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Abstract: The paper studies the bifurcations that occur in the T-system, a 3D dynamical system
symmetric in respect to the Oz axis. Results concerning some local bifurcations (pitchfork and Hopf
bifurcation) are presented and our attention is focused on a special bifurcation, when the system
has infinitely many equilibrium points. It is shown that, at the bifurcation limit, the phase space is
foliated by infinitely many invariant surfaces, each of them containing two equilibrium points (an
attractor and a saddle). For values of the bifurcation parameter close to the bifurcation limit, the study
of the system’s dynamics is done according to the singular perturbation theory. The dynamics is
characterized by mixed mode oscillations (also called fast-slow oscillations or oscillations-relaxations)
and a finite number of equilibrium points. The specific features of the bifurcation are highlighted and
explained. The influence of the pitchfork and Hopf bifurcations on the fast-slow dynamics is also
pointed out.
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1. Introduction

The study of bifurcations is a fundamental and challenging topic in the theory of
dynamical systems because it highlights the qualitative changes of their behavior over
time and gives information on the possible evolution of the systems for various values of
the parameters.

The aim of the paper is to study the bifurcations of a 3D symmetric system, namely
the T-system that was introduced in [1]. It belongs to the class of the Lorenz system,
having the nonlinear term of order two. Despite the simplicity of its equations, it has very
rich dynamics.

An important characteristic of the system is its symmetry. It is a well-known fact
that symmetries can be used in a systematic way to analyze some general mechanisms of
pattern formation, but symmetry methods can also be applied to the study of equilibria and
their bifurcations, period-doubling, time-periodic states, homoclinic and heteroclinic orbits
and chaos [2,3] (pp. 276–288). Some results concerning the pitchfork and Hopf bifurcations
that occur in the T-system are presented in this paper and the influence of the symmetry of
the system on its dynamics is highlighted.

But our attention is focused on a special bifurcation, when the system has infinitely
many equilibrium points at the bifurcation limit. It is an important topic, both theoretically
and through its applications. The coexistence of many attractors usually generates com-
plicated dynamics. Examples of chaotic systems with an infinite number of equilibrium
points were proposed and studied in many papers, for example [4–6]. Practical appli-
cations to secure communications were proposed in [7] and the extreme multi-stability
(i.e., the coexistence of infinitely many attractors) was found to occur in memristor-based
systems [8,9].

We show that, for the T-system at the bifurcation limit, the phase space is foliated by
infinitely many invariant surfaces, each of them containing two equilibrium points: an
attractor and a saddle.

Symmetry 2023, 15, 923. https://doi.org/10.3390/sym15040923 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15040923
https://doi.org/10.3390/sym15040923
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-3064-0116
https://doi.org/10.3390/sym15040923
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15040923?type=check_update&version=2


Symmetry 2023, 15, 923 2 of 13

The study of the dynamics of the system for values of the bifurcation parameter that
are close to the bifurcation limit is made in the frame of the singular perturbation theory.
It is shown that the system exhibits fast-slow dynamics. The periodic motions consist of
a long time-interval of a quasi-steady state followed by a short time-interval of rapid
variations. They are called relaxation-oscillations [10]. The main tool in the study of such
systems is the geometric singular perturbation theory introduced by Fenichel N. in [11].
Fenichel’s theorem is based on the assumption that the critical manifold is normally
hyperbolic. When some points of the critical manifold are not normally hyperbolic
some more advanced tools, such as the blow-up method [12] or the entry-exit function
method [13,14] may be applied.

For the T-system it is shown that the critical set, which is symmetric with respect to the
z-axis, is formed by two intersecting lines. One of them is made up only of points that are
not normally hyperbolic. In this situation, Fenichel’s theory is applied with caution when
possible and the mechanism of relaxation-oscillation is explained using exchange-lemmas
arguments [15].

Some aspects of the dynamics of the singularly perturbed T-system when the pitchfork
and the Hopf bifurcation occur are also presented. It is observed that the Hopf bifurcation
does not essentially influence the fast-slow dynamics of the system, but the pitchfork
bifurcation is somehow dominant compared with the fast-slow dynamics.

The paper is organized as follows: in Section 2 the T-system is introduced; Section 3 is
devoted to the study of the equilibrium points, their stability, and bifurcations; in Section 4
the dynamics of the singularly perturbed T-system are studied, while some aspects of
the dynamics of the singularly perturbed T-system in the presence of Hopf and pitchfork
bifurcations are highlighted in Section 5; conclusions are summarized in Section 6.

2. The T-System, General Properties

The T-system is a 3D autonomous system depending on three parameters, a ≥ 0, b ≥ 0,
c ≥ 0, defined by

.
x = a(y− x),

.
y = (c− a)x− axz,

.
z = −bz + xy (1)

Some of its properties have been studied in many papers: stability analysis [16], the
existence of heteroclinic orbits [17,18], and bifurcations with delayed feedback [19]. The
fractional-order T-system was derived and studied in [20].

