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Abstract: (Chern–Simons) vector models exhibit an infinite-dimensional symmetry, the slightly-
broken higher-spin symmetry with the unbroken higher-spin symmetry being the first approximation.
In this note, we compute the n-point correlation functions of the higher-spin currents as higher-spin in-
variants directly on the CFT side, which complements earlier results that have a holographic perspective.
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1. Introduction

(Chern–Simons) vector models are a rich class of three-dimensional conformal field
theories that can be of interest for a number of reasons. Firstly, these CFTs describe critical
behaviour of many physical systems, e.g., the famous Ising model, which can be realised
as the O(N)-vector model, describes the critical behaviour of the O(N)-magnetic at the
Curie point. Secondly, a hypothetical bulk AdS/CFT dual of these CFTs [1–4] gives a
class of higher-spin gravities, the latter can, at least formally, be defined by inverting
the correlation functions [5–8]. Thirdly, Chern–Simons vector models were conjectured to
exhibit a number of remarkable dualities [9–14], of which, in this work, we concentrate on
the three-dimensional bosonisation duality.

The simplest gauge-invariant operators in Chern–Simons vector models are higher-
spin currents, that are operators of type Js = φ̄D . . . Dφ + . . . or Js = ψ̄γD . . . Dψ + . . . ,
depending on whether the model’s matter is bosons φ or fermions ψ. The term ’higher-spin
current’ is jargon. The higher-spin currents are not conserved unless we deal with a free
or very large-N vector model and even in this case they are conserved tensors for s > 1
rather than currents (to obtain a current, one needs to contract it with a conformal Killing
tensor). In addition, s = 0 and s = 1, whenever present, are included into the multiplet of
higher-spin currents. We will, however, stick with this unfortunate terminology. Higher-
spin currents also turn out to be single-trace operators from the holographic perspective,
and are dual to massless higher-spin fields in AdS4. To prove the 3d bosonisation duality, it
is sufficient to show that all n-point correlation functions of the dual theories are the same,
provided we relate the free parameters appropriately. Therefore, we can concentrate on the
higher-spin currents and ignore all other local gauge-invariant operators.

In the very large-N limit, the higher-spin currents are conserved. Via the Noether
theorem, they lead to an infinite-dimensional extension of the conformal symmetry so(3, 2),
with the spin-two current, the stress-tensor, manifesting so(3, 2). The resulting algebra is
usually called the higher-spin algebra and it is also the symmetry algebra of the free boson’s
and free fermion’s equations of motion, e.g., refs. [15–20]. Historically, it was identified [15]
as the even subalgebra of the Weyl algebra A2, which is the algebra of observables of the 2d
harmonic oscillator.

The (unbroken) higher-spin symmetry is the usual symmetry, i.e., there is a Lie algebra
acting on the physical spectrum of operators. Interestingly, the free matter fields and the
multiplet of the higher-spin currents are the simplest representation of the higher-spin
algebra [15,21,22]. The algebra admits an invariant trace tr[a ? b− b ? a] = 0, and the series
of invariants
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〈J . . . J〉 = tr[Ψ ? . . . ? Ψ]

computes the correlation functions, provided the wave-functions Ψ are chosen wisely.
Calculations of this kind were performed in [23–26], where Ψ was taken to represent a
multiplet of massless higher-spin fields in AdS4. It is important that the unbroken higher-
spin symmetry is a signature of the free CFT’s behaviour in d ≥ 3 [27–30]. The results of [27]
require finite N, but the higher-spin currents are conserved at N = ∞ as well. Importantly,
they are also conserved at N = ∞ in the interacting vector models. Uniqueness of this type
of invariants can also be shown [31].

When interactions are turned on, either directly or by departing from the very large-N
limit, the higher-spin currents cease to be conserved, except for the stress-tensor, s = 2,
and for the global symmetry current, s = 1. As a simple consequence of the smallness of
operators’ spectrum of vector models, the non-conservation operator has a very restricted
form of a composite operator, built of Js themselves [9,10]. As a result, the non-conservation
is still very useful to impose on correlation functions [10] and this type of symmetry
breaking was dubbed slightly-broken higher-spin symmetry in [10]. Mathematically, the
slightly-broken higher-spin symmetry is not a symmetry. It is not realised as an action of
some Lie algebra on a multiplet of operators. However, it can be understood as a strong
homotopy algebra, that deforms the action of the higher-spin algebra [32–34].

While Chern–Simons vector models have simple actions, the (slightly-broken) higher-
spin symmetry is by far the most efficient way to compute correlation functions of higher-
spin currents in vector models, e.g., refs. [35–42]. For free or very large-N vector models,
this calculation was performed in [23–26,43] (note that the calculation of [43] applied a
regularisation that effectively replaced the ill-defined vertices [44,45] with the higher-spin
invariant) with an additional proviso of identifying the correlation functions with the
invariants of the higher-spin algebra. The correlators can also be computed via the textbook
Wick contractions [46] of free fields.

