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Abstract: It is known that, for paired measurements subjected to experimental error, better suited
linear regression is obtained by using perpendicular offsets. Even so, the great majority of statistical
software still uses classical vertical offsets for reasons of convenience. The same convenience leads to
the preference of the least squares method in the favor of maximum-likelihood estimation. The treatise
for perpendicular offsets for simple linear regression is slightly trickier than the corresponding one
for vertical offsets. However, there is no general treatise for perpendicular offsets for nonlinear cases
to date. In this work, a typical case of nonlinear dependence—potential versus intensity of current
produced by a photovoltaic cell—is subjected to study. A series of paired potential/current data was
collected from a commercial photovoltaic device and served for introducing the perpendicular offsets
approach in the case of a nonlinear regression. Photovoltaic cell parameters—internal resistance,
short-circuit current intensity, potential of open-circuit, and the maximum power point—have been
determined by using the perpendicular offsets approach. Several issues were addressed in this work,
such as exploring the intrinsic symmetry in the treatment of current versus potential diagrams, the
suitability of perpendicular offsets in obtaining of the regression coefficients, and the implementation
of nonlinear regression models with perpendicular offsets. Even if both the treatises of perpendicular
offsets and nonlinear regression are known for some time now, there is no report in the literature of
using both. Furthermore, since both potential and current measurements are affected by errors, it is
more natural to use the proposed approach of perpendicular offsets.

Keywords: nonlinear regression; perpendicular offsets; parameter estimation; photovoltaics (PVs)

MSC: 62J02; 62P35; 03H10

1. Introduction
1.1. History

Electron transfer is the basic principle of batteries, solar cells, and, in the case of living
organisms, chlorophylls. It appears that plants were the first here as well through the
discovery of photosynthesis [1]. Based on these first studies of electricity, Woodward [2]
completed a long journey of clarifying chlorophyll’s role in the conversion of light into
chemical energy.

In the meanwhile, Luigi Galvani, who was studying biological tissue [3], was among
the first to provide evidence for the movement of the electrical charge. Going further
with the Voltaic pile, Alessandro Giuseppe Antonio Anastasio Volta was the first to de-
velop, with a simple construction (Figure 1 adapted from [4]), a power source that could
continuously provide an electric current to a circuit.

Symmetry 2023, 15, 948. https://doi.org/10.3390/sym15040948 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15040948
https://doi.org/10.3390/sym15040948
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-8524-743X
https://doi.org/10.3390/sym15040948
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15040948?type=check_update&version=1


Symmetry 2023, 15, 948 2 of 16

 

Ag Zn Ag Zn Ag Zn Ag Zn 

 

Figure 1. Voltaic pile design: Silvered copper (Ag), water (or washing soda solution), and zinc (Zn)
or tin (Sn), and a metallic wire); (+) Zn(s) | Zn2+(aq) || H+(aq) | H2(g) (−), E ≈ 0.8 V.

Solar cells produce electricity from sunlight, and the first study regarding this was
conducted in 1839 [5], while the first device was patented at the beginning of the 20th cen-
tury [6]. A photovoltaic cell (PV cell) is a specialized semiconductor diode that converts
visible light (VIS) or infrared (IR) or ultraviolet (UV) radiation into current. In a commercial
technology, silicon is mixed with copper and hydrochloric acid to produce trichlorosilane
gas, which is then reduced with hydrogen to make silane gas. Silane gas is heated in molten
silicon, resulting in silicon crystals that can be reformed and used for photovoltaic cells
and microchips.

1.2. Today

It should be noted that the modern solar cells may have over 10% efficiency, which can
be further improved up to nearly 20% [7], and they surpass the efficiency of the chlorophylls,
averaged at 1% [8], with a peak efficiency of about 3% and a theoretical efficiency of 9% [9].
A record for solar cell efficiency, namely 47.1%, was recently achieved by using multi-
junction concentrator [10]. However, there is a long way to go in order transfer this peak
performance into mass production. Recent developments in organic photovoltaic cells have
made significant advancements in power conversion efficiency from 3% to over 15% since
their introduction in the 1980s [11], while porphyrin-based organic/inorganic hybrid solar
cells were reported working at peak efficiency of 19% in [12]. Additionally, it should be
noted that there is a higher expectancy in terms of efficiency from PV is expected even more
since their performance may be increased by continuous alignment [13,14].