For a = 0 the system is linear and has no particular interest from a dynamic point of
view. In what follows we consider a > 0. Using the transformation

x = x/
√

a, y = y/
√

a, z = z, τ = at

the system (1) can be written as

x′ = y− x, y′ = mx− xz, z′ = −nz + xy (2)

where m = c/a − 1 ≥ −1 and n = b/a ≥ 0. The system (2) has the advantage of
having only two parameters: the study of the bifurcations using the plane of parameters
becomes easier.

Depending on the values of the two parameters m and n, a rich dynamics of the
system (2) occurs.

Proposition 1. The involutive diffeomorphism S : R3 → R3 ,S(x, y, z) = (−x,−y, z) is a sym-
metry of the system (2).

Proof of Proposition 1. We denote X(x, y, z) = (y− x, mx− xz,−nz + xy) and simple
computation shows that d

dτ (S(x, y, z)) = (X ◦ S)(x, y, z). �
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The existence of symmetry S has important consequences on the dynamics of the system:

• If (x0, y0, z0) is an equilibrium point of the system, then (−x0,−y0, z0) is also an
equilibrium point of the system and they have both the same type of stability. The
two points are called S-conjugated [3] (p. 279). Consequently, twin bifurcations of the
S-conjugated equilibrium points occur.

• The set Σ+ = {(0, 0, z), z ∈ R} is the fixed-point subspace of (2). It is invariant under
the flow of the system, so the orbits entirely lie in Σ+, or entirely lie outside of Σ+.

The symmetry group is Z2 = {IdR3 , S} and one can use some specific techniques to
study the bifurcations [3] (pp. 276–288).

The space R3 is decomposed into a direct sum, R3 = Σ+ ⊕ Σ−, where
Σ+ = {(x, y, z) | S(x, y, z) = (x, y, z)} = {(0, 0, z), z ∈ R} and Σ− = {(x, y, z) | S(x, y, z)
= (−x,−y,−z)} = {(x, y, 0) | x, y ∈ R}.

3. Equilibrium Points, Their Stability and Bifurcations

Proposition 2. (a) For m ∈ [−1, 0) and n > 0 the system (2) has a unique equilibrium point
O = (0, 0, 0) which is an attractor. (b) For m = 0 and n > 0 the system (2) has a unique equilibrium
point O = (0, 0, 0) which is non-hyperbolic, with dim(Ws(O)) = 2 and dim(Wc(O)) = 1.
(c) For m ∈ (0, ∞) and n > 0 the system (2) has three equilibrium points: O = (0, 0, 0) which is
a saddle node with dim(Wu(O)) = 1 and dim(Ws(O)) = 2 and the S-conjugated equilibrium
points. E± =

(
±
√

mn,±
√

mn, m
)
, which are stable foci if m(n− 1) + n + 1 > 0 or saddle foci

with dim(Wu(E±)) = 2 and dim(Ws(E±)) = 1 if m(n− 1) + n + 1 < 0. (d) For m ∈ [−1, ∞)
and n = 0 the system (2) has infinitely many non-hyperbolic equilibrium points.

Proof of Proposition 2. Solving the system y− x = 0, mx − xz = 0, −nz + xy = 0 one
obtains the unique solution O = (0, 0, 0) for m ≤ 0, n > 0, an infinite number of solutions
Ez = (0, 0, z) for m ∈ R, n = 0 and the solutions O = (0, 0, 0), E± =

(
±
√

mn,±
√

mn, m
)

for m > 0, n > 0.
The characteristic polynomial of O = (0, 0, 0) is P0(λ) = −(n + λ)

(
λ2 + λ−m

)
.

(a) For m < 0, n > 0 all eigenvalues of the Jacobian matrix have negative real parts. So
O = (0, 0, 0) is an attractor.

(b) For m = 0, n > 0 the eigenvalues are λ1 = −n < 0, λ2 = −1 < 0, λ3 = 0. So
O = (0, 0, 0) is not hyperbolic and dim(Wc(O)) = 1, dim(Ws(O)) = 2.

(c) For m > 0, n > 0 there are three equilibrium points.

The Jacobian matrix of the equilibrium point O = (0, 0, 0) has three real eigenvalues:
λ1 = −n < 0, λ2 < 0 and λ3 > 0. It is a saddle point with dim(Wu(O) = 1) and
dim(Ws(O)) = 2.

The characteristic polynomials of E+ and E− coincide, their common form is P±(λ)
= λ3 + (n + 1)λ2 + n(m + 1)λ + 2mn.

Because lim
λ→−∞

P±(λ) = −∞ and P±(0) = 2mn > 0, it results that the equation

P±(λ) = 0 has at least one solution λ1 ∈ (−∞, 0). But the equation has not posi-
tive solutions, because P′±(λ) = 3λ2 + 2λ(n + 1) + n(m + 1) > 0 for all λ > 0, so
P±(λ) > P±(0) > 0 for all λ > 0.

