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Abstract: One of the most important problems in the study of geometric function theory is knowing
how to obtain the sharp bounds of the coefficients that appear in the Taylor–Maclaurin series of
univalent functions. In the present investigation, our aim is to calculate some sharp estimates of
problems involving coefficients for the family of convex functions with respect to symmetric points
and associated with a hyperbolic tangent function. These problems include the first four initial
coefficients, the Fekete–Szegö and Zalcman inequalities, and the second-order Hankel determinant.
Additionally, the inverse and logarithmic coefficients of the functions belonging to the defined class
are also studied in relation to the current problems.

Keywords: convex functions with respect to symmetric points; subordinations; Zalcman functionals;
logarithmic and inverse coefficients; Hankel determinant problems

1. Introduction and Definitions

To properly understand the basic terminology used throughout our primary findings,
we must first explain some basic concepts. For this, let Ud = {z ∈ C : |z| < 1} repre-
sent the open unit disc and the symbol A denote the holomorphic (analytic) functions
class normalized by f (0) = f ′(0)− 1 = 0. This signifies that f ∈ A has Taylor’s series
representation

f (z) =
∞

∑
l=1

alzl , (a1 = 1), (1)

and if an analytic function takes no values more than once in Ud, it is univalent in region Ud.
That is, f being univalent in Ud means mathematically that f (z1) = f (z2) implies z1 = z2
for z1, z2 ∈ Ud. Thus, by the notation S , we utilize series expansion (1) to denote the family
of univalent functions. Köebe discovered this family in 1907.

The most famous result of function theory, known as the “Bieberbach conjecture”, was
stated by Bieberbach [1] in 1916. According to this conjecture, if f ∈ S , then |an| ≤ n for
all n ≥ 2. He also proved this problem for n = 2. Many eminent scholars have used a
variety of techniques to address this problem. For n = 3, this conjecture was solved by
Löwner [2] and also by Schaeffer and Spencer [3] using the Löwner differential equation
and variational method, respectively. Later, Jenkins [4] used quadratic differentials to prove
the same coefficient inequality |a3| ≤ 3. The variational technique was used by Garabedian
and Schiffer [5] to determine that |a4| ≤ 4. The Garabedian-Schiffer inequality [6] (p. 108)
was used by Pederson and Schiffer [7] to calculate that |a5| ≤ 5. Additionally, by using
the Grunsky inequality [6] (p. 60), Pederson [8] and Ozawa [9,10] have both proved that
|a6| ≤ 6. This conjecture has been long sought to be resolved by numerous academics, but
nobody has been able to prove it for n ≥ 7. Finally, in 1985, de-Branges [11] proved this
conjecture for all n ≥ 2 by using hypergeometric functions.
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The estimates of the nth coefficient bounds for several subfamilies of the univalent
function family, particularly starlike S∗, convex C, close-to-convex K, and so on, were
examined in an attempt to solve the mentioned problems between 1916 and 1985. Some of
the basic classes are described below:

S∗ =

{
f ∈ S : Re

(
z f ′(z)

f (z)

)
> 0, (z ∈ Ud)

}
,

C =

{
f ∈ S : Re

(
(z f ′(z))′

f ′(z)

)
> 0, (z ∈ Ud)

}
,

K =

{
f ∈ S : Re

(
z f ′(z)
h(z)

)
> 0 with h ∈ S∗ (z ∈ Ud)

}
.

By selecting h(z) = z, the K family is reduced to the family of bounded turning functions,
and we denote such a family of functions by the symbol BT . In 1992, the authors [12]
considered a univalent function φ in Ud with the properties that φ′(0) > 0 and Reφ > 0.
Additionally, the region φ(Ud) is star-shaped about the point φ(0) = 1 and is symmetric
along the real line axis. Applying the familiar idea of subordination “≺”, they defined the
following unified subfamily of the class S .

S∗(φ) =
{

f ∈ S :
z f ′(z)

f (z)
≺ φ(z), (z ∈ Ud)

}
.