The main point of the present note is to exclude the holographic aspect present
in [23–26,43]. In other words, in this note we adopt a purely CFT view on the higher-spin
symmetry. The wave-functions of [23–26,43] represent a multiplet of higher-spin fields that
are duals of higher-spin currents. Due to the fact that the bulk dual of Chern–Simons vector
models is not known, and is unlikely to exist as a reasonably local field theory, one cannot
just extract the Chern–Simons vector models’ correlators from holography. Fortunately,
the key features of the higher-spin symmetry (such as mixing spins and derivatives) that
generically invalidate the field theory approach are harmless on the CFT side. It should
be mentioned that the dual theory has a closed local subsector [47–51], which is an AdS4-
deformation of the chiral higher-spin gravity in flat space [52–59], see, e.g., ref. [60] for
more on higher-spin gravities. It would be interesting to compute holographic correlation
functions in this model, but we believe it can be achieved more efficiently on the CFT side.
We hope that this is a useful first step in the programme of computing correlation functions
of higher-spin currents in Chern–Simons vector models, as invariants of the slightly-broken
higher-spin symmetry.

The note is organised as follows. In Section 2 we recall the results of [61] on the
general structure of 3d conformal correlators. In Section 3 we define the wave-functions
that represent a generating function of higher-spin currents and compute the higher-spin
invariants. Two appendices collect some useful identities and definitions.

2. Structure of Correlation Functions in Three Dimensions

In three dimensions, one has the isomorphism so(2, 1) ' sl(2,R), implying that a
traceless rank-s Lorentz tensor can be represented by a rank-2s spin-tensor. In Appendix A,
we detail notations and conventions, but in brief, we note that a 3-vector xm (m = 0, 1, 2)
can be mapped into a symmetric bi-spinor Xαβ (α, β = 1, 2).
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Higher-spin currents are symmetric and traceless tensors Ja1 ...as(x). In addition, they
are conserved ∂b Jba2 ...as = 0, so that they are primary fields. Thanks to the isomor-
phism, they are mapped to Jα1 ...α2s(X) and one can pack them into a generating function
j(X, η) = Jα1 ...α2s(X) ηα1 . . . ηα2s , where ηα is an auxiliary polarisation spinor. The conserva-
tion implies

∂

∂Xαβ

∂2

∂ηα∂ηβ
j(X, η) = 0 . (1)

It turns out, that conformally invariant correlation functions of tensor operators can depend
on very few atomic conformally invariant structures [61]. There are two parity-even
atomic structures

Pij = ηα
i η

β
j
(
X−1

ij
)

αβ
, Qi

j,k = ηα
i η

β
i
(
X−1

ji − X−1
ki
)

αβ
, (2)

where X−1
ij ≡

(
Xij
)−1 ≡

(
Xi − Xj

)−1. We have Pij = −Pji and Qi
j,k = −Qi

k,j. Defining the
inversion map as

Rηi
α = −

Xi α
βηi

β

|Xi|
= (X−1

i )α
βηi

β , (3)

we observe RPij = Pij and RQi
j,k = Qi

j,k, which proves the structures to be parity-even.
There is also one parity-odd invariant structure

Si
jk =

ηα
k (XikXij)αβ η

β
j

xijxikxjk
, (4)

where xij ≡ |xij| =
√
−|Xij|. Conformally invariant correlation functions depend on the

cross-ratios, and are polynomials in Ps, Qs, and Ss. The exponents of Ps, Qs, and Ss are
constrained by the spin of the operators in an obvious way. For example, the simplest two-
and three-point correlators

〈js(X1, η1)js(X2, η2)〉 ∼
1

x2
12
(P12)

2s , (5)

〈js1(X1, η1)j0(X2)j0(X3)〉 ∼
1

x12x23x31
(Q1)

s1 , (6)

where js is a conserved higher-spin current and j0 is a scalar operator of dimension 1.

3. Correlation Functions as Higher-Spin Invariants

In this section, we first recall the definition of the relevant higher-spin algebra, together
with the star-product, as a convenient tool to work with it. We also introduce a conformally
friendly basis for the generators. Next, we fix the form of the wave-functions Ψ and
compute the correlation functions.

