.096 2.543
720 0.277 0.431 0.303 0.493 2.030 1.721 0.640 0.681 0.429 0.580 2.878 1.044 3.355 4.664

ETTm1

24 0.030 0.137 0.065 0.202 0.095 0.228 0.121 0.233 0.091 0.243 0.090 0.206 0.120 0.290
48 0069 0203 0.078 0.220 0.249 0390 0.305 0411 0.219 0362 0179 0.306 0.133 0.305
96 0.194 0.372 0.199 0.386 0.920 0.767 0.287 0.420 0.364 0.496 0.272 0.399 0.194 0.396

288 0.401 0.554 0.411 0.572 1.108 1.245 0.524 0.584 0.948 0.795 0.462 0.558 0.452 0.574
672 0.512 0.644 0.598 0.702 1.793 1.528 1.064 0.873 2.437 1.352 0.639 0.697 2.747 1.174

5.3. Comparison of Algorithm Model Complexity

When solving long series time forecasting problems, the self-attention module can
be seen as a fully connected layer that shares the same maximum path length as a fully
connected layer, but with a much smaller number of parameters. This makes it suitable
for modeling long-term dependencies. Time and memory complexity are also important
properties of algorithmic models that should be considered when exploring the models
mentioned in the previous section. For example, Informer and FEDformer accelerate
computation by leveraging the low-rank property of the self-attention matrix, whereas
the three TCCT architectures mentioned earlier can also reduce computation and storage
costs. Pyraformer introduces sparsity bias into the attention mechanism, allowing time
and memory complexity to be reduced. In Table 5, we summarize the time and memory
complexity of each algorithmic model applied to time series modeling.

Table 5. Comparison of the complexity of popular time series algorithm models with different
attention modules.

Methods
Training Testing

Time Memory Steps

Informer O(L/ log L) O(L/ log L) 1
TCCT O(L/ log L) O(L/ log L) 1

Autoformer O(L/ log L) O(L/ log L) 1
FEDformer O(L) O(L) 1
Pyraformer O(L) O(L) 1
Triformer O(L) O(L) 1

The data in the table was obtained from two different platforms: an Intel CPU with
18 physical cores and Nvidia Tesla T4 GPUs X2 with 1 card and 2560 CUDA cores each.
Table 6 displays the inference latency times of various models during training, measured in
microseconds per token. The findings demonstrate that models featuring structural and
algorithmic enhancements after Informer all exhibited improved speeds.
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Table 6. Inference speed of different models on the platform. PyTorch(PT), and TensorFlow (TF) on
Intel CPU, Nvidia GPU.

Methods Intel CPU Nvidia GPU

PyTorch

LSTM 103.6 80.6
Informer 73.8 68.2

TCCT 65.4 61.5
Autoformer 62.1 59.8
FEDformer 44.9 41.2
Pyraformer 46.2 42.7
Triformer 51.4 50.3

TensorFlow

LSTM 301.4 304.7
Informer 221.8 225.3

TCCT 196.3 181.2
Autoformer 191.7 197.5
FEDformer 121.9 116.9
Pyraformer 119.3 106.5
Triformer 132.5 122.1

5.4. Algorithm Model Effectiveness Analysis and Discussion

After comparing the data aspects mentioned above, it can be observed that the pre-
dictive power of the Informer algorithm model decreases as the number of steps increases.
However, several subsequent algorithm models have made improvements in different
ways to address the issues present in the Informer algorithm model and improve prediction
accuracy. This section will discuss the performance, advantages, and disadvantages of
these models, as well as recent algorithmic models that have been published.

The TCCT algorithm model, which combines convolutional neural networks and
transformer algorithm models, effectively solves various problems in long series time series
prediction. The study of the TCCT algorithm model inspires future research in multiple
directions, such as exploring new architectures, optimization methods, and attention
mechanisms for time series forecasting models. Furthermore, the TCCT algorithm model
can be extended to other fields such as natural language processing, computer vision, and
speech recognition. Future research can also explore how to integrate multimodal data into
the TCCT algorithm model to better capture the complexity of time series data.

The Autoformer algorithm model uses decomposition and autocorrelation to better
handle long series data. Whereas the Autoformer algorithm model is currently primarily
applied to time series data, future research can extend its use to other types of data, such
as image or text data. Improving the model’s interpretability and quantifying prediction
uncertainty are also potential areas for future research. This will require further exploration
of model structure improvement and feature engineering.