They focused on certain consequences, such as the covering, growth, and distortion theo-
rems. Over the past few years, a number of collection S subfamilies have been considered
as specific options for the class S∗(φ). The following families stand out as being remarkable
in the study that has lately been introduced.

(i). S∗L ≡ S∗(
√

1 + z) [13], S∗car ≡ S∗
(

1 + 2
3 z + 1

3 z2
)

[14], S∗exp ≡ S∗(exp(z)) [15],

(ii). S∗cos ≡ S∗(cos(z)) [16], S∗sin ≡ S∗(1 + sin(z)) [17], S∗pet ≡ S∗
(

1 + sinh−1 z
)

[18],

(iii). S∗cosh ≡ S
∗(cosh(z)) [19], S∗tanh ≡ S

∗(1 + tanh(z)) [20], S∗c ≡ S∗(1 + z + 1
2 z2) [21],

(iv). S∗(n−1)L ≡ S
∗(Ψn−1(z)) [22] with Ψn−1(z) = 1 + n

n+1 z + 1
n+1 zn for n ≥ 2. Also see

the articles [23–26] for more recently studied generalised classes.

The below described determinantHλ,n( f ) with n, λ ∈ N = {1, 2, . . .} is known as the
Hankel determinant and has entries consisting of coefficients of the function f ∈ S

Hλ,n( f ) =

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+λ−1
an+1 an+2 . . . an+λ
...

... . . .
...

an+λ−1 an+λ . . . an+2λ−2

∣∣∣∣∣∣∣∣∣.
This determinant was contributed to by Pommerenke [27,28]. The first- and second-order
Hankel determinants, respectively, are known in particular as the following determinants:

H2,1( f ) =

∣∣∣∣ 1 a2
a2 a3

∣∣∣∣ = a3 − a2
2,

H2,2( f ) =

∣∣∣∣ a2 a3
a3 a4

∣∣∣∣ = a2a4 − a2
3.

In the literature, the first two determinants are extensively studied for various subfamilies
of univalent functions, but the work carried out by the authors [29–40], in which they
determined the sharp bounds of the second-order determinant, is noteworthy. For more
about the study of this determinant, see the articles [41–48].
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Motivated from the classes established by Sakaguchi [49] and by Das and Singh [50],
we now introduce the family SKtanh of the convex function with respect to symmetric
points connected with the tan hyperbolic function, and it is given by

SKtanh =

{
f ∈ S :

2(z f ′(z))′

( f (z)− f (−z))′
≺ 1 + tanh(z) (z ∈ Ud)

}
. (2)

In this article, we propose a new approach that depends on the connection between the
coefficients of functions belonging to a particular family and the coefficients of correspond-
ing Schwarz functions. In many cases, it is simple to determine the exact estimate of the
functional and do the required calculations. Our aim is to calculate the sharp estimates of
coefficients, Fekete–Szegö, Zalcman inequalities for the family SKtanh of convex function
with respect to symmetric points connected with the tan hyperbolic function. We also find
the sharp bound of the determinant |H2,2( f )| for the same class. Further, we study the
logarithmic and inverse coefficients for the same class.

2. A Set of Lemmas

An analytic function w : Ud → Ud with w(0) = 0 is called a Schwarz function, and
let the family of such functions be denoted by the symbol B0. Thus, we can represent the
function w ∈ B0 by the following power series expansion:

w(z) =
∞

∑
n=1

wnzn. (3)

Lemma 1 ([51]). Let w(z) = ∑∞
n=1 wnzn be a Schwarz function and let∣∣∣w3 + σw1w2 + ςw3

1

∣∣∣ = γ(w)

with σ and ς are real numbers. Then the following sharp estimate hold

γ(w) ≤ Φ(σ, ς),

where

Φ(σ, ς) =

{
1 if (σ, ς) ∈ D1 ∪D2 ∪ {(2, 1)}
2
3 (|σ|+ 1)