3.1. Higher-Spin Algebra

The isomorphism so(3, 2) ' sp(4,R), allows us to use the sp(4) generators TAB = TBA,
A, B = 1, . . . , 4 , such that

[TAB, TCD] = TAC εBD + 3 terms , (7)

where εAB = −εBA and εABεAC = δB
C. With the four operators YA satisfying the canonical

commutation relations [YA, YB] = 2iεAB, one can realise the above commutation relations
as TAB = −i

4 {YA, YB}, which is the standard oscillator realisation. The associative algebra
of functions f (Y) in YA is the Weyl algebra A2 (the subscript 2 is the number of canonical
pairs). Its even subalgebra Ae

2 of functions f (Y) = f (−Y) is the higher-spin algebra we
need. We can also split YA =

(
yα, ȳα

)
and εAB = diag(εαβ, εαβ), with ε12 = 1.
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More abstractly, a higher-spin algebra can be defined, for any irreducible represen-
tation of the conformal algebra, as the quotient of the universal enveloping algebra by a
two-sided ideal that is the annihilator of this representation or, in the field theory language,
as the symmetry algebra of the corresponding conformally invariant field equation [19].
An important fact, is that for the free fermion and free boson representations, this ideal
gets resolved by the oscillator realisation. Another important fact for the 3d bosonisation
duality to take place, is that the higher-spin algebras of the free fermion and the free boson
are isomorphic to the same Ae

2, which is explicit already in [15].
Higher-spin algebras turn out to be infinite-dimensional associative algebras that

contain the conformal algebra as a Lie subalgebra (any associative algebra leads to a Lie
algebra where the Lie bracket is defined as the commutator). Therefore, any higher-spin
algebra can be viewed as an infinite-dimensional extension of the conformal symmetry.

3.1.1. Star-Product

Instead of working with an algebra of operators, it is convenient to use the algebra
of functions in commuting variables YA (symbols) with the (associative) Moyal–Weyl star-
product. It admits an integral form and a more standard differential form (simple (2π)−4

prefactor is omitted or included into the definition of
∫

below)

f (Y) ? g(Y) =
∫

d4U d4V f (Y + U)g(Y + V) eiVAUA = f (Y) exp
[

i
←
∂ AεAB

→
∂ B

]
g(Y) . (8)

We will also have to go outside of the space of polynomial functions, e.g., admitting delta
function δ2(y) =

∫
d2s eisαyα . With the star-product, we have [YA, YB]? := YA ? YB − YB ?

YA = 2iεAB and the unit element is 1, i.e., f ? 1 = 1 ? f = f . We also find useful relations

YA ? f (Y) = YA f + i
∂ f

∂YA , f (Y) ? YA = YA f − i
∂ f

∂YA . (9)

The even subalgebra of the Weyl algebra admits an invariant trace operation, which in
terms of symbols f (Y) reads

tr
(

f (Y)
)
= f (0) (10)

such that tr( f ? g) = tr(g ? f ).

3.1.2. Conformally Adapted Basis

In view of the CFT nature of the problem, it is convenient to split TAB in such a way as
to make the standard basis of conformal generators explicit, e.g., refs. [16,62]. We define
y−α = 1

2 (ȳα − iyα) and y+α = 1
2 (y

α − iȳα) that obey [y−α , y+β]? = δα
β, which implies that

y±α are the standard creation/annihilation operators. Indeed, the conformal generators
read [62]

Pαβ = iy−α y−β , Kαβ = −iy+αy+β ,

D = 1
2 y+αy−α , Lα

β = y+αy−β −
1
2 δα

β y+γy−γ .
(11)

With the reality conditions (y−α )† = y+α, one has D† = D, (Lα
β)

† = Lβ
α and P†

αβ = Kαβ.

The mass-shell condition is manifest since P2 = 0. The basic star-product relations (9) in
terms of y± read

y±α ? f (y+, y−) = y±α + 1
2 ∂∓α f , f (y+, y−) ? y±α = y±α − 1

2 ∂∓α f . (12)

As a result, [y±α , f ]? = ∂∓α f and

[ya
αyb

β, f ]? = ya
α∂b̄

β f + yb
β∂ā

α f , a, b ∈ {+,−} , ā ≡ −a . (13)
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The action of the conformal generators (11) reads

[Pαβ, f ]? = +i
(
y−α ∂+β + y−β ∂+α

)
f ,

[Kαβ, f ]? = −i
(
y+α ∂−β + y+β ∂−α

)
f ,

[D, f ]? = 1
2
(
y+α∂+α − y−α∂−α

)
f ,

[Lαβ, f ]? =
(

y+α ∂+β + y−β ∂−α + y+β ∂+α + y−α ∂−β

)
f .

(14)

We observe that D counts the number of y+ minus the number of y−.

3.2. Wave-Functions

Given that the higher-spin algebra is an infinite-dimensional extension of the con-
formal algebra, it should not be surprising that correlation functions of the higher-spin
currents can be computed as simple invariants of this algebra [23–26]. The invariants know
nothing about correlation functions per se and must be fed with appropriate wave-functions
Ψ, that contain the information about the operators’ positions and spins. In [23–26], Ψ
was defined to reside in AdS4 and it represents a collection of massless fields in AdS4. In
addition, Ψ of [23–26] does not transform in the adjoint representation. Below, we fix the
form of Ψ on the CFT side, which is the main difference compared to [23–26]. We will find
that the wave-function Ψ is simpler than its AdS4 cousin.

