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Abstract: In this paper, we aim to present a novel n-point composite fractional formula for approx-
imating a Riemann–Liouville fractional integral operator. With the use of the definite fractional
integral’s definition coupled with the generalized Taylor’s formula, a novel three-point central frac-
tional formula is established for approximating a Riemann–Liouville fractional integrator. Such a new
formula, which emerges clearly from the symmetrical aspects of the proposed numerical approach, is
then further extended to formulate an n-point composite fractional formula for approximating the
same operator. Several numerical examples are introduced to validate our findings.
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1. Introduction

Fractional calculus has many uses in the mathematical modeling of chemical phenom-
ena, physics, technical, and economics. It has contributed in a significant way in developing
many topics and implementations in applied mathematics, although there are different
definitions of the fractional-order operators, see [1–6]. In recent times, many evolutions
in the theory of fractional calculus have been investigated to be employed in many fields
of science and engineering. In particular, the fundamental of fractional calculus has been
approved as an illustrious mathematical facility used to describe many actual applica-
tions [7,8]. As a result, various fractional-order differentiators and integrators have been
established and approved by many researchers. It is important to highlight that there are
two main operators for fractional-order differentiators; the first one is Caputo’s derivative
operator with a power law function of convolution of a given function related to a local
derivative, whereas the other one is the Riemann–Liouville derivative operator with a
power law kernel of convolution [9]. In light of the various views of many mathematicians,
the Caputo fractional-order differentiator has confirmed that it is more satisfactory for
several real applications than that of the Riemann–Liouville derivative operator [10]. This
is due to its suitability for using the assumed initial conditions when the fractional deriva-
tives are taken [11]. Regardless of the best operator among the two former operators, the
Riemann–Liouville integrator represents an inverse operator for both. This is because the
Caputo differentiator is just a modification for the Riemann–Liouville differentiator [9,11].

The fractional-order integrator supposes that different constructs are not compatible
and not constantly equivalent with each other. Actually, the fractional-order integrator is
commonly employed for expressing an indefinite integral. In former research, there were
only two endeavors attempted to establish a generalization of the fundamental theorem
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in fractional calculus [12,13]. In particular, different forms of such theorem were outlined
in [12], whereas the authors in [13] proposed a more directed scheme into implementation
than that of the first reference, but also the fractional definite integral definition had not
been yet handled at both. Nor did the formulations, which were introduced in [14,15],
outline the definition of the fractional definite integral. It looks as though nobody has
formulated such a definition [16,17] except M. Ortigueira and J. Machado in their work
in [18], whereby their fractional definite integral definition was set and the fundamental
theorem of fractional calculus was consequently analyzed.

In light of the former discussion and based on what is usually carried out in the
classical numerical analysis, we aim in this work to derive a novel formula enabling one to
approximate a definite fractional integral called the n-point composite fractional formula
for approximating a Riemann–Liouville fractional integrator. Thanks to O. Manuel and
J. Machado’s definition of the definite fractional integral coupled with the generalized
Taylor’s formula, a new three-point central fractional formula is first derived for approxi-
mating the Riemann–Liouville fractional integral operator. Then, this formula is extended
to n composite points for formulating our main result in this work.

The remainder of this manuscript is constructed in the following manner. Section 2
aims to recollect some essentials and definitions regarding fractional calculus. Section 3
intends to illustrate the primary results of this work, whereby it will exemplify how
we will derive the aimed n-point composite fractional formula for approximating the
Riemann–Liouville fractional integrator. Section 4 provides two numerical examples that
validate our theoretical outcomes, followed by the last section that outlines the concluding
remarks of this work.

2. Preliminaries

In this part, some essential definitions and necessary preliminaries in connection with
fractional calculus are recalled. This actually paves the way to our main results later on.

Definition 1 ([19,20]). The fractional Riemann–Liouville integrator of a function h(t) of order
µ > 0 can be expressed as:

Jµh(t) =
1

Γ(µ)

∫ t

0
h(s)(t− s)µ−1ds, (1)

where t > 0 and µ > 0.