In many instances, regression analysis implies a linear model (see [15] for a step-by-
step coverage of linear models from model specification to capacity of prediction and [16]
for an extent of them to include non-Gaussian errors). Additionally, in some instances,
linearization is also a good alternative (see [17] for a general treatise of functional trans-
formations, ref. [18] for applicability domain of the linearization, and [19] for a case of
automated linearization).

However, current-voltage dependence of a photovoltaic (PV) is known to be nonlin-
ear [20], and a series of alternatives are considered (symbolic regression combined with
multilayer perceptron in [21], nonlinear autoregressive with exogenous input neural net-
work in [22], artificial population-based metaheuristic algorithm of differential evolution
in [23], slime mold optimization in [24], barnacle mating optimization algorithm in [25]).

In order to obtain a higher accuracy, the models for the power sources have recently
become more and more elaborated [26]. The recent energy crisis has proven that more atten-
tion should be directed towards alternative and renewable sources of energy, and among
those, PVs attracted a special interest . Thus, modeling of solar generating systems for
patterning the performance under various conditions of solar irradiance, temperature,
and loading is investigated in [25] using the barnacle mating optimization algorithm, in [27]
with the hunter–prey optimizer, in [28] with the whale optimizer, and in [29] with principal
component analysis, while some low computational intensity models are proposed in [26].
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1.3. Aim

In this study, the parameters of a commercial solar cell have been investigated.
The study provides grounds for a theoretical discussion regarding the use of perpendicular
offsets into the analysis of nonlinear regression.

2. Materials and Methods
2.1. Single-Diode, Double-Diode, and PV Generator Models

A PV cell is given in terms of output current (I) and voltage (U). Several models have
been developed to describe the I −U characteristic of solar cells.

The simplest model of a PV (Figure 2) is made from a current source (Ip) in parallel
with a diode (Id).

 

I(1) Id Ip 

U(1) 

Figure 2. Simplest model of a PV.

If VT is the thermal voltage, and η is the diffusion and recombination diode ideality
factor, then (by using Ip = Id + I relation) the simplest model (Figure 2) can be formulated
as follows:

I(1) = Ip − I0(exp(
U(1)

ηVT
− 1)) (1)

where I0 is the diode reverse saturation current.
The initial formula of a diode direct current was derived without the ideality factor [30]

and added later to correct for non-ideal behavior (adjusted empirically to make the equation
fit the data [31]; for the case reported in [31], η was found about 1.03. An η ≈ 1 is assumed
to be representative of a second-order (bimolecular) radiative recombination of free charges,
whereas η ≈ 2 is attributed to a first-order (monomolecular) nonradiative recombination
process [32]. Furthermore, some authors notice variations in η values among diodes from
different producers at the same current intensities but also for same diodes at different
current intensities [33].

In practice, no solar cell is ideal, so two passive components, a shunt resistance
(Rh, emulating tiny electric shorts through the PN junction of the PV cell) and a series
resistance (Rs, emulating the internal losses of the PV cell) are added to the model in order
to compensate for the nonideality (Figure 3).

 

Rs 

Rh 

Ih I(2) Id Ip 

U(2) 

Figure 3. Single-diode model of a PV.

The relation between output current (I) and voltage (U) is updated from Equation (1)
for Figure 2 to Equation (2) for Figure 3 by considering the passive components added
(U(2) = U(1) − I(2)Rs, I(2) = I(1) − Ih, U(1) = IhRh = U(2) + I(2)Rs):

I(2) = Ip − I0(exp(
U(2) + I(2)Rs

ηVT
− 1))−

U(2) + I(2)Rs

Rh
(2)
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In the double-diode model, two parallel connected diodes are used instead of one,
resulting in a system like the one in Figure 4.

 

Id2 Rs 

Rh 

Ih I(3) Id1 Ip 

U(3) 

Figure 4. Double-diode model of a PV.