Wave-Functions’ Properties

The main building block of correlation functions of higher-spin currents is

On = tr
(
Ψ1 ? · · · ? Ψn

)
. (15)

It is invariant under higher-spin transformations (hence, conformally invariant as well)
provided that Ψi ≡ Ψ(Xi, ηi|Y) transforms in the adjoint representation of the higher-spin
algebra, i.e., δξΨ = [Ψ, ξ]?. To relate this observable to higher-spin currents, we also need
to make sure that Ψ obeys the conservation condition (1).

Concerning (15), it is worth noting that it has only cyclic symmetry, which is exactly the
symmetry of the correlation functions in vector models with (leftover) global symmetries
that are not gauged via the Chern–Simons term. Indeed, if there is a global symmetry, say
U(M), the higher-spin currents have a pair of indices Ji

k. Correlation functions of such
currents have only cyclic symmetry. In some sense, (15) is the master higher-spin invariant
and all the others can be obtained by projecting it (say on the bosonic currents, since by
default it contains the super-currents as well) and symmetrising over the external legs.

In [23–26], the authors used the AdS/CFT formalism, where all physical information
is encoded in the master field B(X, z, η|Y) (z is the radial coordinate on AdS4). This field
transforms in a twisted-adjoint representation. However, one can build Ψ = B ? δ2(y)
that transforms in the adjoint one, which still resides in the bulk. To give an idea of the
functional class used for the holographic calculations in [23–26], the main building block of
B was found to be

Φ(F, ξ, θ) = K exp i(−yFȳ + ξy) , (16)

where K is the scalar boundary-to-bulk propagator. Matrix F, spinor ξ, and K depend on
the bulk and boundary coordinates. Explicit formulas can be found in [23–26]. Let us note
that B does not have any obvious boundary limit.

In order to find the wave-function Ψ(X, η|y±) directly on the CFT side, we will use
the following physical conditions. (1) Ψ must be a generating function of quasi-primary
operators at X = 0; (2) Ψ must satisfy the equation of motion—covariant constancy
condition, which reconstructs X-dependence; (3) it has to be a generating function of
conserved higher-spin currents. We should also take into account that there is no unique
solution Ψ that satisfies (1–3), since we can always rescale any spin-s component by some
numerical factor.
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The first condition can be translated into a simple equation

[Kαβ, Ψ(0, η|y±)]? = (y+α ∂−β + y+β ∂−α )Ψ = 0 . (17)

Its obvious solution is Ψ(0, η|y±) = Ψ(0, η|y+). There is a less obvious solution

Ψ̃(0|y±) = εαβy−α ∂+β δ(y+) . (18)

Note that in the case of one variable xδ′(x) = −δ(x), but (y+α ∂+β + y+β ∂+α )δ(y+) = 0 in the

symplectic case. The latter identity needs to be used to check that Ψ̃ is a solution. This
solution corresponds to the ∆ = 2 operator ψ̄ψ that is present in the free fermion theory.
It stands out of the main higher-spin current multiplet and we will not discuss it further,
except for the two-point function.

Next, we need to recover the X-dependence in such a way that Ψ obeys

∂x
αβΨ + i

2 [Pαβ, Ψ]? = 0 . (19)

Indeed, the flat space is realised with the help of the gauge function g = exp i
2 XαβPαβ.

The corresponding connection g−1 ? dg = i
2 dXαβPαβ, is a flat connection of the conformal

algebra. Since Ψ must be in the adjoint representation, the X-dependence is determined by

Ψ(X, η|y±) = g−1(X) ? Ψ(0, η|y+) ? g(X) .

This is a direct analog of O(X) = exp [X · P]O(0) exp [−X · P] in the standard CFT language,
the only difference being that Ψ is a generating function of infinitely many quasi-primary
operators. With the help of the oscillator realisation (11), we find

g−1 ? y+γ ? g = y+γ + Xγ
αy−α , g−1 ? y−γ ? g = y−γ . (20)

Therefore, the wave-function is constrained now to be

Ψ(X, η|y±) = Ψ(η|y+γ + Xγ
αy−α ) . (21)

Lastly, we need to impose the conservation condition, which determines the η-
dependence

∂

∂Xαβ

∂2

∂ηα∂ηβ
Ψ(X, η|y±) = 0 . (22)

It is helpful to represent the wave-function as a Fourier integral

Ψ(X, η|y±) =
∫

d2s f (s, η) exp isγ[y+γ + Xγ
αy−α ] . (23)

Imposing the conservation condition we find∫
d2s (sαy−β ) ∂α

η∂
β
η f (s, η) exp isγ[y+γ + Xγ

αy−α ] = 0 . (24)

Since f cannot depend on y−α , otherwise it spoils the solution of the other two conditions,
we have to take f (s, η) = f (sγηγ). This function of one variable is the expected ambiguity
in normalisation of the higher-spin currents. We, of course, fix it to be f = exp isγηγ.
Finally, the wave-function is found to be