The equation P± = 0 has not two negative solutions (in this case the third one is
positive, contradiction with the previous observation). Finally, it results that the equation
P± = 0 has a strictly negative solution and two complex conjugated solutions.

Using the Routh-Hurwitz criterion, one obtains that the equation P± = 0 has three
solutions with strictly negative real parts if and only if (n + 1)n(m + 1)− 2mn > 0. Because
n > 0, it reads m(n− 1) + n + 1 > 0.

It results that λ1 < 0 and Re(λ2) = Re(λ3) < 0 if and only if (n + 1)n(m + 1)− 2mn > 0.
It means that E+ and E− are stable foci if and only if m(n− 1) + n + 1 > 0.
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If m(n− 1) + n + 1 < 0, there is a strictly negative eigenvalue λ1 < 0 and two
eigenvalues with strictly positive real parts. It means that E+ and E− are saddle foci with
dim(Wu(E±)) = 2 and dim(Ws(E±)) = 1.

(d) For n = 0 the characteristic polynomial of Ez = (0, 0, z) is Pz = −λ
(
λ2 + λ + z−m

)
.

Because λ1 = 0 it results that Ez is not hyperbolic. �

3.1. The Pitchfork Bifurcation

The bifurcating equilibrium O = (0, 0, 0) is of the fixed type, i.e., it is situated on the
fixed-point subspace of the system (2).

For m < 0, O = (0, 0, 0) is attractor, becomes non-hyperbolic for m = 0 and two
branches of S-conjugated equilibrium points E± =

(
±
√

mn,±
√

mn, m
)

appear for m > 0.
This is a typical configuration for the pitchfork bifurcation.

Proposition 3. The system (2) undergoes a pitchfork bifurcation of O = (0, 0, 0) in m = 0.

Proof of Proposition 3. The system (2) has two important properties:

(a) it is S-symmetric, at m = 0 it has a fixed equilibrium O = (0, 0, 0) with the simple

eigenvalue λ1 = 0 and the corresponding eigenvector
→
v = (1, 1, 0).

(b) the eigenvector
→
v = (1, 1, 0) belongs to the Σ−.

In this case, the hypothesis of Theorem 7.7 [3] (p. 281) is fulfilled and it results that the
system (2) has a one-dimensional S-invariant center manifold Wc

m and Wc
m ∩Σ = {(0, 0, 0)},

for all sufficiently small |m|. More of this, the restriction of the system to Wc
m is locally

topologically equivalent near the origin to the following normal form: ξ ′ = βξ ± ξ3. It
means that a pitchfork bifurcation of O = (0, 0, 0) occurs in m = 0. �

From Proposition 2(c) it results that E± are stable foci for m(n− 1) + n + 1 > 0. At the
same time, O = (0, 0, 0) is a saddle node with dim(Wu(O)) = 1 and dim(Ws(O)) = 2.

In Figure 1 the pitchfork bifurcation curve, m = 0, is presented in the parameters’ plane.
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Figure 1. The pitchfork and Hopf bifurcation curves in the parameters’ plane.

For m < 0 the system (2) has a unique equilibrium point, O = (0, 0, 0), which is
attractor. For m = 0 the equilibrium point O = (0, 0, 0) is not hyperbolic. For m > 0
the equilibrium point O = (0, 0, 0) is a saddle and two branches of S-conjugated equi-
librium points appear. The S-conjugated equilibrium points E+ =

(√
mn,
√

mn, m
)

and
E− =

(
−
√

mn,−
√

mn, m
)

are attractors if and only if m(n− 1) + n + 1 > 0.
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The physical interpretation of these results is that the two branches of S-conjugated
equilibrium points appear when m = 0, corresponding to the cancelation of the linear term
in the second equation of the system (2).

It is interesting to mention that the existence of the symmetry S is essential in demon-
strating the occurrence of the pitchfork bifurcation, because the system (2) does not satisfy
the assumptions of other classical theorems, such as Sotomayor’s theorem [21] (p. 338).

3.2. The Hopf Bifurcation of E± =
(
±
√

mn,±
√

mn, m
)

The Hopf bifurcation of E+, E− in the system (2) was studied in [16]. The main result
is the following.

Proposition 4. For m > 0 and n > 0, the system (2) undergoes non-degenerate twin Hopf
bifurcations in E+ and E− if m = mH = 1+n

1−n and n ∈ (0, 1).

In order to study the twin Hopf bifurcations that occur in E+ and E− one follows the
classical algorithm [3] (p. 112): consider that the eigenvalues of the system (2) are functions
of m having the form λ2,3 = α(m)± iω(m) and check the conditions of Hopf’s Theorem.

The condition α(m) = 0 gives m = mH = 1+n
1−n > 0. For m = mH we have

ω =
√

2n
1−n > 0.