Again, the relation between output current (I) and voltage (U) is updated, now
from Equation (2) for Figure 3 to Equation (3) for Figure 4, and this is accomplished
by considering the active components added (now I(3) = Id1 + Id2 + Ih + I(3) instead of
Ip = Id1 + Ih + I(2), or I(3) = I(2) − Id2, IhRh = U(3) + I(3)Rs):

I(3) = Ip − I01(exp(
U(3) + I(3)Rs

η1VT
− 1))− I02(exp(

U(3) + I(3)Rs

η2VT
− 1))−

U(3) + I(3)Rs

Rh
(3)

where I01 and I02 are the reverse saturation currents and η1 and η2, respectively, the
ideality factors.

One can easily realize that the model from Equation (3) becomes more and more
complex by adding more active components in it.

A PV generator is a system which usually may be a grid of Ns series-connected
by Np parallel-connected PV cells, and in that instance, considering those PV cells are
undistinguishable, a formula for the output parameters of the PV system can be expressed
by updating Equation (2) again [24]:

IPV = Np Ip − Np I0(exp(
UPV/Ns + IPV Rs/Np

ηVT
− 1))−

UPV Np/Ns + IPV Rs

Rh
(4)

Important parameters of a PV include open-circuit voltage (Voc), short-circuit intensity
(Isc), and its internal resistance (ri). Additionally, one point on the I −U curve is of interest,
the point in which I ·U obtains a maximum, which is the maximum power point (P = I ·U,
P→ max. =⇒ P = Pxp, Pxp = Ixp ·Uxp, where Ixp is the current intensity and Uxp is the
electric potential (voltage) at maximum power, Pxp).

2.2. Lambert Function

The Lambert W function [34], namely the function W from Equation (5), is a useful
tool for solving equations involving exponentials [35] and may serve to express a pseudo-
analytical form of the solution for Equation (2).

z = W(z)exp(W(z)) (5)

Thus, if I = I(U) is to be extracted from Equation (2), then

I =
(Ip + I0)Rh −U

Rs + Rh
− ηVT

Rs
W
(

I0RsRh
ηVT(Rs + Rh)

exp
(
(U + (Ip + I0)Rs)Rh

ηVT(Rs + Rh)

))
(6)

and if U = U(I) is to be extracted from Equation (2), then

U = (Ip + I0)Rh − I(Rs + Rh)− ηVTW
(

I0Rh
ηVT

exp
(

Ip + I0 − I
ηVT/Rh

))
(7)
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One will want to bypass the Lambert function in order to express an approximate
analytical expression for I = I(U) and/or U = U(I). In this case, it should be known that
power (xα) and exponential (ex) functions have a similar shape. Even more so, for α > e,
there always exists an (open) interval in which xα > ex, while outside of this interval
xα ≤ ex.

2.3. Explicit Equations

One should notice that, aside from Equation (1), there is no explicit equation describ-
ing the I − U characteristic. As opposed to analytically solving the equations such as
Equation (2) or Equation (3) with Lambert function is by operating on approximate explicit
(analytic) function. Here some proposed models are given.

Kalmarkar [36,37] proposed

I
Isc

= 1− (1− c1)
U

Voc
− c1(

U
Voc

)c2 (8)

where c1 = c1(Ixp, Uxp, Isc, Voc, c2) and c2 = c2(Ixp, Uxp, Isc, Voc) are the coefficients to
be determined.

Das [38,39] proposed
I

Isc
=

1− ( U
Voc

)c2

1 + c1(
U

Voc
)

(9)

where c1 = c1(Ixp, Uxp, Isc, Voc, c2) and c2 = c2(Ixp, Uxp, Isc, Voc) are the coefficients to
be determined.

Pindado and Cubas [40,41] proposed:

I =

Isc(1− (1− Ixp
Isc
)( U

Uxp
)c1) if U ≤ Uxp

Ixp
U

Uxp
(1− (

U−Uxp
Voc−Uxp

)c2) otherwise
(10)

where c1 = c1(Ixp, Uxp, Isc) and c2 = c2(Ixp, Uxp, Isc, Voc) are the coefficients to be determined.
One should notice that in each of the above given instances four parameters need to

be determined (Ixp, Uxp, Isc, and Voc).
Another remark to be made is on the type of the analytic function. Thus, Equation (8)

defines a linear (additive) combination of linear and power functions, Equation (9) de-
fines a rational function, while Equation (10) is a piecewise of power and of linear and
power functions.