In what follows, we recall certain properties of the fractional Riemann–Liouville
integral operator for completeness:

1) J0h(t) = h(t). (2)

2) Jµtγ =
Γ(γ + 1)

Γ(µ + γ + 1)
tµ+γ, γ ≥ −1. (3)

3) Jµ Jβh(t) = Jβ Jµh(t) µ, β ≥ 0. (4)

4) Jµ Jβh(t) = Jµ+βh(t) µ, β ≥ 0. (5)

Definition 2 ([19,20]). The Caputo fractional differentiator of a function h(t) of order µ > 0 can
be expressed as:

Dµ
t h(t) =

1
Γ(m− µ)

∫ t

0
(t− s)m−µ−1h(m)(s) ds, m− 1 < µ ≤ m, (6)

where m ∈ N and t > 0.
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In the following content, we list some properties of the Caputo differentiator [19,20]:

1) Dµ
t c = 0, where c is constant. (7)

2) Dµ
t tρ =

Γ(ρ + 1)
Γ(ρ− µ + 1)

tρ−µ, where ρ > µ− 1. (8)

3) Dµ
t (µh(t) + ωg(t)) = µDµ

t (h(t)) + ωDµ
t (g(t)), (9)

where µ and ω are constant. In the same regard, we report below some other properties
related to the composition between the previous two operators [19,20]:

Dα
t Jαh(t) = h(t), (10)

and

JαDα
t h(t) = h(t)−

n

∑
i=1

hi(0+)
ti

i!
, (11)

where t > 0 and n− 1 < α ≤ n such that n ∈ N.

Definition 3 ([19,20]). The Riemann–Liouville fractional differentiator of a function h(t) of order
µ > 0 might be outlined in terms of the Riemann–Liouville fractional integrator as:

Dµh(t) = Dm[Jρh(t)], (12)

where ρ = m− µ, 0 < ρ < 1 and m is the smallest integral greater than µ.

Hereinafter, we recall two highly significant results that help us in deriving the main
results of this work; the first one referred to M. Ortigueira and J. Machado, who established
a proper formula to find the exact values of given definite fractional integrals [18], while
the other one referred to Z. Odibat and S. Momani, who provide a generalization to the
well-known Taylor theorem in its fractional case [20].

Definition 4 ([18]). The definite fractional integral of the function f of order α is given by:

Jα
a f (x) =

∫ b

a
f (−α+1)(x).dx =

∫ b

a
D−α+1

a f (x)dx, (13)

where −∞ < a < b < ∞ and α− 1 < n ≤ α such that n ∈ N.

Theorem 1 ([20]). (Generalized Taylor’s Theorem) Suppose that Dkα
t f (x) ∈ Cn+1(a, b] for k =

0, 1, · · · , n + 1, where 0 < α ≤ 1. Then, the function f can be expanded about x = x0 as follows:

f (x) =
n

∑
i=0

(x− x0)
iα

Γ(iα + 1)
Diα

t f (x0) +
(x− x0)

(n+1)α

Γ((n + 1)α + 1)
D(n+1)α

t f (ξ), (14)

where 0 < ξ < x and x ∈ (a, b].

3. Main Results

In this section, we aim to present the main results of this work. However, before
we begin, we should first recall a very significant result related to the Caputo fractional
differentiator. In fact, this result has been recently derived in [21] for the purpose of
approximating such a differentiator, Dα

t , where 0 < α ≤ 1. It has been derived in light
of using a similar manner used in [22], and it has been called the modified three-point
fractional formula for approximating the Caputo fractional differentiator.
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Theorem 2 ([21]). Suppose that f ∈ C3[a, b] and x0, x1, x2 are distinct points in the interval [a, b]
such that a = x0 < x1 = x0 + h < x2 = x0 + 2h = b with h > 0. Then, the modified three-point
fractional formula for approximating the Caputo fractional differentiator can be given by:

Dα
t f (x) =

x2−α

h2Γ(3− α)

(
f (x0)− 2 f (x1) + f (x2)

)
− x1−α

2h2Γ(2− α)

(
f (x0)(x1 + x2)− 2 f (x1)(x0 + x2) + f (x2)(x0 + x1)

)
+

f (3)(ξ)
6

(
6

Γ(4− α)
x3−α − 2(x0 + x1 + x2)

Γ(3− α)
x2−α +

(x0x1 + x0x2 + x1x2)

Γ(2− α)
x1−α

)
,

(15)

for a generally unknown ξ ∈ (a, b), where x ∈ [a, b].