Ψ(X, η|y±) =
∫

d2s exp isγ[y+γ + Xγ
αy−α + ηγ] = δ2(y+γ + Xγ

αy−α + ηγ) ≡ δ2(Γ(X)
)

. (25)
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For completeness, let us note that the Lorentz generators act canonically

[Lαβ, Ψ]?
∣∣
X=0 =

(
y+α ∂+β + y+β ∂+α

)
δ2(y+ + η) . (26)

Further, the dilation operator relates the conformal weight to the spin

[D, Ψ]?
∣∣
X=0 = 1

2 y+α∂+α δ2(y+ + η) . (27)

The full higher-spin symmetry can also be seen to act. Its parameters are contained in a
covariantly constant generating function of Killing tensors ξ, that obeys

∂x
αβξ + i

2 [Pαβ, ξ]? = 0 . (28)

The conformal and genuine higher-spin symmetries act as δξ Ψ = [Ψ, ξ]?.

3.3. Correlation Functions

As stated before, the main building block of correlation functions of higher-spin
currents is

On = tr
(
Ψ1 ? · · · ? Ψn

)
. (29)

In order to explicitly compute it, we begin with O2.

3.3.1. Two-Point Correlators

It is useful to first check the two-point functions. Here, we return to the variables
YA = (yα, ȳα) to compute the star-product in what follows. The solution (25) is rewritten as

Ψ(X, η|Y) = κ δ2(Γ(X)
)

, with Γα = Aαβ(X)ȳβ + Bαβ(X)yβ + Cα , (30)

with Cα = c ηα,

Aαβ(X) = aXαβ − ia εαβ ,

Bαβ(X) = −iaXαβ + a εαβ ≡ −iAT(X) ≡ iA(−X) .
(31)

Indeed the most general solution is defined up to a multiplicative constant, κ, and
we can always rescale y± and η without affecting Equations (17), (21), and (22). We
keep κ, a, and c arbitrary for the time being, in order to derive more general formulas
for the star-products and have an additional control over the calculations. Denoting
Ψi ≡ Ψ(Xi, ηi|Y), one can show that

Ψ1 ? Ψ2 =
−κ2

|M12|
exp i

[
(ȳAT

2 + yBT
2 − C2)

(
M12

)−1
(A1ȳ + B1y + C1)

]
, (32)

with M12 := A1 AT
2 + B1BT

2 . With (31), we have M12 = 2ia2 X12, so that tracing gives

tr Ψ1 ? Ψ2 =
−κ2

4a4 x2
12

exp i
[
−i
2a2 C1α (X−1

12 )αβ C2β

]
. (33)

In order to match with the two-point function O2 = 1
x2

12
exp iP12 [24], we need

−κ2

4a4 = 1, (34)

−i
2a2 C1α (X−1

12 )αβ C2β = η1α(X−1
12 )αβη2β . (35)
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With the choice Ci = c ηi, the second equation leads to
i c2

2a2 = −1. In particular, our
wave-function Ψ leads to the correct two-point function. Let us note that

Ψ12 := Ψ1 ? Ψ2 =
1

x2
12

exp i
[

1
2

ΣAB
12 YAYB + ξ A

12 YA + P12

]
(36)

with

ΣAB
12 =

i
a2

(
BT

2 X−1
12 B1 BT

2 X−1
12 A1

AT
2 X−1

12 B1 BT
2 X−1

12 A1

)(AB)

, (37)

ξA
12 =

i
2a2

(
c η1 c η2

)B
(

X−1
12 B2 X−1

12 A2
X−1

12 B1 X−1
12 A1

) A

B
≡ ηB

12 ρ12B
A . (38)

We will denote the Gaussian (36) as Φ(Σ12, ξ12, θ12). Crucial properties to compute higher-
order correlators are (Σ2

12)
AB ≡ (Σ12)

AC(Σ12)C
B = εAB and Σ12 = −Σ21.

Let us also check that the second solution, (18), leads to the correct two-point function.
The solution can be rewritten as

Ψ̃(X|y±) = ∂

∂χ
δ2(y+α + Xα

βy−β + χy−α
)∣∣∣

χ=0
. (39)

In terms of (yα, ȳα), we write the argument of the delta function as Γ̃(X) = Ã(X)ȳ + B̃(X)y,
with

Ãαβ(X) = bXαβ + b(χ− i) εαβ , B̃αβ(X) = −ibXαβ + b(1− iχ) εαβ , (40)

where we introduced an arbitrary constant b. With those notations, we can use the previous
result (32) with Ci → 0, κ → κ̃ and A, B→ Ã, B̃ to get

Ψ̃(X1|Y) ? Ψ̃(X2|Y) = κ̃2 ∂2

∂χ1∂χ2

[
1
|M̃12|

exp i
[

1
2 Σ̃AB

12 YAYB

]]∣∣∣
χ1=χ2=0

, (41)

with M̃12 = 2ib2 X12 + (χ1 + χ2)ε and

Σ̃AB
12 = 2

(
B̃T

2 M̃−1
12 B̃1 B̃T

2 M̃−1
12 Ã1

ÃT
2 M̃−1

12 B̃1 B̃T
2 M̃−1

12 Ã1

)(AB)

. (42)

Tracing gives

tr Ψ̃1 ? Ψ̃2 =
κ̃2

2 b4
1

x4
12

, (43)

which is the two-point function of the ∆ = 2 operator, which in our case is ψ̄ψ.