2.4. Limit Cases

In a plot of potential versus current (y = f1(x) in Figure 5), it is expected to observe
a linear oblique tendency for small currents (y = Voc − x · ri line in Figure 5) and a linear
vertical tendency for high currents (x = Isc line in Figure 5).

 

U 

I 

y = Voc − x·ri 

x = Isc 

y = f1(x) 

O 

Figure 5. Potential vs. current for a PV.



Symmetry 2023, 15, 948 6 of 16

The plot of current versus potential (Figure 6) is to be obtained from the plot of
potential versus current (Figure 5) by two symmetry operations: a rotation with π/2 and a
reflection (D4 symmetry operation).

 

I 

U 

y = Isc 

y = (Voc − x)/ri 

y = f2(x) 

O 

Figure 6. Intensity vs. potential for a PV.

In a plot of current versus potential (y = f2(x) in Figure 6), it is expected to observe
the linear oblique tendency for high voltages (y = (Voc− x)/ri line in Figure 6) and a linear
horizontal tendency for low voltages (y = Isc line in Figure 6).

One should also notice that the f1 and f2 functions are inverse ( f2( f1(x) = x). Due
to the two linear trends (lines depicted as y = Voc − x · ri and x = Isc in Figure 5 and
y = (Voc − x)/ri and y = Isc in Figure 6), some authors translate the dependence into a
bilinear one [42].

2.5. Minimizing Unexplained Variance (Errors)

A typical regression method minimizes the sums of squares (Figure 7).
 ε 

 
ε 

 
ε 

 

   
 

U = E − r·I (Uk, Ik) 

I = Ik 

I = 0 

U = 0 

U = Uk 

U = E − r·Ik 

U = E − r·I (Uk, Ik) 

I = Ik 

I = 0 

U = Uk 

I = E/r − Uk/r 

U = 0 

U = E − r·I (Uk, Ik) 

I = Ik 

I = 0 

U = 0 

|E − r·Ik − Uk| 
/√(1 + r2) 

U = Uk 

Figure 7. Vertical (“|”), horizontal (“−”), and perpendicular (“⊥”) offsets in calculating the experi-
mental errors (ε).

Classical vertical offsets minimize the sums of squares formed with vertical sides from
each observation point, k = 1, 2, ..., m (with m the number of experimental paired observa-
tions) to the model line (y = f1(x) in Figure 5 and y = f2(x) in Figure 6). One should notice
that constructing vertical offsets for potential vs. current (Figure 5) is improper, a paired
observation having a very low probability to actually meet the model y = f1(x) in real
frame near the short-circuit intensity (U, I > 0).

Horizontal offsets may be constructed as well (Figure 7). Horizontal offsets minimize
the sums of squares formed with horizontal sides from each observation point, k = 1, 2, ..., m
(with m the number of experimental paired observations) to the model line (y = f1(x)
in Figure 5 and y = f2(x) in Figure 6). One should notice that constructing horizontal
offsets for current vs. potential (Figure 6) is improper, a paired observation having very
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low probability to actually meet the model y = f2(x) in a real frame near the zero circuit
voltage (U, I > 0).

Perpendicular offsets are another alternative (Figure 7). Perpendicular offsets min-
imize the sums of squares formed with sides constructed perpendicular from each ob-
servation point, k = 1, 2, ..., m (with m the number of experimental paired observations)
to the model line (y = f1(x) in Figure 5 and y = f2(x) in Figure 6). One should notice
that constructing perpendicular offsets is suitable in both instances, potential vs. current
(Figure 5) and current vs. potential (Figure 6), as the side of the square minimizes the
expectance of an experimental error in all regions (since in a right triangle the height of the
right angle is always less than the two sides).

2.6. Occam’s Razor: Two Simple Models

Parsimony law (pluralitas non est ponenda sine necessitate in Latin, plurality should not
be posited without necessity in English, known as Occam’s or Ockham’s razor) dictates that
one should give precedence to simplicity: of two (or more) competing theories, the simpler
explanation of an entity is to be preferred.