In consequence of the previous result, we can outline the next result that could help
one to approximate the Caputo fractional differentiator D2α

t , where 0 < α ≤ 1.

Corollary 1. Suppose that f ∈ C3[a, b] and x0, x1, x2 are distinct points in the interval [a, b]
such that a = x0 < x1 = x0 + h < x2 = x0 + 2h = b with h > 0. Let 0 < α ≤ 1, then the
modified three-point fractional formula for approximating Caputo fractional differentiator D2α

t can
be given by:

D2α
t f (x) =

x2−2α

h2Γ(3− 2α)
( f (x0)− 2 f (x1) + f (x2)) +

f (3)(ξ)
6

(
6x3−2α

Γ(4− 2α)
− 2(x0 + x1 + x2)

Γ(3− 2α)x2−2α

)
. (16)

for a generally unknown ξ ∈ (a, b), where x ∈ [a, b].

Proof. In order to prove this result, we simply apply all properties of the Caputo differen-
tiator reported in (7) on (15). In particular, one can operate Dα

t twice again into the modified
three-point fractional formula (15) to obtain the desired result.

Remark 1. It is worth mentioning that the well-known classical central three-point formulae
reported for approximating the first and the second derivatives in [22] can be obtained easily by just
substituting α = 1 into (15) and (16), respectively.

In the following content, we aim to derive a new formula for approximating the
Riemann–Liouville fractional integral operator Jα, which would be, from now on, called
the three-point central fractional formula for approximating Riemann–Liouville fractional
integrator. This will be carried out by applying on the generalized Taylor’s Theorem 1
coupled with considering definite fractional integral’s Definition 4.

Theorem 3. Let Dnα
t f ∈ C4[a, b] for n = 0, 1, 2, 3, 4 and 0 < α ≤ 1. Suppose a = x0 < x1 =

x0 + h < x2 = x0 + 2h = b with h > 0. Then, the three-point central fractional formula about
x = x1 for approximating a Riemann–Liouville fractional integrator is given by:

Jα f (x) = 2h f (x1) +
2h3αx2−2α

1
Γ(3α + 1)Γ(3− 2α)

( f (x0)− 2 f (x1) + f (x2))

+
2h3α

6Γ(3α + 1)
f (3)(ξ)

(
6x(3−2α)

1
Γ(4− 2α)

− 2(x0 + x1 + x2)

Γ(3− 2α)
x(2−2α)

1

)

+
2h5α

Γ(5α + 1)
D4α

t f (ξ),

(17)

for a generally unknown ξ ∈ (a, b), where x ∈ [a, b].
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Proof. In order to prove this result, we first assume that all the above assumptions hold.
Then, by expanding the function f about x = x1 using the generalized Taylor Theorem 1,
we obtain:

f (x) = f (x1) + Dα
t f (x1)

(x− x1)
α

Γ(α + 1)
+ D2α

t f (x1)
(x− x1)

2α

Γ(2α + 1)

+ D3α
t f (x1)

(x− x1)
3α

Γ(3α + 1)
+ D4α

t f (ξ)
(x− x1)

4α

Γ(4α + 1)
,

(18)

for some ξ ∈ (a, b). Now, by applying the Riemann–Liouville fractional integral operator
to both sides of the above equality, we obtain:

Jα f (x) =Jα f (x1) +
Dα

t f (x1)

Γ(α + 1)
Jα[(x− x1)

α] +
D2α

t f (x1)

Γ(2α + 1)
Jα
[
(x− x1)

2α
]

+
D3α

t f (x1)

Γ(3α + 1)
Jα
[
(x− x1)

3α
]
+

D4α
t f (ξ)

Γ(4α + 1)
Jα
[
(x− x1)

4α
]
.

