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Abstract: Person re-identification is a challenging task due to the lack of person image information in
occluded scenarios. The current methods for person re-identification only take into account global
information, neglect local information, and are not responsive to changes in input. Additionally, these
methods do not address the issue of inaccurate joint detection caused by occlusion. In this paper,
we propose an occluded person re-identification method based on a graph model and deformable
method, which is able to simultaneously focus on global and local information and can flexibly
adapt to local information and changes in the input, efficiently resolving issues such as occluded or
incorrect joint information. Our method consists of three modules: the mutual help denoising module,
inter-node aggregation and update module, and graph matching module. The mutual help denoising
module acquires global features and person skeleton node features using a CNN backbone network
and a pose estimation model, respectively. It uses symmetric deformable graph attention to obtain the
local and global features of the joint points in different views, correcting the information of incorrect
nodes and extracting favorable human features. The inter-node aggregation and update module
employs deformable graph convolution operations to enhance the relations between the nodes in the
same view, resulting in higher-order information. The graph matching module uses graph matching
methods based on the human topology to obtain a more accurate similarity calculation for masked
images. Experimental results on the Occluded-Duck and Occluded-REID datasets show that our
proposed method achieves Rank-1 accuracies of 64.8% and 84.5%, respectively, outperforming current
mainstream methods such as HOReID. Our method also achieves good results on the MARKET-1501
and DukeMTMC-ReID datasets. These results demonstrate that our proposed method can extract
person features well and effectively improve the accuracy of person re-identification tasks.

Keywords: person re-identification; occluded; deformable; attention; symmetry

1. Introduction

Person re-identification (Person ReID), a technology that uses computer vision to
extract features from images of people across cameras for person matching, is widely
used in intelligent security, smart retail, and other fields. Person ReID is also an essential
tool in combining artificial intelligence technology with industry [1]. However, factors
such as the camera’s viewpoint, the person’s pose, and lighting changes could lead to
problems such as occluded and blurred person images, which significantly impact the effect
of person re-identification. Therefore, the occluded person re-identification technique is a
research hotspot in this field, aiming to enable the person re-identification model to obtain
a relatively good recognition effect on occluded images.

Compared with re-identification techniques for clear person images, occluded person
re-identification has more challenges. (1) Clear person images contain complete personal
information, while occluded person images may cause the loss of crucial person features,
and if feature extraction is performed without being able to discern the covered areas,
it would cause interference in feature recognition, which could lead to a decrease in the
accuracy of person recognition [2]. (2) the existing methods for person re-identification are
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typically based on traditional attention or convolution methods, where the sampling grid is
usually fixed and cannot adaptively adjust to the different shapes and sizes of the objects of
interest, i.e., they cannot handle non-uniform sampling grids. Additionally, in traditional
methods, sampling points typically only consider local information and cannot fully utilize
global information, resulting in reduced model performance. Therefore, these methods
have limited feature extraction capabilities on occluded images [3]. (3) In the traditional
structure of local feature matching, the image features are extracted and then matched
strictly on a one-to-one basis. If too many occluded areas exist, the matching performance
would be reduced [4].

Based on the above analysis, to effectively and comprehensively extract the target in-
formation in occluded images and to be able to recognize the targets accurately, we propose
a method of occluded person re-identification based on a graph model and deformable
method, which use graph models to model human structures and then mine for more
discriminative person features to improve model recognition. The global features of the
image are first extracted through the backbone network, and the pre-trained human pose
estimation model is used to obtain the human joints in the person image, and then the
joint information is fused with the global features to obtain the person feature information
representation. However, due to occlusions caused by body parts, the accuracy of human
body node information may be affected, leading to reduced model recognition rates. To ad-
dress this issue, symmetrical deformable graph attention is employed to aggregate and
update the features of human body joint points, thereby correcting information for nodes
that are poorly represented under different viewing conditions. In addition, based on the
information of the human joints in each image already corrected in the previous module,
the features are aggregated and updated between the different joints of the person in the
same view using deformable graph convolution, thus further increasing the robustness of
the model recognition effect. Then, the alignment phase uses a graph matching algorithm
to measure the similarity of the two sets of person images.

The main contributions of this paper are as follows. (1) Deformable methods are
used to flexibly adapt to input feature information and changes, which enables more
comprehensive feature extraction. This enhances the model’s flexibility and adaptability.
(2) To tackle the issue of inaccurate node features in complex scenes, we suggest employing
symmetry deformable graph attention to aggregate and update features. Specifically, by
utilizing symmetry deformable graph attention, the node information from various person
images can cooperate and rectify any erroneous node information, thereby enhancing the
model’s resilience against complex scene node features. (3) We employ a deformable graph
convolution technique to aggregate and update features among nodes within a single
view. This results in more precise person-specific features and consequently enhances the
accuracy of the model’s recognition. (4) The proposed framework was evaluated on two
occluded datasets, Occluded-Duck and Occluded-ReID, and the publicly available datasets
Market-1501 and DukeMTMC-reID, respectively, and it achieved high accuracy rates on all
of them.