More of this, dα(m)
dm

∣∣∣
m=mH

= 1
2 ·

n(1−n)2

1−n3+n(3−n) > 0.

The first Lyapunov coefficient is l1(mH) =
ω(3+ω2)(6+4ω2+2ω4+ω6)

2(1+ω2)(1+6ω2+5ω4+ω6)(4+12ω2+8ω4+ω6)
> 0,

(see [16] for details).
Figure 1 is presented the Hopf bifurcation curve in the plane of the parameters m, n.
For 0 < m < mH = n+1

1−n the S-conjugated equilibrium points E+ =
(√

mn,
√

mn, m
)

and E− =
(
−
√

mn,−
√

mn, m
)

are saddle foci and they are not hyperbolic for m = mH .
For m > mH the two equilibrium points are attractors and two S-conjugated unstable limit
cycles are formed near them. In [22] is shown that the S-conjugated unstable limit cycles
generated through the Hopf bifurcation for 0 < mH −m << 1 have a one-dimensional
stable manifold and a one-dimensional unstable manifold. The coexistence of unstable limit
cycles with a chaotic attractor, exemplified using the system (2), was considered in [22] an
important dynamical aspect that was not pointed out before.

4. The Singular Bifurcation

A singular bifurcation occurs in n = 0: for n = 0 the system (2) has infinitely many
equilibrium points and for n > 0 the system (2) has one or three equilibrium points (if
m ≤ 0, respectively m > 0).

The main physical interpretation is that the existence of infinitely many equilibrium
points (when n = 0) is strongly related to the absence of the linear terms in the third equation
of the system (2).

In the following, we will study the case m > 0 and we will consider n as a perturbation
parameter. The bifurcation will be analyzed according to the singular perturbation theory.

4.1. The Dynamics of the Unperturbed System

The unperturbed system, obtained from (2) for n = 0, is

x′ = y− x, y′ = mx− xz, z′ = xy. (3)

Proposition 2(d) already stated that the fixed-point subspace Σ+ = {(0, 0, z) | z ∈ R}
is formed by equilibrium points.

Proposition 5. (a) The unperturbed system (3) has infinitely many invariant surfaces
Sr : y2 + (z − m)2 = r2, r ≥ 0. (b) For r = 0, the equilibrium point E = (0, 0, m) is non-
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hyperbolic, with dim(Wc(E)) = 2 and dim(Ws(E)) = 1. (c) For r > 0, each invariant surface
Sr contains two non-hyperbolic equilibria E+,r = (0, 0, m + r) and E−,r = (0, 0, m− r). E+,r
is asymptotically stable and E−,r is a saddle point for the system (3) restricted to Sr .

Proof of Proposition 5. (a) Let consider F(x, y, z) = y2 + (z−m)2. Simple computa-
tion shows that dF

dτ = 2yy′ + 2(z−m)z′ ≡ 0. It means that F(x, y, z) is a first integral
of (3) and the surfaces Sr : F(x, y, z) = r2 are invariant surfaces for (3) for all r ≥ 0.
(b) S0 = {(x, 0, m), x ∈ R} contains the unique equilibrium E0 = (0, 0, m) having the
characteristic polynomial P0(λ) = λ2(1 + λ). The eigenvalues are λ1 = λ2 = 0 and
λ3 = −1 < 0. (c) The equilibrium points of (3) situated on Sr must fulfill the conditions
x = y = 0, (z−m)2 = r2. They are E+,r = (0, 0, m + r) and E−,r = (0, 0, m− r).

The characteristic polynomial of E+,r is P+,r = λ
(
λ2 + λ + r

)
. The eigenvalues of E+,r

are λ1 = 0 and λ2,3 = −1±
√

1−4r
2 , which have a negative real part for all r > 0.

The characteristic polynomial of E−,r is P−,r = λ
(
λ2 + λ− r

)
. The eigenvalues of E+,r

are λ1 = 0, λ2 = −1−
√

1+4r
2 < 0 and λ3 = −1+

√
1+4r

2 > 0, for all r > 0. �

The system (3) is dissipative because div(X)(x, y, z) = −1 < 0, where X(x, y, z)
= (y− x, mx− xz, xy). Hence the orbits of all points (x0, y0, z0) ∈ Sr0 , with

r0 =
√

y2
0 + (z0 −m)2, are attracted by E+,r0 =

(
0, 0, m +

√
y2

0 + (z0 −m)2
)

, excepting

those starting from the stable manifold of E−,r0 .