3.3.2. Higher-Point Procedure

Having the building block, we can now describe the procedure to obtain On. We begin
with O2n (n ∈ N0). Since the star-product is associative, we can compute it recursively as

O2n = tr
(
(Ψ1,2 ? Ψ3,4 ? · · · ? Ψ2n−3,2n−2) ? Ψ2n−1,2n

)
. (44)
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Since we know that Ψi,j is a Gaussian in YA, we would have to compute the star-product
of Gaussians. This will be performed below, but we already note that the star-product of
Gaussians is a Gaussian. For the (2n + 1)-point correlator, we have

O2n+1 = tr
(
(Ψ1,2 ? Ψ3,4 ? · · · ? Ψ2n−1,2n) ? Ψ2n+1

)
. (45)

Since Gaussians form a closed subalgebra under the star-product, the term in the small
parentheses is a Gaussian of the form r(x)Φ(Σ, ξ, θ), and one can show that

Φ(Σ, ξ, θ) ? Ψk =
iκ Φ(Σ, ξ, θ)√
| − γkΣγT

k |
exp

i
2

b
(
γkΣγT

k
)−1b (46)

with
γαB

k =
(

Bαβ
k Aαβ̇

k

)
, bA =

(
γkY− γkΣY− γkξ + Ck

)A . (47)

We also note that
(
γkΣγT

k
)−1

= −
(
γkΣγT

k
)/
|γkΣγT

k |. In the following, we denote

Ψ1,2 ? · · · ? Ψn−1,n ∼ exp i
[

1
2
(
Σ[n]

)
AB YAYB + ξ A

[n]YA + θ[n]

]
. (48)

Therefore, taking Y = 0, the argument of the exponential for (45) reads

θ[2n+1] = θ[2n] −
1
2
(
ξ[2n]γ

T
2n+1 + η2n+1

) γ2n+1 Σ1,2n γT
2n+1

|γ2n+1 Σ1,2n γT
2n+1|

(
− γ2n+1ξ[2n] + η2n+1

)
. (49)

This suggests that we first need to compute the 2n-point correlators. Let us see how the
star-product of Gaussians works.

3.3.3. Star-Product of Gaussians

Let us be more general and consider a Gaussian

Φ( f , ξ, θ) = exp i
[

1
2

fAB YAYB + ξAYA + θ

]
, A, B = 1, . . . , 2N, (50)

with fAB a symmetric matrix, ξA a commuting spinor, and θ a constant. One can show
that [24,63]

Φ( f , ξ, 0) ? Φ(g, η, 0) =
(−1)N√
| f | |g + f−1|

Φ( f ◦ g, ξ ◦ η, q) (51)

where (matrix 1 in (52) should be understood as εAB)

( f ◦ g)AB =
1

1 + g f
(1 + g)− 1

1 + f g
(1− f ),

(ξ ◦ η)A = ξB
[

1
1 + g f

(1 + g)
]

B

A + ηB
[

1
1 + f g

(1− f )
]

B

A,

q =
1
2

(
1

1 + g f
g
)

AB
ξAξB +

1
2

(
1

1 + f g
f
)

AB
ηAηB

−
(

1
1 + g f

)
AB

ξAηB.

(52)
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The proof follows from Gaussian integration. In our Ψi,j, (36), we have f 2 = ε = g2. In that
case, one has

( f ◦ g)AB =
1

f + g
(2 + g− f ),

(ξ ◦ η)A =
1
2

ξB(1 + f ◦ g)B
A +

1
2

ηB(1− f ◦ g)B
A,

q =
1
8
{ f , g}◦AB

(
ξ AξB + ηAηB

)
− 1

2

(
1 +

1
2
[ f , g]◦

)
AB

ξAηB,

(53)

and | f ||g + f−1| = | f + g|. We note that ( f ◦ g)AB is symmetric.

3.3.4. Higher-Point Correlators

Now that we have simple formulas, we can proceed to compute (44), whose building
block is Ψi,j ? Ψk,l . A crucial property of our Σ matrices is that

Σij ◦ Σkl = Σil . (54)

This tells us that the only matrices f , g and f ◦ g that appear in (53) are our Σ. Therefore, it
is useful to use the projectors π±ij := 1

2 (ε± Σij) that satisfy the following properties:

(
π±ij
)T

= −π∓ij , π±ji = π∓ij ,

π±ij π∓ij = 0, π±ij π±ij = π±ij ,

π−ij π+
ik = 0, π+

ij π+
ik = π+

ik .