The FEDformer algorithm model is based on the Transformer algorithm model and
employs a frequency-enhanced decomposition mechanism to handle long-term time series
forecasting problems. However, the model can be further improved in the future by opti-
mizing the training algorithm and exploring better feature extraction methods. Although
FEDformer mainly utilizes the periodic features of time series, future research can also
consider introducing other time series features, such as trend and seasonality, and explore
how to better integrate these features. Furthermore, the FEDformer algorithm model has
potential applications in various fields for time series forecasting.

The Pyraformer algorithm model introduces a pyramid-shaped attention mechanism
to achieve low-complexity long-term time series modeling and forecasting. Although
Pyraformer has shown good performance in long-term time series forecasting tasks, there
are still some data features and scenarios in which its performance is not satisfactory.
Therefore, future research can improve the model effectiveness and robustness by further
improving the structure of the Pyraformer algorithm model, introducing new feature
extraction methods and modeling techniques, and optimizing the model parameters. Addi-
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tionally, for practical applications, the interpretability of the model is crucial. In this regard,
we believe that exploring ways to improve the interpretability of Pyraformer algorithm
models and continuously improve the design of the pyramid structure to enhance the train-
ing speed and performance of the models can be valuable. Furthermore, the Pyraformer
algorithm model has the ability to handle multiple time series tasks simultaneously, and
we believe that the application and development of the model for multi-task learning can
further improve the effectiveness and generalization ability.

The Triformer algorithm model uses a triangular variable-specific attention mechanism
to handle multivariate time series prediction tasks. Whereas Triformer primarily captures
the dependencies between different variables through the attention mechanism, this ap-
proach may not perform well in complex situations where there are nonlinear relationships
between variables and missing values. Future research can explore ways to enhance the
ability of the Triformer algorithm model to model complex dependencies among variables.
Moreover, optimizing the structure, loss function, and hyperparameters of the Triformer al-
gorithm model can improve the model’s effectiveness and training efficiency. Additionally,
the Triformer algorithm model can detect anomalies in time series data, and we believe
that further exploration of how to achieve more accurate and efficient time series anomaly
detection can be valuable.

Recently, an increasing number of models for long series time prediction have been
developed. Many of these models incorporate innovative attention algorithms and model
structures, leading to improved model performance and prediction accuracy compared
to Informer. As a result, these latest models are more competitive in various fields. For
example, Li et al. [49] have proposed a new model, called Conformer, for long series time
forecasting. It uses an encoder–decoder architecture with a sliding window attention mech-
anism, as well as fixed and immediate recurrent network modules, to effectively handle
various levels of problem complexity. The Conformer model has been shown to outperform
methods such as Informer on seven real-world data sets and is able to provide reliable pre-
dictions by quantifying uncertainty. In the same year, Li and Rao et al. [50] delved into the
application of attention mechanisms in multivariate time series forecasting and introduced
a novel model called MTS-Mixers. The team discovered that attention is not always neces-
sary for capturing temporal dependencies, and that tangled and redundant capturing of
temporal and channel interactions can affect prediction performance. MTS-Mixers adopts
two decomposition modules to capture temporal and channel dependencies, leading to
improved prediction accuracy and efficiency when compared to existing Informer-like
models.

Yue et al. [51] have proposed a comprehensive learning framework for time series
representations, TS2Vec, which utilizes hierarchical comparisons to learn scale-invariant
representations in augmented contextual views. Their experimental results show that the
TS2Vec framework outperforms Informer in terms of performance and prediction accuracy,
highlighting the potential benefits of this new approach. Zheng et al. [52] proposed a
novel method for time series prediction using representation learning called SimT. This
algorithmic model is capable of predicting the future from the past in a potential space
without relying on specific assumptions about particular time series features. Through
comparative experiments with the Informer model, the team found that the proposed
SimT model outperformed the Informer algorithmic model on several time series fore-
casting data sets. William T. Ng et al. [53] proposed a new method called time series
attention transformer (TSAT) for representing multivariate time series data. TSAT utilizes
edge-enhanced dynamic graphs to represent temporal information and interdependencies
between variables. Intra-series correlations are represented by nodes in the dynamic graph,
whereas a modified self-attention mechanism captures inter-series correlations using a
super-empirical mode decomposition (SMD) module. The authors evaluated the method
against state-of-the-art models such as Informer, and their proposed method outperformed
a host of algorithmic models, including Informer, by a wide margin.
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Upon reviewing the latest advancements in time series forecasting, it is apparent that
the Informer-like algorithm model has had a significant impact on the industry. Moreover,
the Informer model is more applied to various fields with good results, for example, Peng
et al. [54] applied the Informer algorithm model to the field of traffic anomaly detection.
In a relatively short period of time, a number of entirely new models emerged that have
surpassed the Informer model in terms of performance and predictive accuracy. Moving
forward, researchers can continue to innovate and enhance the Informer algorithm model
by refining the model architecture, optimizing the attention algorithm, and incorporating
novel mechanisms from other domains.