4.2. Fast-Slow Oscillations in the Perturbed System

For 0 < n << 1 the system (2) is a fast-slow system with two fast variables and one
slow variable, not written in the standard form for the moment. The standard form is
obtained using the transformation

x = nu, y = nv, z = z

The system (2) becomes

u′ = v− u, v′ = u(m− z), z′ = n(−z + nuv) (4)

4.2.1. The Dynamics of the Fast Subsystem

The fast subsystem is obtained by considering n = 0 in (4):

u′ = v− u, v′ = u(m− z), z′ = 0 (5)

The critical set is formed by two lines that intersect in (0, 0, m):

C0 = {(u, v, z) | u = v, u(m− z) = 0} = {(0, 0, z), z ∈ R} ∪ {(u, u, m), u ∈ R} (6)

The fast subsystem describes the evolution of the fast variables u and v far from the
critical set C0.

The third equation of (5) shows that z(τ) = z0 for all τ ≥ 0, so z0 may be considered
a parameter in the system formed by the first two equations. System (5) is equivalent to
the system

u′′ + u′ + u(z0 −m) = 0, v = u′ + u, z = z0

We consider λ1 and λ2 the solutions of the characteristic equation

λ2 + λ + (z0 −m) = 0 (7)
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For z0 6= m + 1/4 one has λ1 6= λ2 and the orbit of (u0, v0, z0) is given by
u(τ) = K1eλ1τ + K2eλ2τ

v(τ) = K1(1 + λ1)eλ1τ + K2(1 + λ2)eλ2τ

z(τ) = z0

, where

K1 =
u0 − v0 + λ2u0

λ2 − λ1
, K2 =

v0 − u0 − λ1u0

λ2 − λ1
(8)

For z0 = m + 1/4 > m one has λ1 = λ2 = −1/2 and the orbit of (u0, v0, z0) is given

by


u(τ) = (K1 + K2t)e−τ/2

v(τ) = (K2 − K2τ/2− K1/2)e−τ/2

z(τ) = z0

, where

K1 = u0, K2 = v0
u0

2
(9)

Proposition 6. Let us consider the fast subsystem (5).

(a) The plane z = z0 is invariant with respect to the flow of (5), for all z0 ∈ R.
(b) For r > 0, E+,r = (0, 0, m + r) is the global attractor for the system (5) restricted to the plane

z0 = m + r.
(c) For r > 0, E−,r = (0, 0, m− r) is a saddle point for the system (5) restricted to the plane

z0 = m − r. The stable manifold of E−,r is v = u(1 + λ1) and the unstable manifold is
v = u(1 + λ2) where λ1 < 0 < λ2 are the solutions of the equation λ2 + λ− r = 0. All
orbits starting from the plane z = m− r are unbounded, excepting those starting from the
stable manifold of E−,r.

(d) For r = 0 the line u = v is formed by non-hyperbolic equilibrium points and it is the global
attractor of the system (5) restricted to the plane z = m.

Proof of Proposition 6. (a) It results immediately from the equation z′ = 0. (b) For
r > 0 and z0 = m + r > m, the characteristic Equation (7) becomes λ2 + λ + r = 0.
It has two complex conjugated with negative real parts for r > 1/4, if r = 1/4 then
λ1 = λ2 = −1/2 and for r ∈ (0, 1/4) the equation has two negative solutions. In all cases,
it results from (8) and (9) that lim

τ→∞
(u(τ), v(τ), z0) = (0, 0, z0) for all (u0, v0, z0). (c) For

r > 0 and z0 = m− r < m the characteristic Equation (7) becomes λ2 + λ− r = 0. It has
a negative solution λ1 =

(
−1−

√
1 + 4r

)
/2 and a positive one λ2 =

(
−1 +

√
1 + 4r

)
/2,

which shows that E−,r is a saddle. The stable and unstable manifolds are obtained from
the analytical expression of u(τ) and v(τ). They correspond to K2 = 0, respectively
K1 = 0. They are Ws(E−,r): v = u(1 + λ1), respectively Wu(E−,r): v = u(1 + λ2). From
(8) it results that lim

τ→∞
(u(τ), v(τ), z0) = (∞ · sgn(K2), ∞ · sgn(K2(1 + λ2)), z0) if K2 6= 0

and lim
τ→∞

(u(τ), v(τ), z0) = (0, 0, z0) if K2 = 0 i.e., v0 = u0(1 + λ1). (d) For r = 0,

which means z0 = m, the characteristic equation has the solutions λ1 = 0, λ2 = −1,
so u(τ) = v0 + (u0 − v0)e−τ , v(τ) = v0, z(τ) = z0 = m. �

In Figure 2 are presented some orbits of the fast subsystem (5) corresponding to
m = 1.5, restricted to the plane z = z0. In Figure 2a, obtained for z0 = 1.6 > m, is observed
that all orbits are attracted by O = (0, 0), corresponding to E+,0.1 = (0, 0, 1.6). Figure 2b,
obtained for z0 = m = 1.5, shows that the line u = v is formed by stable equilibria that are
not asymptotically stable and it represents the global attractor of the system (5) restricted to
the plane z = m. Figure 2c, obtained for z0 = 1.4 < m, shows some unbounded orbits, but
also the stable manifold of E−,0.1 (the red curve). The unbounded orbits are approaching
the unstable manifold of E−,0.1, which is given explicitly in this case by v = 1.09160u.
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The set C0,1 = {(0, 0, z), z 6= m} is formed by fast-slow regular points (which are also
normally hyperbolic points) and the set C0,2 = {(u, u, m), u ∈ R} is formed by fast-slow
singular points (which are not normally hyperbolic points (see [23] (p. 58) for definitions).
In their intersection, (0, 0, m), which is a singular point, the stability of the regular points
changes from attractor (if z > m) to saddle (if z < m).