Two functions are taken as models here, so as to approximate the non-linear behavior
of a PV: a rational function ( f1(x) from Equation (11), depicted in Figure 8) and a power
function ( f2(x) from Equation (11), depicted in Figure 9):

f1(x) =
a1 + a2x + a3x2

a4 + x
(11)

f2(x) = b1 − exp(b2 + b3ln(x)) (12)

 
Figure 8. Rational function f1(x) from Equation (2) with some convenient coefficients.

 
Figure 9. Power function f2(x) from Equation (3) with some convenient coefficients.

The similarity between Figures 5 and 8 can be noticed, so the initial (suboptimal)
values of the coefficients may be estimated from U = U(I) measured data.

The same similarity is seen between Figures 6 and 9, so the initial (suboptimal) values
of the coefficients may be again estimated from I = I(U) measured data.

Upon having a model for the U = U(I) dependence (such as the model in Equation (11)),
the open-circuit voltage (Uoc) is the one at which the circuit is passed by a hypothetical null
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current (x = 0), and the short-circuit intensity is the one in which the circuit is at null voltage
( f1(x) = 0), so Isc and Uoc are given by Equation (13).

If U(I) =
a1 + a2 I + a3 I2

a4 + I
→ Uoc = a1/a4, Isc =

−a2 ±
√

a2
2 − 4a1a3

2a3
(13)

Upon having a model for I = I(U) dependence (such as the model in Equation (12)),
the open-circuit voltage (Uoc) is the one at which the circuit is passed by a hypothetical null
current ( f2(x) = 0), and the short-circuit intensity is the one in which the circuit is at null
voltage (x = 0), so Isc and Uoc are given by Equation (14).

If I(U) = b1 − exp(b2 + b3ln(U))→ Uoc = exp((ln(b1)− b2)/b3), Isc = b1 (14)

In any instance, the maximum power point is the one in which the U · I product
(x · f (x)) reaches a maximum, so U′ · I + U · I′ = 0 ( f (x) + x · f ′(x) = 0) and

If U(I) =
a1 + a2 I + a3 I2

a4 + I
→ Ixp = 3

√
i1 +

3
√

i2, Uxp = U(Ixp) (15)

If I(U) = b1 − exp(b2 + b3ln(U))→ Uxp =

(
b1

(1 + b3)exp(b2)

)1/b3

(16)

where Uxp, Ixp, and Pxp = Uxp · Ixp are the values of potential (Uxp), intensity (Ixp), and
power (Pxp) at maximum power point, and i1 and i2 from Equation (15) are given by:

i1,2 = q1 ±
√

q1 + p3
1, p1 = − (a2 − 3a3a4)

2

72a3
3

, q1 =
a3

2 − 9a2
2a3a4 + 27a2

3a2
4(a3a4 − a2) + 54a1a2

3a4

216a3
3

(17)

The maximum power point is of real interest in solving optimal power flow
problems [43,44].

2.7. The Experiment and Data Treatment

The measurements were made in the presence of indoor light by using a simple
circuit (Figure 10).

 

R 

V 

A 

Figure 10. The simple circuit with a PV cell and a resistance used to collect the measurements.

Let us consider (Uk, Ik) for k = 1, 2, ..., m the set of m paired measurements. Since
the order in the pair is relevant, the values shall be substituted with variables (xk, yk) for
k = 1, 2, ..., m. The perpendicular offsets from the observed point (xk, yk) to the model
function y = f (x) can be calculated (see the construction from Figure 11).
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y = f(x) slope: df(x)/dx 

slope: ‒ (df(x)/dx)⁻1 

Figure 11. Expressing the perpendicular offsets.

If y = f (x) then its tangents are y = f (x0) + f ′(x0) · (x− x0), where x0 is the ordinate
position, (y = f (x0) + f ′(x0) · (x− x0) is the equation of the tangent to y = f (x) in x = x0),
where f ′(x) is the function derivative ( f ′(x) = d f (x)/dx). The normal to the y = f (x)
curve is y = f (x0)− (x− x0)/ f ′(x0). If x = x0, then the point on the curve is (x0, f (x0))
and the distance (d) from it to an arbitrary observed pair (xk, yk), positioned on the normal
to the curve (yk = f (x0)− (xk − x0)/ f ′(x0)), is given by Equation (18):

d((x0, f (x0)), (xk, yk)) =
√
(x0 − xk)2 + ( f (x0)− yk)2 (18)

while the point itself (more exactly, its abscisa, x0) is to be calculated from another nonlinear
equation, Equation (19):

x0 s. th. yk = f (x0)− (xk − x0)/ f ′(x0) (19)