(19)

With the help of using (13) coupled with considering ρ = −α + 1, we obtain:

Jα f (x) = f (x1)
∫ b

a
dx +

Dα
t f (x1)

Γ(α + 1)

∫ b

a
Dρ(x− x1)

αdx +
D2α

t f (x1)

Γ(2α + 1)

∫ b

a
Dρ(x− x1)

2αdx

+
D3α

t f (x1)

Γ(3α + 1)

∫ b

a
Dρ(x− x1)

3αdx +
D4α

t f (ξ)
Γ(4α + 1)

∫ b

a
Dρ(x− x1)

4αdx.
(20)

This consequently yields:

Jα f (x) =2h f (x1) +
Dα

t f (x1)

Γ(α + 1)
Γ(α + 1)

Γ(α + 1− ρ)

∫ b

a
(x− x1)

α−ρdx

+
D2α

t f (x1)

Γ(2α + 1)
Γ(2α + 1)

Γ(2α + 1− ρ)

∫ b

a
(x− x1)

2α−ρdx

+
D3α

t f (x1)

Γ(3α + 1)
Γ(3α + 1)

Γ(3α + 1− ρ)

∫ b

a
(x− x1)

3α−ρdx

+
D4α

t f (ξ)
Γ(4α + 1)

Γ(4α + 1)
Γ(4α + 1− ρ)

∫ b

a
(x− x1)

4α−ρdx.

(21)

By simplifying the above equality, we obtain:

Jα f (x) =2h f (x1) +
Dα

t f (x1)

Γ(2α)

∫ b

a
(x− x1)

2α−1dx +
D2α

t f (x1)

Γ(3α)

∫ b

a
(x− x1)

3α−1dx

+
D3α

t f (x1)

Γ(4α)

∫ b

a
(x− x1)

4α−1dx +
D4α

t f (ξ)
Γ(5α)

∫ b

a
(x− x1)

5α−1dx,
(22)

which immediately means:

Jα f (x) =2h f (x1) +
Dα

t f (x1)

Γ(2α)

(x− x1)
2α

(2α)

∣∣∣∣∣
x2

x0

+
D2α

t f (x1)

Γ(3α)

(x− x1)
3α

(3α)

∣∣∣∣∣
x2

x0

+
D3α

t f (x1)

Γ(4α)

(x− x1)
4α

(4α)

∣∣∣∣∣
x2

x0

+
D4α

t f (ξ)
Γ(5α)

(x− x1)
5α

(5α)

∣∣∣∣∣
x2

x0

.

(23)
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This implies:

Jα f (x) =2h f (x1) +
Dα

t f (x1)

Γ(2α + 1)

(
(h)2α − (−h)2α

)
+

D2α
t f (x1)

Γ(3α + 1)

(
(h)3α − (−h)3α

)
+

D3α
t f (x1)

Γ(4α + 1)

(
(h)4α − (−h)4α

)
+

D4α
t f (ξ)

Γ(5α + 1)

(
(h)5α − (−h)5α

)
.

(24)

One might observe that when α = 1, the above equality will be defined if (−h)2α = (h)2α,
(−h)3α = −(h)3α, (−h)4α = (h)4α, and (−h)5α = −(h)5α. Based on this observation, we
can assert the following equation:

Jα f (x) = 2h f (x1) +
2h3α

Γ(3α + 1)
D2α

t f (x1) +
2h5α

Γ(5α + 1)
D4α

t f (ξ). (25)

Now, by substituting the modified three-point fractional formula for approximating Caputo
fractional differentiator D2α

t reported in (16) into (25), we obtain:

Jα f (x) =2h f (x1) +
2h3α

Γ(3α + 1)

[
x2−2α

1
Γ(3− 2α)

( f (x0)− 2 f (x1) + f (x2))

+
f (3)(ξ)

6

(
6x(3−2α)

1
Γ(4− 2α)

− 2(x0 + x1 + x2)

Γ(3− 2α)
x(2−2α)

1

)]
+

2h5α

Γ(5α + 1)
D4α

t f (ξ),

(26)

for some ξ ∈ (a, b). Simplifying the above equation yields:

Jα f (x) =2h f (x1) +
2h3αx2−2α

1
Γ(3α + 1)Γ(3− 2α)

( f (x0)− 2 f (x1) + f (x2))

+
2h3α

6Γ(3α + 1)
f (3)(ξ)

(
6x(3−2α)

1
Γ(4− 2α)

− 2(x0 + x1 + x2)

Γ(3− 2α)
x(2−2α)

1

)
+

2h5α

Γ(5α + 1)
D4α f (ξ),

(27)

which represents the aimed desired result.