6. Conclusions and Prospects
6.1. Conclusions

In this section, we summarize several algorithmic models introduced in this paper,
summarize and introduce various methods, and propose several predictions and outlooks
for the future research direction and development of the Informer algorithmic model, a
transformer model for long time series prediction class through the research in the previous
sections.

We discuss in detail the attention algorithm in each model. Among them, the TCCT
algorithm’s model architecture incorporates CSPAttention, which alleviates the memory
bottleneck and computational efficiency problems of the self-attention mechanism, reduc-
ing its time and memory complexity. The Autoformer algorithm model introduces an
innovation to the self-attention mechanism, the self-correlation mechanism. The autocorre-
lation mechanism exploits the sparsity of sequences and time delay aggregation to increase
computational efficiency and efficient use of information. The FEDformer algorithm model
is innovative for both architecture and attention algorithms. The Fourier-enhanced block
and wavelet-enhanced block in the model capture time series more efficiently, and the
frequency-enhanced attention replaces the self-attention, reducing the spatio-temporal
complexity of traditional transformer models and increasing computational efficiency. The
Pyraformer algorithm model introduces the PAM, which innovates self-attention. The
PAM’s pyramidal architecture connects the dependencies of time series in a multi-connected
way, adopting a multi-resolution structure for remote interaction modeling. The Triformer
algorithm model introduces the triangular attention algorithm architecture, similar to the
PAM in the Pyraformer algorithm model. The PAS process solves the problem of excessive
complexity due to traditional attention and improves computational efficiency. It has multi-
ple feedback routes, simplifying the learning process between them, and high prediction
efficiency suitable for various types of long-term forecasting using fully connected neural
networks as predictors.

We have reviewed algorithmic models in the field of time series forecasting by summa-
rizing several state-of-the-art models. Each of these models has been adapted and improved
in terms of structure or algorithm to obtain better experimental results. We discuss the
structure and performance of each model and summarize our findings accordingly.

6.2. Time Series Forecasting Development Prospect Analysis

This paper covers several algorithm models for time series prediction, including
Informer, TCCT, Autoformer, FEDformer, Pyraformer, and Triformer. Each of these mod-
els has unique characteristics and advantages, providing many possibilities for further
research.

The Informer algorithm model introduces a new possibility for long series time series
prediction. With its refined architecture and the addition of new attention mechanisms or
encoder/decoder layers, the prediction capability and accuracy of the model can be further
improved. The Informer algorithm model can also be combined with traditional or deep
learning models for enhanced performance. Future research can explore the application of
the Informer algorithm model to more complex problems, such as vibration prediction or
fault analysis.
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A number of time series prediction models based on the attention algorithm have been
developed. These models mainly use the attention mechanism to improve the efficiency
and complexity of time series prediction, and the main direction of future research will
continue to be the optimization and adjustment of the attention algorithm architecture
and structure. By continuously improving the attention mechanism, the performance of
the Informer algorithm model and other models can be further improved. In addition,
these models and attention algorithms may be more widely used in the screening and
cleaning of data, such as bearing the state detection of various precision instruments, as
well as the prediction and diagnosis of various instruments or targets in the process of
surface damage. As time series prediction models continue to develop at a high rate, their
continuous innovation in the attention algorithm and model structure will enable them to
be applied to a variety of prediction scenarios and application practices in the near future.

In this paper, we provide a comprehensive review of recent long time series forecast-
ing models in terms of their model and attention structures. We focus on the attention
mechanism and summarize the improved innovations of several models in terms of the
attention mechanism and overall model architecture. We evaluate the representativeness
of the innovations of each model through experimental data and point out that the atten-
tion mechanism has broad research prospects and is a key component of long time series
forecasting. Future research directions should continue to explore the optimization and
adjustment of the attention algorithm architecture and structure.
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