4.2.2. The Dynamics of the Slow Subsystem

The slow subsystem of (2), corresponding to the slow time ts = nτ, is

v− u = 0, u(m− z) = 0,
.
z = −z (10)

where
.
z = dz/dts.

The slow subsystem, also called “the reduced problem”, is a differential-algebraic
system that describes the dynamics of the slow variable “z” on the critical set C0. Initial con-
ditions (u0, v0, z0) must satisfy the constraints u0 − v0 = 0 and u0(m− z0) = 0. Obviously,
the third equation of (8) gives z(ts) = z0e−ts .

C0,1 = {(0, 0, z), z ∈ R}, the first branch of C0, is an invariant set of the slow
subsystem (10). O = (0, 0, 0) is the global attractor for the slow subsystem restricted to
C0,1 because the orbit of (0, 0, z0) is O(0, 0, z0) =

{(
0, 0, z0e−ts

)
, ts ≥ 0

}
.

C0,2 = {(u, u, m), u ∈ R}, the second branch of C0, is not an invariant set of the slow
subsystem because z(ts) = me−ts 6= m for ts > 0. It does not play a special role in the
formation of fast-slow oscillations.

4.2.3. The Mechanism of the Fast-Slow Oscillations

The orbits of the (full) fast-slow system (4), which is equivalent to the system (2),
consist of a slow variation of the (slow) variable z and fast motions of the (fast) variables
u, v followed by long periods in which they remain close to 0. They are formed by an
alternating sequence of fast and slow orbits, known as fast-slow oscillations or oscillation-
relaxation phenomenon. It is expected that near the critical set C0 the orbits of the full
system may be approximated by the orbits of the slow system and, sufficiently far from C0,
the slow motion of the variable z is irrelevant and the orbits follow the trajectories of the
fast subsystem.

The first segment of an orbit starting from (u0, v0, z0) /∈ C0, with z0 > m is a fast orbit,
approaching the line C0,1 = {(0, 0, z) | z ∈ R}, because the fast subsystem is dominant.

This is an immediate consequence of Proposition 6. If z0 > m, it was proved
(Proposition 6(b)) that lim

τ→∞
u(τ) = lim

τ→∞
v(τ) = 0.

The second segment of the orbit is a slow orbit, because it starts near the critical set,
where the slow sub-system is dominant. In this case, z = z(τ) slowly decreases.

The orbit continues to be attracted by C0,1 as long as z(τ) > m and repelled by C0,1
when z(τ) < m, because the critical set loses the normal hyperbolicity in the “turning
point” (0, 0, m) and passes from attractive to repulsive dynamics.

But the orbit does not leave C0,1 as soon as the critical set becomes unstable at (0, 0, m)
and it stays near C0,1 until its repulsion balances the attraction that occurred before z(τ) = m.
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Indeed, if z(τ0) = m, one has
.
z(τ0) < 0 in the slow system. Because from that moment

one has z(τ) < m, the orbit becomes close to the unstable part of C0,1 and from now on
it is reppeled by C0,1. It leaves C0,1 following the unstable manifolds of the saddle points

E−,r ∈ C0,1, which are v = u
(

1 + −1+
√

1+4r
2

)
(Proposition 6(c)). For 0 < r << 1 one has

v ≈ u and z′ = n(−z + nuv) is increasing (because uv > 0). z′ remains negative as long as
nuv < z (i.e., the attraction accumulated when z(τ) > m is still dominant) and becomes
positive when nuv > z (the repulsion accumulated when z(τ) < m is dominant). Basically,
the moment when nuv = z, i.e., the attraction that was exerted by C0,1 as long as z(τ) > m
is compensated by the rejection of C0,1 when z(τ) < m, is the starting moment of the
fast motion.

Because z is increasing, it will become larger than m and the procedure is repeated:
the orbit is attracted by C0,1, enters the half space z < m, is repelled by C0,1, crosses the
plane z = m and so on.

This phenomenon, when the orbits of a fast-slow system stay near a curve of equi-
librium points of the fast subsystem and do not leave it immediately after entering the
repelling zone, has been called “bifurcation delay” in [24] or “delay of stability” in [15].

For orbits starting from (u0, v0, z0) /∈ C0, with z0 < m, the action of the fast sub-system
is dominant. The first part of the orbit is a fast one (see the arguments previously presented),
the orbit enters the half space z > m and the procedure is repeated.