(
|σ|+1

2(|σ|+1+ς)

)1/2
if (σ, ς) ∈ D3 ∪D4

,

with

D1 =

{
|σ| ≤ 1

2
, − 1 ≤ ς ≤ 1

}
,

D2 =

{
1
2
≤ |σ| ≤ 2,

4
27

(1 + |σ|)3 − (1 + |σ|) ≤ ς ≤ 1
}

,

D3 =

{
|σ| ≥ 2, − 2

3
(1 + |σ|) ≤ ς ≤ 2(1 + |σ|)|σ|

4 + σ2 + 2|σ|

}
,

D4 =

{
1
2
≤ |σ| ≤ 2, − 2

3
(|σ|+ 1) ≤ ς ≤ 4

27
(1 + |σ|)3 − (1 + |σ|)

}
.

Lemma 2 ([52]). If w ∈ B0 is in the form (3), then

|w2| ≤ 1− |w1|2, (4)

|wn| ≤ 1, n ≥ 1. (5)
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Furthermore, the inequality of (4) can be improved in the manner∣∣∣w2 + ηw2
1

∣∣∣ ≤ max{1, |η|}, η ∈ C. (6)

Lemma 3 ([53]). Let w(z) = w1z + w2z2 + ... be a Schwarz function. Then,

|w3| ≤ 1− |w1|2 −
|w2|2

1 + |w1|
, (7)

|w4| ≤ 1− |w1|2 − |w2|2. (8)

Lemma 4 ([54]). Let w(z) = w1z + w2z2 + ... be a Schwarz function. Then,∣∣∣w1w3 − w2
2

∣∣∣ ≤ 1− |w1|2.

3. Coefficient Estimates on Function Belonging to the Class SKtanh

We first discuss the bounds on some initial coefficients for f ∈ SKtanh.

Theorem 1. Let f ∈ SKtanh. Then,

|a2| ≤
1
4

,

|a3| ≤
1
6

,

|a4| ≤
1

16
,

|a5| ≤
1

20
.

All of these bounds are sharp.

Proof. Assume that f ∈ SKtanh. It follows from the definition that a Schwarz function w

exists such that
2(z f ′(z))′

( f (z)− f (−z))′
= 1 + tanhw(z). (9)

Utilizing (1), we obtain

2(z f ′(z))′

( f (z)− f (−z))′
:= 1 + 4a2z + 6a3z2 + (−12a2a3 + 16a4)z3 +

(
−18a2

3 + 20a5
)
z4 + · · · . (10)

Let
w(z) = w1z + w2z2 + w3z3 + w4z4 + · · · . (11)

By some easy computation and utilizing the series representation of (11), we achieve

1 + tanh(w(z)) = 1 + w1z + w2z2 +

(
−1

3
w3

1 + w3

)
z3 +

(
−w2

1w2 + w4

)
z4 + · · · . (12)
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Now, by comparing (10) and (12), we obtain

a2 =
1
4

w1, (13)

a3 =
1
6

w2, (14)

a4 =
1

16
w3 −

1
48

w3
1 +

1
32

w1w2, (15)

a5 =
1
40

w2
2 −

1
20

w2
1w2 +

1
20

w4. (16)

From the use of (13) and (14) along with Lemma 2, we easily obtain

|a2| ≤
1
4

and |a3| ≤
1
6

.

By rearranging (15), we have

|a4| =
1
16

∣∣∣∣w3 +
1
2

w1w2 −
1
3

w3
1

∣∣∣∣.
By using Lemma 1 with σ = 1

2 and ς = − 1
3 , and then by applying the triangle inequality,

we obtain
|a4| ≤

1
16

.

Rearranging (16), we have

|a5| =
1
20

∣∣∣∣w4 +
1
2

w2
2 − w2

1w2

∣∣∣∣,
≤ 1

20

{
|w4|+

1
2
|w2|2 + |w1|2|w2|

}
.