Even if the situation looks discouraging at first glance, it is actually not so complicated
since x0 belonging to the normal to the curve will minimize the distance (and its square)
from Equation (18), so the problem is equivalent to Equation (20):

x0 s. th. yk = (x0 − xk) + ( f (x0)− yk)
2 is minimum (20)

3. Results and Discussion

The results of the measurements are given in Table 1.

Table 1. Measured data for current intensity and potential in the simple circuit with PV cell.

I (mA) 1.147 1.187 1.257 1.312 1.362 1.406 1.48 1.493 1.556 1.609 1.672 1.742 1.776 1.785 1.812 1.821 1.834

U (mV) 1132 1110 1080 1038 1010 973 930 900 845 772 703 593 493 405 332 254 163

3.1. Implementation of the Proposed Solution

Identifying the point of intersection between the curve y = f (x) and the perpendicular
from the observed point (xk, yk) should not possess a challenge to the improved Levenberg–
Marquardt optimizer (for the Levenberg method see [45], for the Marquardt implementation
see [46] and for its improvement see [47]), since Equation (20) is used, and especially since
x · f (x) is unimodal (in the present experiment, common sense dictates that there is only
one point with maximum power). Its AlgLib [48] implementation has been used under Free
Pascal environment [49]. The Levenberg–Marquardt method is among the most applied
algorithms due to its flexibility and fast convergence [50]. Some of its limitations are
reported as well, such as the number of parameters and the estimation errors of the initial
parameters being the main factors limiting the retrieval accuracy of the algorithm [51].

For (c1, . . . , cn), a given set of coefficients (a function such as the one from
Equation (11) or Equation (12), or any other mathematical function approximating the
Equation (2)), the expression of the function becomes completely known and Equation (19)
or Equation (20) provides a way towards perpendicular offsets from each observed point.
In this context, another optimization can be conducted, namely to minimize
the Equation (21) sums, where zk are ordinates of points provided by Equation (20),
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and f (zk; c1, . . . , cn) is the function f (x) evaluated in x ← zk using c1, . . . , cn as
given coefficients:

c1, . . . , cn s. th.
m

∑
k=0

(zk − xk)
2 +

m

∑
k=0

( f (zk; c1, . . . , cn)− yk)
2 is minimum (21)

The algorithm providing perpendicular offsets is given as Algorithm 1 below.

Algorithm 1: Providing perpendicular offsets.
//Uses MINIMIZE function solving an optimization problem (Equation (21))
// f is a function variable implementing a function like Equation (11) or
Equation (12)
//Implement PF function below
Input:

m //sample size
(X, Y) //sample data (X = {x1, . . . , xm}, Y = {y1, . . . , ym})
n //number of coefficients
C //initial guess for coefficients (C = {c1, . . . , cn})
f //function evaluating the model with given coefficients ( f = f (x; C))
k //data pair index from which to construct the perpendicular offsets

Function PF(m, X, Y, n, C, f , k)
z← X[k]; t← MINIMIZE((z− X[k])2 + ( f (z; C)−Y[k])2, z)
Return (t− X[k])2 + ( f (t; C)−Y[k])2

EndFunction
r ← PF(m, X, Y, n, C, f , k)
Output:

r //the squared perpendicular offset from k to f

In Algorithm 1, the improved Levenberg–Marquardt optimizer was used for the
minimize function, as mentioned above, but the implemented solution can be more general,
and any other optimizer can be used. One might prefer, for instance, other libraries for
optimization, such as Mathcad [52], Mathematica [53], or Matlab [54].

The algorithm constructing the sum of perpendicular offsets is given as Algorithm 2.