Figure 3a presents the orbit of (x0, y0, z0) = (0.2, 5, 0.2) in the system (2), correspond-
ing to n = 0.03 and m = 1.5. One can observe the increase of z = z(t) from z0 = 0.2 < m
to zmax = 6.5891 > m and the important effect of the fast-slow dynamics from the first
oscillation. It can also be observed that, after the first oscillation, one has x(t) ≈ y(t) (which
confirms the theoretical results).
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4.3. From Stable Equilibria to Fast Slow Oscillations 
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Figure 3. (a) The orbit of (0.2, 5, 0.2) in system (2) for n = 0.03 and m = 1.5 (fast-slow oscillations);
(b) time series z = z(t) from the orbit of (0.2, 3, 0.1) in system (2) for m = 1.5 and n = 0 (red
curve), n = 0.00001 (magenta curve), n = 0.0001 (green curve), n = 0.001 (blue curve) and n = 0.01
(black curve).

4.3. From Stable Equilibria to Fast Slow Oscillations

For n = 0 system (2) has infinitely many non-hyperbolic equilibrium points,
Ez = (0, 0, z), which are stable (but not asymptotically stable) for z > m and unstable

for z < m. The orbits starting from (x0, y0, z0) ∈ Sr0 , with r0 =
√

y02 + (z0 − m)2, are
included in Sr0 and they are attracted by E+,r0 , excepting those starting from the stable
manifold of E−,r0 .
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For n > 0, system (2) has three equilibrium points: O = (0, 0, 0) and
E± =

(
±
√

mn,±
√

mn, m
)
. Typical orbits of (2) exhibit fast-slow oscillations for all

n > 0.
A visible gap occurs between the dynamics of the system (2) for n > 0, respectively

n = 0.
What happens when n→ 0?
For 0 < n << 1, the orbits starting from the surface Sr0 : y2 + (z−m)2 = r2

0 remain

close to it for some time, because d
dτ

(
y2 + (z−m)2

)
= 2nz(m− z) ≈ 0. They approach

the Oz axis near E+,r0 , which confirms the dynamical dominance of the fast sub-system.
Once the orbit gets close to the Oz axis, the action of the slow sub-system becomes

dominant (as presented in the previous paragraph).
Because z′(t) = −nz(t) + x(t)y(t) is very small (n << 1, x(t) ≈ 0, y(t) ≈ 0), the

vertical downward motion is slow. It is slower for smaller values of n.
It means that, for a transient time, the orbit will remain in the vicinity of E+,r0 . After

this, it will slowly go down, it will descend below the plane z = m and from this moment it
will exhibit fast-slow oscillations.

The variation of z = z(t) along the orbit of the system (2) starting from
(x0, y0, z0) = (0.2, 3, 0.1) is presented in Figure 3b. The parameter m = 1.5 is fixed
and various values of n are considered: n = 0 (red curve), n = 0.00001 (magenta curve),
n = 0.0001 (green curve), n = 0.001 (blue curve), and n = 0.01 (black curve).

It is interesting to point out that the amplitudes of the oscillations decrease when n
decreases. At the same time, their periods increase.

In conclusion, there is a qualitative difference between the dynamics of the unper-
turbed system and the dynamics of the perturbed one. But, for small values of the bifur-
cation parameter n, the dynamics of the perturbed system “mimics” the dynamics of the
unperturbed one for a transient time (which is longer when n is smaller).

5. Singularly Perturbed System and Local Bifurcations

In the plane of the parameters the pitchfork bifurcation curve CP : m = 0 and the
Hopf bifurcation curve CH : m = 1+n

1−n intersect the singular bifurcation curve CS : n = 0 in
(m, n) = (0, 0) respectively (m, n) = (1, 0) (see Figure 1).

An interesting and natural question concerns the interaction between the fast-slow
dynamics of the system and the one imposed by the (local) pitchfork and twin Hopf
bifurcations i.e., when (m, n) ≈ (0, 0), respectively (m, n) ≈ (1, 0).

5.1. Singularly Perturbed System and Pitchfork Bifurcation

As shown in Section 3, two S-conjugated asymptotically stable equilibrium points
E± =

(
±
√

mn,±
√

mn, m
)

are formed through a pitchfork bifurcation for m > 0. Their
basins of attraction are S-conjugated.

In Figure 4 we synthetized the dynamics of the system (2) near the Oz axis for
n = 0.01 and m = 0.09 (Figure 4a) and m = 0.01 (Figure 4b). In the plane z = m (it is the
plane where the twin equilibrium points are situated and it is also the plane crossed by
the fast-slow oscillations), a grid of 3600 points in the square [−0.03, 0.03]× [−0.03, 0.03]
was considered and the orbit of each point was analyzed in the time interval [2000, 3000].
The orbits of the red points converge to E+, those of the green points converge to E−
and the orbits of the blue points are oscillating. It can be observed that the dynamics
generated by the pitchfork bifurcation is dominating for m = 0.09 and this fact is more
effective for m = 0.01.