By using Lemma 3 along with some simple computations, we obtain

|a5| ≤
1

20

{
1− |w2|2

2

}
≤ 1

20
.

The bounds on the estimation of |a2|, |a3|, |a4|, and |a5| are sharp with the extremal functions
given, respectively, by

2(z f ′(z))′

( f (z)− f (−z))′
= 1 + tanh(z) = 1 + z− 1

3
z3 + . . . , (17)

2(z f ′(z))′

( f (z)− f (−z))′
= 1 + tanh

(
z2
)
= 1 + z2 − 1

3
z6 + . . . , (18)

2(z f ′(z))′

( f (z)− f (−z))′
= 1 + tanh

(
z3
)
= 1 + z3 − 1

3
z9 + . . . , (19)

2(z f ′(z))′

( f (z)− f (−z))′
= 1 + tanh

(
z4
)
= 1 + z4 − 1

3
z12 + . . . · (20)

Theorem 2. Let f ∈ SKtanh. Then, for η ∈ C∣∣∣a3 − ηa2
2

∣∣∣ ≤ 1
6

max
{

1,
3
8
|η|
}

.



Symmetry 2023, 15, 939 6 of 15

This result is sharp.

Proof. From (13) and (14), we obtain∣∣∣a3 − ηa2
2

∣∣∣ =
1
6

∣∣∣∣w2 −
3
8

ηw2
1

∣∣∣∣,
=

1
6

∣∣∣∣w2 +

(
−3η

8

)
w2

1

∣∣∣∣.
Using Lemma 2 and then applying the triangle inequality, we obtain∣∣∣a3 − ηa2

2

∣∣∣ ≤ max
{

1
6

,
∣∣∣∣−3η

48

∣∣∣∣}.

By putting η = 1, we obtain the below corollary.

Corollary 1. If f ∈ SKtanh is of the form (1), then∣∣∣a3 − a2
2

∣∣∣ ≤ 1
6

.

This result is sharp with the extremal function given by (18).

Now, we give estimates on the Zalcman functionals for f ∈ SKtanh.

Theorem 3. Suppose that f ∈ SKtanh is the form of (1); then,

|a4 − a2a3| ≤
1

16
, (21)

and ∣∣∣a5 − a2
3

∣∣∣ ≤ 1
20

. (22)

The inequalities (21) and (22) are sharp for the extremal function given by (19) and (20).

Proof. It is noted that

|a4 − a2a3| =
1

16

∣∣∣∣w3 −
1
6

w1w2 −
1
3

w3
1

∣∣∣∣,
so, taking σ = − 1

6 and ς = − 1
3 in Lemma 1 yields

|a4 − a2a3| ≤
1

16
.

For a5 − a2
3, we have∣∣∣a5 − a2

3

∣∣∣ =
1
20

∣∣∣∣w4 −
1

18
w2

2 − w2
1w2

∣∣∣∣,
≤ 1

20

{
|w4|+

1
18
|w2|2 + |w1|2|w2|

}
.
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By using Lemma 3 and some simple calculations, we obtain∣∣∣a5 − a2
3

∣∣∣ ≤ 1
20

{
1− 17

18
|w2|2

}
,

≤ 1
20

.

Thus, the proof is completed.

Theorem 4. Let f ∈ SKtanh. Then,

|H2,2( f )| ≤ 1
36

.

This result is sharp with the extremal function given by (18).