(55)

Now we proceed recursively. For the two-point correlator, we had (36). For the
four-point one, writing (53) in terms of projectors, we have

Σ[4] := Σ12 ◦ Σ34 ≡ Σ14 ,

ξ[4] := ξ12 ◦ ξ34 = ξB
12
(
π+

14
)

B
A + ξB

34
(
π−14
)

B
A ,

θ[4] = P12 + P34 +
1
4
(
π+

14 − π+
23
)

AB

(
ξA

12ξB
12 + ξA

34ξB
34
)
− 1

2
(
π+

14 + π+
23
)

AB ξA
12ξB

34 .

(56)

Thanks to the structures listed in Appendix B, one obtains

θ[4] =
1
2
[
P12 + P23 + P34 − P41

]
+

1
4
[
Q1

24 + Q2
31 + Q3

42 + Q4
13
]

. (57)

The properties of the projectors (55) help us to easily generalise

Σ[2n] = Σ1,2n ,

ξA
[2n] = ξB

12
(
π+

1,2n
)

B
A + ξB

2n−1,2n
(
π−1,2n

)
B

A ,

θ[2n] = θ[2n−2] +
1
4
(
π+

1,2n − π+
2n−2,2n−1

)
AB

(
ξA
[2n−2] ξB

[2n−2] + ξ A
2n−1,2n ξB

2n−1,2n
)

− 1
2
(
π+

1,2n + π+
2n−2,2n−1

)
AB ξ A

[2n−2]ξ
B
2n−1,2n + P2n−1,2n .

(58)

One finds

θ[2n] = θ[2n−2] +
1
4
[
Q1

2n−2,2n + Q2n−2
2n−1,1 + Q2n−1

2n,2n−2 + Q2n
1,2n−1

]
+

1
2
[P1,2n − P1,2n−2 + P2n−2,2n−1 + P2n−1,2n],

(59)
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which reduces to

θ[2n] =
1
4

2n

∑
i=1

Qi
i+1,i−1 +

1
2

2n

∑
i=1

(−)δi,2n Pi,i+1 , (60)

where the sum is understood to be mod 2n. For prefactors, we have | f + g|−1/2 from (51),
but one should also take into account the prefactor of every Ψi,j, e.g., x−2

12 . Due to

|Σij + Σkl | = 16
|Xjk||Xil |
|Xij||Xkl |

, (61)

and requiring (34), one can find the prefactor for O2n[
22n−2

2n

∏
i=1

xi,i+1

]−1

. (62)

3.3.5. (2n + 1)-pt Functions

We can now compute (45). With the help of (49) and thanks to the structures in
Appendix B, one has

θ[2n+1] = θ[2n] +
1
4
(
Q1

2n,2n+1 + Q2n
2n+1,1 + Q2n+1

1,2n
)
+

1
2
(

P1,2n+1 + P2n,2n+1 − P1,2n
)

=
1
4

2n+1

∑
i=1

Qi
i+1,i−1 +

1
2

2n+1

∑
i=1

(−)δi,2n+1 Pi,i+1 .
(63)

From (46) and with |γkΣijγ
T
k | = −16a4 |Xik||Xjk|/|Xij|, the prefactor is found to be (the

sign of κ can be taken as −1 to obtain a positive function)[
22n−1

2n+1

∏
i=1

xi,i+1

]−1

. (64)

Therefore, we can summarise the results for any n ∈ N0 by

On =
1

2n−2 ∏n
i=1 xi,i+1

exp i

[
1
4

n

∑
i=1

Qi
i+1,i−1 +

1
2

n

∑
i=1

(−)δi,n Pi,i+1

]
, (65)

where the sum and the product are understood to be mod n.

4. Conclusions and Discussion

The main results of the paper are the wave-functions that represent higher-spin cur-
rents multiplets in the higher-spin algebra, and the calculation of correlators (65). The
result (65) is exactly the conformally invariant generating function of correlators found
in [23,24,26]. Insertions of the ∆ = 2 wave-function Ψ̃, (18), will have to lead to the results
of [25]. It should be noted that the wave-functions on the CFT side found in this paper
are much simpler than those on AdS4 of [23–26]. We hope that the CFT wave-functions
provide a useful first step to compute the deformed invariants [33] of the slightly-broken
higher-spin symmetry.