In light of the previous discussions, one could notice that the error term reported
in (27) is too high when one wants to estimate it. From this point of view and to obtain
more accuracy in regard to approximating the Riemann–Liouville fractional integrator, we
introduce in what followed, one of the main results for this work, the n-point composite
fractional formula for approximating the Riemann–Liouville fractional integrator. This
would be achieved by tracking the same procedure used to obtain the n-point composite
Simpson/trapezoidal formulae [22].

Corollary 2. Let Dkα
t f ∈ C4[a, b] for k = 0, 1, 2, 3, 4 and 0 < α ≤ 1. Suppose a = x0 <

x1 = x0 + h < x2 = x0 + 2h < · · · < xn = x0 + nh = b with h > 0 and n ≥ 2. Then, the
n-point composite fractional formula for approximating the Riemann–Liouville fractional integrator
is given by:

Jα f (x) ≈ 2h

n−2
2

∑
i=0

f (x2i+1) +
2h3α

Γ(3α + 1)Γ(3− 2α)

n−2
2

∏
i=0

x2i+1( f (x2i)− 2 f (x2i+1) + f (x2i+2)), (28)

for some ξ ∈ (a, b), where x ∈ [a, b].

Proof. To prove this result, one may rewrite Jα f (x) as:

Jα f (x) = Jα
x0

f (x) + Jα
x2

f (x) + · · ·+ Jα
xn−2

f (x). (29)

With the use of (1), the above equality can be re-expressed as:
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Jα f (x) =
1

Γ(α)

∫ x

a
(x− t)α−1 f (t)dt

=
1

Γ(α)

∫ x

x0

(x− t)α−1 f (t) +
1

Γ(α)

∫ x

x2

(x− t)α−1 f (t) + · · ·+ 1
Γ(α)

∫ x

xn−2

(x− t)α−1 f (t).
(30)

Now, due to the approximate version of the three-point central fractional formula for
approximating the Riemann–Liouville fractional integrator has the form:

Jα f (x) ≈ 2h f (x1) +
2h3αx2−2α

1
Γ(3α + 1)Γ(3− 2α)

( f (x0)− 2 f (x1) + f (x2)), (31)

then equality (30) with the use of (31) can yield:

Jα f (x) ≈
[

2h f (x1) +
2h3αx2−2α

1
Γ(3α + 1)Γ(3− 2α)

( f (x0)− 2 f (x1) + f (x2))

]
+

[
2h f (x3) +

2h3αx2−2α
3

Γ(3α + 1)Γ(3− 2α)
( f (x2)− 2 f (x3) + f (x4))

]
+

[
2h f (x5) +

2h3αx2−2α
5

Γ(3α + 1)Γ(3− 2α)
( f (x4)− 2 f (x5) + f (x6))

]
+

...

+

[
2h f (xn−1) +

2h3αx2−2α
n−1

Γ(3α + 1)Γ(3− 2α)
( f (xn−2)− 2 f (xn−1) + f (xn))

]
.

(32)

Immediately, simplifying the above equation gives:

Jα f (x) =2h( f (x1) + f (x3) + f (x5) + · · ·+ f (xn−1)) +
2h3α

Γ(3α + 1)Γ(3− 2α)

×
[

x2−2α
1 ( f (x0)− 2 f (x1) + f (x2))

+ x2−2α
3 ( f (x2)− 2 f (x3) + f (x4))

+ x2−2α
5 ( f (x4)− 2 f (x5) + f (x6))

+

...

+ x2−2α
n−1 ( f (xn−2)− 2 f (xn−1) + f (xn))

]
.