Proof. From (13), (14), and (15), we have∣∣∣a2a4 − a2
3

∣∣∣ =
1

36

∣∣∣∣w2
2 +

3
16

w4
1 −

9
16

w1w3 −
9
32

w2
1w2

∣∣∣∣
=

1
36

∣∣∣∣12(w2
2 − w1w3

)
+

1
2

(
3
8

w4
1 −

1
8

w1w3 −
9
16

w2
1w2 + w2

2

)∣∣∣∣
≤ 1

72

∣∣∣w2
2 − w1w3

∣∣∣+ 1
72

∣∣∣∣38 w4
1 −

1
8

w1w3 −
9

16
w2

1w2 + w2
2

∣∣∣∣
=

1
72

L1 +
1

72
L2,

where
L1 =

∣∣∣w2
2 − w1w3

∣∣∣
and

L2 =

∣∣∣∣38 w4
1 −

1
8

w1w3 −
9

16
w2

1w2 + w2
2

∣∣∣∣.
Using Lemma 4, we obtain L1 ≤ 1. For finding the bound of L2, we use Lemma 3 and the
triangle inequality in the below expression:

|L2| ≤
3
8
|w1|4 +

1
8
|w1|

(
1− |w1|2 −

|w2|2

1 + |w1|

)
+

9
16
|w1|2|w2|+ |w2|2,

≤ 3
8
|w1|4 +

1
8
|w1| −

1
8
|w1|3 −

|w1||w2|2

8(1 + |w1|)
+

9
16
|w1|2|w2|+ |w2|2,

≤ 3
8
|w1|4 +

1
8
|w1| −

1
8
|w1|3 + |w2|2

(
1− |w1|

8(1 + |w1|)

)
+

9
16
|w1|2|w2|. (23)

Since
(

1− |w1|
8(1+|w1|)

)
> 0 and |w2| ≤ 1− |w1|2, we have

|L2| ≤
3
8
|w1|4 +

1
8
|w1| −

1
8
|w1|3 +

(
1− |w1|2

)2
(

1− |w1|
8(1 + |w1|)

)
+

9
16
|w1|2

(
1− |w1|2

)
.

By putting |w1| = x and x ∈ (0, 1], we obtain

|L2| ≤ 1− 21
16

x2 +
11
16

x4 = z(x).

As z′(x) 5 0, z(x) is a decreasing function of x, it gives the maximum value at x = 0

|L2| ≤ 1.
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Hence,

|H2,2( f )| ≤ 1
72

L1 +
1

72
L2 ≤

1
36

.

The proof is thus completed.

4. Logarithmic Coefficient for SKtanh

The logarithmic coefficients of a given function f , represented by γn = γn( f ), are
defined by

1
2

log
(

f (z)
z

)
=

∞

∑
n=1

γnzn. (24)

It is natural to consider the Hankel determinant whose entries are the logarithmic
coefficients. In [32,33], Kowalczyk et al. first introduced the Hankel determinant containing
logarithmic coefficients as the elements, which is given by

Hq,n

(
Ff /2

)
:=

∣∣∣∣∣∣∣∣∣
γn γn+1 . . . γn+q−1
γn+1 γn+2 . . . γn+q
...

... . . .
...

γn+q−1 γn+q . . . γn+2q−2

∣∣∣∣∣∣∣∣∣. (25)

In particular, it is noted that

H2,1

(
Ff /2

)
=

∣∣∣∣ γ1 γ2
γ2 γ3

∣∣∣∣ = ∣∣∣γ1γ3 − γ2
2

∣∣∣.
For more about the study of logarithmic coefficients, see articles [38,55,56].

If f is given by (1), then its logarithmic coefficients are given as follows:

γ1 =
1
2

a2 (26)

γ2 =
1
2

(
a3 −

1
2

a2
2

)
(27)

γ3 =
1
2

(
a4 − a2a3 +

1
3

a3
2

)
. (28)

Theorem 5. Let f ∈ SKtanh. Then,

|γ1| ≤
1
8

,

|γ2| ≤
1

12
,

|γ3| ≤
1

32
.

All of these bounds are sharp.