For 0 < m << 1 and 0 < n << 1 the twin equilibrium points and the saddle point
O = (0, 0, 0) are very close. The singular perturbation is dominant at the beginning of the
motion, when the fast subsystem is acting (the orbit approaches the Oz axis) and the slow
subsystem causes the orbit to descend along the Oz axis to z = 0. When z(τ) < m the orbit
is rejected by the Oz axis and some oscillations (in the fast-slow scenario) are observed.
When the orbit enters the basins of attraction of E+ or E−, that are very close to Oz axis, it
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is attracted by one of the asymptotically stable equilibrium points. The variables x and y,
corresponding to the fast variables u and v in system (4) do not exhibit fast-slow dynamics.
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In Figure 5a is presented a typical orbit in system (2) for n = 0.03 and m = 0.05 (after
the pitchfork bifurcation: the orbit is attracted by the asymptotically stable equilibrium
point E+).
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Taking into account the numerical simulations, we can state that, when 0 < n << 1
and 0 < m << 1, the existence of the twin attractive equilibrium points E± is decisive for
the dynamics of the system.

5.2. Singularly Perturbed System and Hopf bifurcation.

As shown in Section 3, S-symmetric unstable cycles are formed through Hopf bifurca-
tions of E± =

(
±
√

mn,±
√

mn, m
)

for n ∈ (0, 1) when m > mH = 1+n
1−n .

For 0 < n < ε, the estimation of mH is 1 < mH < 1+ε
1−ε .

Numerical simulations highlight the existence of a stable periodic orbit (relaxation-
oscillation) before and after the Hopf bifurcation, due to the fast-slow characteristics
of (2). The formation of the twin unstable cycles for m > mH does not essentially
influence the fast-slow dynamics because they attract only the points situated on their
1D stable manifold.

In Figure 4b is presented the orbit of (x0, y0, z0) = (−1, 4,−1) in system (2) for n = 0.03
and m = 1.06185 < mH = 1.061855670103093. In the 3D representation the blue points are
the equilibrium points E± = (±0.17903,±0.17903, 1.06185), which are saddles; the cyan
one is the equilibrium point O = (0, 0, 0), which is also a saddle. In the representation



Symmetry 2023, 15, 923 12 of 13

of each component of the orbit, the black part represents the evolution until the stabi-
lization near the fast-slow periodic orbit and the magenta part describes the evolution
after stabilization.

For n ∈ (0, 1) and m > 1+n
1−n the dynamics is quite complicated: some orbits are

attracted by the stable equilibrium points E±, an unstable limit cycle is formed through
the Hopf bifurcation and a double scroll attractor originating from the fast-slow dynamics
exists. The double scroll attractor is a periodic orbit for small values of n, but for larger
values of n it is a strange attractor, similar to the one observed in the Lorenz system. The
strange attractor is formed before the Hopf bifurcation occurs (for m < 1+n

1−n ), see [16]
for details.

6. Conclusions

Despite its simple equations, the T-system exhibits interesting dynamics. In the
form (2), a main advantage in studying it is that it depends only on two parameters
(m ≥ −1 and n ≥ 0), which makes the study of the bifurcations easier. Another advantage
is that the fast and the slow subsystems are integrable and the precise solution of the
two subsystems can be obtained.

Classical arguments and methods were used in order to obtain results about the
pitchfork and Hopf bifurcations and special attention was given to the study of a special
bifurcation (we call it “singular bifurcation”) which occurs if n = 0: for n > 0, the system
has a finite number of equilibrium points (a single one for m ∈ [−1, 0], three equilibrium
points for m > 0, respectively) and it has infinitely many equilibria for n = 0.

For n > 0, m > 0 the system was studied according to the singular perturbation
theory. In this case, a fast-slow dynamics was observed and analyzed.

The specific features of the bifurcation were highlighted and explained. It was shown
that the perturbed system mimics the dynamics of the unperturbed one for a finite time
period, if n > 0 is small enough.

Because the singular bifurcation curve intersects the pitchfork bifurcation curve in
(m, n) = (0, 0) and the Hopf bifurcation curve in (m, n) = (1, 0), the influence of the
pitchfork and Hopf bifurcations on the fast-slow dynamics was also pointed out. It was
observed that, for (m, n) ≈ (0, 0), the symmetric equilibrium points generated by the
pitchfork bifurcation are very close to the critical set of the system and their attraction
dominates the fast-slow dynamics. For (m, n) ≈ (1, 0) fast-slow stable periodic orbits are
observed before and after the Hopf bifurcation, so the occurrence of the Hopf bifurcation
does not essentially change the dynamics of the systems and it has only local effects.
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