Lastly, it is also worth mentioning recent works [64–66] that apply similar ideas to
directly looking for higher-spin invariant observables. The higher-spin algebra of these
papers is a commutative limit of the higher-spin algebra we use in this paper along two
(out of four) oscillators. In particular, the amplitudes (and wave-functions) of [66] should
be some ’flat limits’ of the correlation functions of the present paper. It would also be
interesting to extend the results of this paper to other dimensions and to find the CFT
counterpart of the rather complicated bulk-to-boundary propagator found in [67].
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Appendix A. Vector-Spinor Dictionary

In 3d, the Lorentz algebra is so(2, 1), isomorphic to sl(2,R). From this fact, any Lorentz
vector can be represented as a 2 × 2 symmetric matrix. Indeed, if {xm}m=0,1,2 are the
components of a 3-vector x, with the following Pauli matrices

(σ0)
αβ =

(
1 0
0 1

)
, (σ1)

αβ =

(
1 0
0 −1

)
, (σ2)

αβ =

(
0 1
1 0

)
, (A1)

we can form the matrix X of components Xαβ = xm (σm)αβ. A Lorentz transformation
corresponds to an SL(2,R) matrix Aα

β acting as Xαβ → Xγδ Aγ
α Aδ

β. For xm = (t, x, y),
we have

Xαβ =

(
t + x y

y t− x

)
and (X−1)αβ =

−1
|X|X

αβ , (A2)

where the determinant |X| is −|x|2 = −ηmnxmxn, since we take ηmn as the Minkowski met-
ric of signature (− + +). We observe that X−1 is obtained from an inversion
Rxm = xm/|x|2, i.e., RXαβ = (X−1)αβ. We also note that

∂

∂Xαβ
Xγδ := ∂αβXγδ =

1
2

(
δα

γδβ
δ + δα

δδβ
γ
)

. (A3)

We introduce the SL(2,R)-invariant tensor εαβ = −εβα, with ε12 = +1 and its inverse,
such that εαβεγβ = δα

γ, i.e., ε12 = +1. With them, one can raise and lower spinorial indices.
For a spinor ξα, we use Penrose’s conventions:

ξα = ξβ εβα , ξα = εαβ ξβ . (A4)

We also define ∂α ≡ ∂
∂ξα , such that ∂αξβ = εαβ and ∂α = εαβ∂β. The contraction between

two spinors χ, ξ is defined as χξ ≡ χαξα = −ξχ. Finally, we note that any bi-spinor Aαβ

can be written as
Aαβ = Sαβ +

1
2 Aλ

λεαβ (A5)

with Sαβ = Sβα and Aλ
λ = ελγ Aλγ the symplectic trace of Aαβ. In addition, we write

the matrix multiplication between two matrices A and B as (AB)α
γ ≡ Aα

βBβ
γ and

(Aξ)α ≡ Aαβξβ. Then, xm = 1
2 (Xσm)α

α.

Appendix B. Conformal Structures

We first recall the notation we already introduced, (38),

ηij = c
(
ηA

i ηj
)A , ρAB

ij =
i

2a2

(
X−1

12 B2 X−1
12 A2

X−1
12 B1 X−1

12 A1

)AB

. (A6)



Symmetry 2023, 15, 950 13 of 15

For 2n-pt functions, we needed the following structures (we always have a factor −ic2

2a2 but,
due to (35), this factor is 1)

ηA
ij ηB

ij
[
ρij π+

ik ρT
ij
]

AB = Qi
kj + Pij , ηA

ij ηB
ij
[
ρij π+

jk ρT
ij
]

AB = Qj
ki − Pij , (A7)

ηA
ij ηB

ij
[
ρij π+

ik π−il ρT
ij
]

AB = Qi
kl , ηA

ij ηB
ij
[
ρij π+

jk π−jl ρT
ij
]

AB = Qj
kl , (A8)

ηA
ij ηB

kl
[
ρij π+

il ρT
kl
]

AB = Pil , ηA
ij ηB

kl
[
ρij π+

jk ρT
kl
]

AB = Pjk . (A9)

For (2n + 1)-pt functions, with f := (γTγ)2n+1Σ1,2n(γ
Tγ)2n+1

/
|γΣ1,2nγ|,

ηA
12 ηB

12
[
ρ12 π+

1,2n f π−1,2n ρT
12
]

AB = 1
2 Q1

2n,2n+1 , (A10)

ηA
2n−1,2n ηB

2n−1,2n
[
ρ2n−1,2n π−1,2n f π+

1,2n ρT
2n−1,2n

]
AB = − 1

2 Q2n
1,2n+1 , (A11)

ηA
12 ηB

2n−1,2n
[
ρ12 π+

1,2n f π+
1,2n ρT

2n−1,2n
]

AB = − 1
2 P1,2n , (A12)

and, with g := (γTγ)2n+1Σ1,2nγT
2n+1,

ηA
12 η

β
2n+1

[
ρ12 π+

1,2n g
]

Aβ
= − 1

2 P1,2n+1 , (A13)

ηA
2n−1,2n η

β
2n+1

[
ρ2n−1,2n π−1,2n g

]
Aβ

= − 1
2 P2n,2n+1 . (A14)

Lastly,

ηα
2n+1 η

β
2n+1

[
γ2n+1Σ1,2nγT

2n+1
|γΣγ|

]
αβ

= 1
2 Q2n+1

1,2n . (A15)
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