Proof. Applying (13)–(15) in (26)–(28), we obtain

γ1 =
1
8

w1, (29)

γ2 =
1

12
w2 −

1
64

w2
1, (30)

γ3 =
1

32
w3 −

1
192

w1w2 −
1

128
w3

1. (31)
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The bounds of γ1 and γ2 are directly obtained by using simple computations. For the
bound of γ3, first we rearrange (31) in the form

|γ3| =
1

32

∣∣∣∣w3 −
1
6

w1w2 −
1
4

w3
1

∣∣∣∣,
and then by applying Lemma 1 with σ = − 1

6 and ς = − 1
4 , we obtain the required result.

Equalities holds for the function given by (17)–(19) and using (26)–(28).

Theorem 6. If f ∈ SKtanh is of the form (1), then∣∣∣γ2 − ηγ2
1

∣∣∣ ≤ 1
12

max
{

1,
3

16
|1 + η|

}
.

This inequality is sharp.

Proof. From (29) and (30), we have∣∣∣γ2 − ηγ2
1

∣∣∣ =
1

12

∣∣∣∣w2 −
3

16
w2

1 −
3η

16
w2

1

∣∣∣∣,
=

1
12

∣∣∣∣w2 +

(
−3(1 + η)

16

)
w2

1

∣∣∣∣.
Using Lemma 2 and the triangle inequality, we obtain the required result.

Putting η = 1, we obtained the following corollary.

Corollary 2. If f ∈ SKtanh is of the form (1), then∣∣∣γ2 − γ2
1

∣∣∣ ≤ 1
12

.

Equality is determined by using (26), (27), and (18).

Theorem 7. If f ∈ SKtanh is of the form (1), then

|γ3 − γ1γ2| ≤
1

32
.

Equality is determined by using (26)–(28), and (19).

Proof. From (29)–(31), we obtain

|γ3 − γ1γ2| =
1
32

∣∣∣∣w3 −
1
2

w1w2 −
3

16
w3

1

∣∣∣∣,
so taking σ = − 1

2 and ς = − 3
16 in Lemma 1 yields

|γ3 − γ1γ2| ≤
1

32
,

which completes the proof.

Theorem 8. If f ∈ SKtanh is of the form (1), then∣∣∣H2,1

(
Ff /2

)∣∣∣ = ∣∣∣γ1γ3 − γ2
2

∣∣∣ ≤ 1
144

.

This inequality is sharp, and equality is determined by using (26)–(28), and (18).
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Proof. From (29)–(31), we have∣∣∣γ1γ3 − γ2
2

∣∣∣ =
1

144

∣∣∣∣w2
2 +

45
256

w4
1 −

9
16

w1w3 −
9

32
w2

1w2

∣∣∣∣
=

1
144

∣∣∣∣12(w2
2 − w1w3

)
+

1
2

(
45

128
w4

1 −
1
8

w1w3 −
9
16

w2
1w2 + w2

2

)∣∣∣∣
≤ 1

288

∣∣∣w2
2 − w1w3

∣∣∣+ 1
288

∣∣∣∣ 45
128

w4
1 −

1
8

w1w3 −
9

16
w2

1w2 + w2
2

∣∣∣∣
=

1
288

Q1 +
1

288
Q2,

where
Q1 =

∣∣∣w2
2 − w1w3

∣∣∣
and

Q2 =

∣∣∣∣ 45
128

w4
1 −

1
8

w1w3 −
9
16

w2
1w2 + w2

2

∣∣∣∣
Using Lemma 4, we obtain Q1 ≤ 1. For Q2, using Lemma 3 and the triangle inequality, we
have

|Q2| ≤
45

128
|w1|4 +

1
8
|w1|

(
1− |w1|2 −

|w2|2

1 + |w1|

)
+

9
16
|w1|2|w2|+ |w2|2,

≤ 45
128
|w1|4 +

1
8
|w1| −

1
8
|w1|3 −

|w1||w2|2

8(1 + |w1|)
+

9
16
|w1|2|w2|+ |w2|2,

≤ 45
128
|w1|4 +

1
8
|w1| −

1
8
|w1|3 + |w2|2

(
1− |w1|

8(1 + |w1|)

)
+

9
16
|w1|2|w2|. (32)

Since
(

1− |w1|
8(1+|w1|)

)
> 0 and |w2| ≤ 1− |w1|2 in (32), we have

|Q2| ≤
45

128
|w1|4 +

1
8
|w1| −

1
8
|w1|3 +

(
1− |w1|2

)2
(

1− |w1|
8(1 + |w1|)

)
+

9
16
|w1|2

(
1− |w1|2

)
.