(33)

In other words, we have the following composite formula:

Jα f (x) ≈ 2h

n−2
2

∑
i=0

f (x2i+1) +
2h3α

Γ(3α + 1)Γ(3− 2α)

n−2
2

∏
i=0

x2i+1( f (x2i)− 2 f (x2i+1) + f (x2i+2)). (34)

4. Numerical Examples

In this part, we intend to verify the effectiveness of our final proposed formula; the
n-point composite fractional formula for approximating the Riemann–Liouville integrator
for two specific functions. Tables are utilized to display and compare the gained findings.
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Example 1. Let us consider the main function f (x) = 2x3 + 8x. Suppose the fractional-order has
the values α = 1, 0.75, 0.5 and the interval is [0, 2] with n = 10. Then, applying Riemann–Liouville
integrator generates the following cases:

• Case 1: When α = 1, we obtain:

J1 f (x) = 0.5x4 + 4x2. (35)

• Case 2: When α = 0.75, we obtain:

J0.75 f (x) = 0.7234x3.75 + 6.0182x1.75. (36)

• Case 3: When α = 0.5, we obtain:

J0.5 f (x) = 1.0316x3.5 + 7.7549x1.5. (37)

The results from the above expressions (35)–(37) are compared with the approximate values generated
by using the n-point composite fractional formula. Accordingly, a numerical comparison is generated
for different values of α and reported in Table 1.

It is worth mentioning that the average elapsed time (or the CPU time) that is required to
give the approximate value for each of the above Riemann–Liouville integrators using the n-point
composite fractional formula is 0.096549 s, which is regarded too short in comparison with finding
their exact values analytically.

Table 1. A numerical comparison between the exact and approximate values.

n \ α 0.5 0.75 1

2 22.27105816166 26.16734499344 23.68537600000
4 22.69349110102 26.26331428545 23.69932800000
6 24.03916177943 26.50011822893 23.72599466666
8 27.18307909882 26.96769964223 23.77049600000
10 28.49632000000 26.79576811488 23.84000000000

Exact: 28.69344858658 26.46463660779 24

Example 2. Consider now the main function is f (x) = sin(x) = ∑∞
k=0

(−1)k

(2k+1)! x2k+1, and suppose
the fractional-order has the values α = 1, 0.65, 0.25. The interval here is also chosen as [0, 2] with
n = 10. Then, by applying the Riemann–Liouville integrator, we obtain the following cases:

• Case 1: When α = 1, we have:

J1 f (x) =
∞

∑
k=0

(−1)k

(2k + 1)!
Γ(2k + 2)
Γ(2k + 3)

x2k+2. (38)

• Case 2: When α = 0.65, we have:

J0.65 f (x) =
∞

∑
k=0

(−1)k

(2k + 1)!
Γ(2k + 2)

Γ(2k + 2.65)
x2k+1.65. (39)

• Case 3: When α = 0.45, we have:

J0.45 f (x) =
∞

∑
k=0

(−1)k

(2k + 1)!
Γ(2k + 2)

Γ(2k + 2.45)
x2k+1.45. (40)

Consequently, the results from applying the above three expressions (38)–(40) are compared with
the approximate values generated by using the n-point composite fractional formula. As a result,
another numerical comparison is generated for different values of α and reported in Table 2.
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Herein, the average elapsed time required to give the approximate value for each of the above
Riemann–Liouville integrators using the n-point composite fractional formula is 0.099873 s. This
time is also regarded as too short in comparison with finding their exact values analytically.

Table 2. A numerical comparison between the exact and approximate values.

n \ α 0.45 0.65 1

2 0.988434759968 1.109574041883 1.416657631095
4 1.046664086456 1.129294584780 1.418163344357
6 1.098873318034 1.271316766203 1.420407266983
8 1.156966874475 1.233598909270 1.423035132930
10 1.293240352453 1.306986260607 1.425632059945

Exact: 1.273563291144 1.362300353262 1.416146836547

In light of the previous examples, one might notice that the proposed n-point com-
posite fractional formula can provide a good approximation for the Riemann–Liouville
fractional integral operator as compared with the provided exact values. This inference can
lead us in the close future to apply such a formula in several applications, especially those
applications that are related to differential equations.

5. Conclusions

In this paper, a new numerical formula called the n-point composite fractional for-
mula for approximating Riemann–Liouville fractional integrators has been successfully
established. In particular, this formula has been derived based on establishing another
novel formula called the three-point central fractional formula for approximating Riemann–
Liouville fractional integrators. Two main notions have been used for attaining these results;
the generalized Taylor theorem and the definite fractional integral. Several numerical ap-
plications, including solving fractional differential equations, partial fractional differential
equations and others, have been left to future considerations.
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