Algorithm 2: Sum of perpendicular offsets.
//Uses function PF defined in Algorithm 1 & implement function SP below
Input:

m //sample size
(X, Y) //sample data (X = {x1, . . . , xm}, Y = {y1, . . . , ym})
n //number of coefficients
C //initial guess for coefficients (C = {c1, ..., cn})
f //function evaluating the model with given coefficients ( f = f (x; C))

Function SP(m, X, Y, n, C, f )
r ← 0; For (k← 1, . . . , m) r ← r + PF(m, X, Y, n, C, f , k) EndFor
Return r

EndFunction
s← SP(m, X, Y, n, C, f )
Output:

s //sum of the squared perpendicular offsets

Algorithm 2 constructs the objective function for the second optimization phase
by calculating the sums provided as Equation (21), which are of the squares of the
perpendicular offsets.
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The algorithm providing a solution to the nonlinear regression problem is given
as Algorithm 3.

Algorithm 3: Nonlinear regression with perpendicular offsets.
//Uses MINIMIZE function solving an optimization problem (Equation (21))
//Uses INITIALESTIMATE function providing an initial guess
//Uses function SP defined in Algorithm 2
Input:

m //sample size
(X, Y) //sample data (X = {x1, . . . , xm}, Y = {y1, . . . , ym})
n //number of coefficients
C //initial guess for coefficients (C = {c1, . . . , cn})
f //function evaluating the model with given coefficients ( f = f (x; C))

C ← INITALESTIMATE(m, X, Y, n, f ) //or any other good guess initialization
D ← MINIMIZE(SP(m, X, Y, n, C, f ), C)
Output:

D //coefficients minimizing the sum of the perpendicular offsets

In Algorithm 3, the INITIALESTIMATE function is merely used to provide an adequate
initial guess, it may use maximum likelihood (like in the instance reported in [55]), but any
other strategy providing an adequate initial guess can be used instead (such as classical
least squares in [56]). In some instances, better guesses may be derived using transformed
data (such as in [57]).

3.2. The Numerical Results

In this situation, rough approximations are used to provide the initial estimates. Table 2
provides the values of these estimates (and where all coefficients were identified as being
highly statistically significant).

Table 2. Initial estimates for the coefficients.

n f (x; C) Initial C Statistics PV Cell Parameters

4 f1 from Equation (11)

a1 = −3350
a2 = 2689
a3 = −476
a4 = −1.93

RSS = 0.0015674
r2

adj = 0.9976
F = 2396

Isc = 1.85482 mA
Uoc = 1735.75 mV
Ixp = 1.3921 mA
Uxp = 982.02 mV
Pxp = 1.3671 mW

3 f2 from Equation (12)

b1 = 1.83
b2 = −22
b3 = 3.07

RSS = 0.0019093
r2

adj = 0.9986
F = 9228

Isc = 1.83000 mA
Uoc = 1576.51 mV
Ixp = 1.3804 mA
Uxp = 998.00 mV
Pxp = 1.3776 mW

The optimization was run in both instances for a considerable amount of iterations
(Figures 12 and 13). In each iteration, about 290 steps of optimization are required to have
all offsets perpendicular, and about 196 steps of optimization are required to have all offsets
perpendicular by starting from vertical ones (z← X[k] in Algorithm 1).

Because of the double-embedded optimization (made by Algorithm 1, embedded into
function SP in Algorithm 2, and subject to another optimization in Algorithm 3), the conver-
gence is slow—millions of iterations are required to reach the optimum point. To be precise,
2,482,076,218 evaluations of f1 function were used to obtain perpendicular offsets for it
in 8,581,798 evaluations of SP function from Algorithm 2, and 1,072,445,080 evaluations
of f2 function were used to obtain perpendicular offsets for it in 5,477,230 evaluations of
SP function from Algorithm 2. In all instances, the convergence becomes smooth almost
instantly (see the jump at the beginning of the iterations in Figures 12 and 13).
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Table 3 contains the results of the optimization. One should note that, even if the initial
feed data were distinct (X ← I, Y ← U for f1 and X ← U, Y ← I for f2), the meaning of
the residual sum of squares (RSS) is the same (via Equation (20)), which allows comparison
of the models.