After the elementary calculus of maxima and minima, we obtain

|Q2| ≤ 1.

Hence ∣∣∣H2,1

(
Ff /2

)∣∣∣ ≤ 1
288

Q1 +
1

288
Q2 ≤

1
144

.

The proof is thus completed.

5. Inverse Coefficient for SKtanh

The renowned Köebe 1/4-theorem ensures that, for each univalent function f de-
fined in Ud, its inverse f−1 exists at least on a disc of radius 1/4 with Taylor’s series
representation form

f−1(w) = w +
∞

∑
n=2

Anwn,
(
|w| < 1

4

)
. (33)

Using the representation f
(

f−1(w)
)
= w, we obtain

A2 = −a2 (34)

A3 = −a3 + 2a2
2 (35)

A4 = −a4 + 5a2a3 − 5a3
2. (36)
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Researchers have demonstrated a significant interest in understanding the geometric be-
havior of the inverse function in recent years. For example, Krzyz et al. [57] calculated
the upper bounds of the initial coefficient contained in the inverse function f−1 when
f ∈ S∗(β) with 0 ≤ β ≤ 1. In addition, Ali [58] examined the sharp bounds of the first four
initial coefficients for the class SS∗(ζ) (0 < ζ ≤ 1) of a strongly starlike function as well as
the sharp estimate of the Fekete–Szegö coefficient functional of the inverse function. For
more about the study of inverse coefficients, see the articles [59,60].

Theorem 9. If f ∈ SKtanh is of the form (1), then

|A2| ≤
1
4

,

|A3| ≤
1
6

,

|A4| ≤
23
√

874
8208

.

The first two bounds are sharp.

Proof. Applying (13)–(15) in (34)–(36), we obtain

A2 = −1
4

w1 (37)

A3 =
1
8

w2
1 −

1
6

w2 (38)

A4 = − 11
192

w3
1 +

17
96

w1w2 −
1
16

w3. (39)

The bounds of A2 and A3 are simple and straightforward. For A4, consider the following:

A4 =
1

16

∣∣∣∣w3 −
17
6

w1w2 +
11
12

w3
1

∣∣∣∣.
Now, using Lemma 1 with σ = − 17

6 and ς = 11
12 and the triangle inequality, we obtain

|A4| ≤
23
√

874
8208

.

Equalities holds for the function given (17), (18), and using (34), (35).

Theorem 10. If f ∈ SKtanh is of the form (1), then∣∣∣A3 − ηA2
2

∣∣∣ ≤ 1
6

max
{

1,
∣∣∣∣3(η − 2)

8

∣∣∣∣}.

This inequality is sharp.

Proof. From (37) and (38), we have∣∣∣A3 − ηA2
2

∣∣∣ =
1
6

∣∣∣∣w2 −
3
4

w2
1 +

3η

8
w2

1

∣∣∣∣
=

1
6

∣∣∣∣w2 +

(
3(η − 2)

8

)
w2

1

∣∣∣∣.
Using Lemma 2 and the triangle inequality, we obtain the needed result.

Putting η = 1, we obtained the below inequality.
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Corollary 3. If f ∈ SKtanh is of the form (1), then∣∣∣A3 − A2
2

∣∣∣ ≤ 1
6

.

Equality is determined by using (34), (35), and (18).

Theorem 11. If f ∈ SKtanh is of the form (1), then

|A4 − A2 A3| ≤
19
√

4902
18576

.

Proof. From (37)–(39), we obtain

|A4 − A2 A3| =
1

16

∣∣∣∣w3 −
13
6

w1w2 +
5

12
w3

1

∣∣∣∣,
and so by taking σ = − 13

6 and ς = 5
12 in Lemma 1 yields

|A4 − A2 A3| ≤
19
√

4902
18576

.

This completes the proof.

Theorem 12. If f ∈ SKtanh is of the form (1), then∣∣∣H2,2

(
f−1
)∣∣∣ = ∣∣∣A2 A4 − A2

3

∣∣∣ ≤ 1
36

.

Equality is determined by using (34)–(36), and (18).

Proof. From (37)–(39), we have∣∣∣A2 A4 − A2
3

∣∣∣ =
1

36

∣∣∣∣ 3
64

w4
1 +

3
32

w2
1w2 −

9
16

w1w3 + w2
2

∣∣∣∣
=

1
36

∣∣∣∣12(w2
2 − w1w3

)
+

1
2

(
3

32
w4

1 +
3

16
w2

1w2 −
1
8

w1w3 + w2
2

)∣∣∣∣
≤ 1

72

∣∣∣w2
2 − w1w3

∣∣∣+ 1
72

∣∣∣∣ 3
32

w4
1 +

3
16

w2
1w2 −

1
8

w1w3 + w2
2

∣∣∣∣
=

1
72

Q1 +
1

72
Q2,

where
Q1 =

∣∣∣w2
2 − w1w3

∣∣∣
and

Q2 =

∣∣∣∣ 3
32

w4
1 +

3
16

w2
1w2 −

1
8

w1w3 + w2
2

∣∣∣∣
Using Lemma 4, we obtain Q1 ≤ 1. For Q2 using Lemma 3, we have

|Q2| ≤
3
32
|w1|4 +

1
8
|w1|

(
1− |w1|2 −

|w2|2

1 + |w1|

)
+

3
16
|w1|2|w2|+ |w2|2,

≤ 3
32
|w1|4 +

1
8
|w1| −

1
8
|w1|3 −

|w1||w2|2

8(1 + |w1|)
+

3
16
|w1|2|w2|+ |w2|2,

≤ 3
32
|w1|4 +

1
8
|w1| −

1
8
|w1|3 + |w2|2

(
1− |w1|

8(1 + |w1|)

)
+

3
16
|w1|2|w2|. (40)
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Since
(

1− |w1|
8(1+|w1|)

)
> 0 and |w2| ≤ 1− |w1|2 in (40), we have

|Q2| ≤
3

32
|w1|4 +

1
8
|w1|−

1
8
|w1|3 +

(
1− |w1|2

)2
(

1− |w1|
8(1 + |w1|)

)
+

3
16
|w1|2

(
1− |w1|2

)
.

After elementary calculus of maxima and minima, we obtain

|Q2| ≤ 1.

Hence, ∣∣∣H2,2

(
f−1
)∣∣∣ ≤ 1

72
Q1 +

1
72

Q2 ≤
1

36
.

The proof is thus completed.

6. Conclusions

The basic idea behind investigating coefficient problems in various families of holo-
morphic functions is to represent the coefficients of the corresponding functions with the
well-known class P , which includes functions with a positive real part in the open unit
disc. Many fascinating results were recently attained using this technique. Most of the
bounds, however, were non-sharp for analytic univalent functions linked to symmetric
points. In this work, we determine the estimates of the problems containing coefficients for
functions belonging to the family SKtanh of the function, which are starlike with respect
to symmetric points associated with tan hyperbolic function, respectively. In proof of the
main results, we use the Lemmas derived by Prokhorov and Szynal, Libera, and Zlotkiwicz,
and Carlson’s inequality and bounds on the Schwarz function obtained by Eframidis . The
approach is focused on the relationship between the coefficients of functions in the given
family and the coefficients of corresponding Schwarz functions. Most of the bounds are
proved to be sharp. This work may inspire more investigations on the sharp bounds of
analytic functions connected with symmetric points.
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