Table 3. Final optimized values for the coefficients.

n f (x; C) Value C Statistics PV Cell Parameters

4 f1 from Equation (11)

a1 = −3349.81
a2 = 2689.40
a3 = −475.164
a4 = −1.92823

RSS = 0.0013094
r2

adj = 0.9977
F = 2526

Isc = 1.85071 mA
Uoc = 1737.24 mV
Ixp = 1.3866 mA
Uxp = 985.94 mV
Pxp = 1.3671 mW

3 f2 from Equation (12)

b1 = 1.82622
b2 = −22.2914
b3 = 3.11345

RSS = 0.0011128
r2

adj = 0.9987
F = 9528

Isc = 1.82622 mA
Uoc = 1561.10 mV
Ixp = 1.3823 mA
Uxp = 991.19 mV
Pxp = 1.3701 mW

Both models have asymptotic tendencies (to a vertical line in x = a4 and to a oblique
line in x = 0 for f1; to a horizontal line in x = 0 for f2). Model f1 defined by Equation (11)
is a rational function, which is known to fit well in nonlinear problems, while model
f2, defined by Equation (12), is a transformed power function ( f2(x) = b1 − exp(b2)xb3).
The analysis of the residual (RSS in Table 3) reveals that its value is smaller for the esti-
mation using f2 function than for the estimation using f1 function, even if f2 uses fewer
parameterization coefficients. This result is difficult to attribute to chance. Thus, f2 can be
considered a good prediction model for I = I(U) dependency of the PV system.

One should notice that f2 uses only three unknown parameters (from which one of
them, namely b1, has a direct physical interpretation, b1 = Isc), and the advantages and
disadvantages of the use of the models such as Equation (12) should be investigated further.

In the current context, PV systems play an increasingly important role in the world’s
energy supply; if in 2018–2019 they were responsible for 2.5–3.0% of the global electricity
generation, they are expected to have increased their share to 5.0–7.5% by the end of
2023 [14]. Evidently, the efficiency of a PV system’s power depends on the amount of
available sunlight, shading, solar panel temperature, and the system being optimized when
the load characteristic changes to keep power transfer at the highest efficiency. The output
power of a partially shaded solar array can have multiple peaks, and some algorithms
designed to maximize the power by changing the load can get stuck in a local maximum
rather than the global maximum of the curve, and this issue deserves further study as well
since the amount of electricity which may be lost will become significant.

4. Conclusions

The treatise of perpendicular offsets was implemented here for a typical nonlinear
problem. The solution to the problem was generally given by a double-embedded opti-
mization (made by Algorithm 1, embedded into function sp in Algorithm 2, and subject to
another optimization in Algorithm 3). A large number of iterations were necessary to reach
the optimum despite a relatively small number of paired observations (m = 17). The perpen-
dicular offsets treatise allows a natural comparison of model functions via residual sums of
squares. Photovoltaic cell parameters—internal resistance, short-circuit current intensity,
potential of open-circuit and the maximum power point—have been determined using
the perpendicular offsets approach. It has been shown that the intrinsic symmetry in the
treatment of current vs. potential diagrams should be exploited, and the perpendicular off-
sets in obtaining of the regression coefficients were well suited. The regression employing
perpendicular offsets should be used in any instance involving paired measurements.
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Abbreviations
The following abbreviations are used in this manuscript:

PV (cell) Photovoltaic
PN (junction) Positive (P)/negative (N) semiconductor interface
η, η1, η2 Diffusion and recombination diode ideality factor(s)
VT Thermal voltage (VT = kB

e− T = R
F T, with T the temperature, in Kelvin (K))

kB Boltzmann’s constant (kB = 1.380649 · 10−23 J ·K−1)
e− Electron (elementary) electric charge constant (e− = 1.602176634 · 10−19 C)
e Euler’s number, e = 2.71828182845904523... (e = ∑∞

k=0 k!−1)
R Regnault’s constant (R = 8.31446261815324 J ·mol−1 ·K−1)
Rh, Rs Shunt (Rh) and series (Rs) resistances (see §2.1)
F Faraday’s constant (F = 96485.3321233100184 C ·mol−1)
Isc Short-circuit intensity
Uoc Open-circuit voltage
Ixp Current intensity at maximum power point
Uxp Voltage at maximum power point
Pxp Power at maximum power point (Pxp = Ixp ·Uxp)
RSS Residual sum of squares (statistics)
radj2 Adjusted determination coefficient (statistics)
F F (Fisher’s) value (statistics)
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