2. Related Work
2.1. Occluded Person Re-Identification

The objective of occluded person re-identification is to find persons with the same
features in different cameras as in the occluded image. However, occluded person re-
identification is made more challenging by incomplete information about the persons in
the blocked image and spatial misalignment due to different angles [5]. Zhuo et al. [6]
trained the network to adapt to varying types of occlusion by simulating an occluded
scene, using either occluded or non-occluded binary classification loss to distinguish the
occluded part from the overall image. They used multi-task training to classify both
personal identification and whether it is occluded or not. Miao et al. [7] proposed a method
to detect non-occluded regions based on the pose estimation of human semantic vital points
and used a predefined confidence threshold for the joints to determine whether the part is
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occluded. Fan et al. [8] used a Spatial Channel Alignment Network (SCPNet) to map local
features into channels of global elements and fuse the overall and partial features to obtain
the desired discriminant features, thus reducing the effect of occluded noise on global parts.
Luo et al. [9] used a spatial transformation module to transform the overall image to align
with the local vision and then calculate the distance to its correct alignment.

2.2. Graph Model-Based Person Re-Identification

Recently, graph models have been widely used in tasks such as human action pose
recognition [10–13], multi-label image recognition [14–17], the identification of vehicles [18],
and video classification [19–22], so related methods based on graph models have also
been introduced into the field of person re-identification. Barman et al. [23] proposed
an unsupervised algorithm that maps the process of person recognition ranking to the
graph model theory problem. Ye et al. [24] focused on the issue of cross-camera label
estimation in unsupervised learning. They proposed constructing a graph for each sample
in each camera and then proposed dynamic graph matching methods for cross-camera label
association. However, these methods are ineffective in recognizing persons with different
and occluded clothing. In addition, there are two graph model-based methods similar to
the above. Cheng et al. [25] proposed a structured Laplacian embedding algorithm, which
transforms the structured distance relationship formula into a graph Laplacian matrix, thus
optimizing the feature learning of the model for training samples and obtaining more robust
and discriminative depth features. However, this method cannot be directly generalized
to new nodes and is computationally complex, making it challenging to apply to more
complex graph structures. Wu et al. [26] proposed a Graph Attention Network (GAT)
and combined this network with a model feature extraction network to extract important
discriminative features from the spatial and spatio-temporal domains, identify some regions
with a relatively high contribution in the spatial field, and enable the network to focus
on different parts. Then, the relationship between the spatio-temporal graph discovery
frames and other areas is changed to learn the correlation weights within the feature graph
continuously. However, this network only obtains first-order semantic information. It does
not go deeper to obtain higher-order information. Li et al. [22] introduced a graph neural
network that uses the relationship between human joint alignment and feature affinity to
construct an adaptive structure-aware adjacency graph to model the intrinsic connections
between graph nodes. However, extracting information such as human joints requires the
inclusion of additional computations. It is not integrated into the overall model structure
to achieve end-to-end training, so this method does not achieve the best results.

In this paper, the human topology is modeled and symmetry deformable attention
is proposed to fuse the node information in the different views and fix the error node
information. Meanwhile, the inter-nodes from the same view are aggregated and updated
using deformable graph convolution to further enhance the robustness of the model’s
recognition results.

3. Network Structure Design

The network structure of this model is designed to address the issue of low accuracy
in person recognition caused by occlusion problems in person re-identification. The overall
structure, as shown in Figure 1, consists of three stages. The first stage is the mutual help
denoising module. This module utilizes RestNet50 as the backbone network to extract
global information, while also extracting local information about joints. By fusing these two
sources of information, the module generates an output that is passed to a deformable graph
attention (Deformable GAT) layer with a symmetric structure. In the second stage, the inter-
node aggregation and update module utilizes deformable graph convolution (Deformable
GConv) to establish connections between local and global information pertaining to the
human body. This facilitates the aggregation and updating of information pertaining to
different joints in the same view, resulting in the acquisition of higher-order semantic
information and improved matching robustness. Additionally, the model employs multi-
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head attention to concentrate on various parts of multiple inputs concurrently. This enables
the model to comprehensively comprehend the input content, thereby enhancing the
accuracy and efficiency of the recognition task. Finally, the graph matching module uses
the graph matching algorithm (GM) to align images, resulting in a more accurate similarity
calculation for occluded images. This three-stage approach improves the accuracy of person
recognition in the presence of occlusion challenges.

Figure 1. Overview of the proposed EcReID framework. Deformable GAT denotes deformable
graph attention, Deformable GConv denotes deformable graph convolution, and GM denotes graph
matching algorithm. concat denotes the concatenate operation.

3.1. Mutual Help Denoising Module

The mutual help denoising module is designed to extract person features and correct
incorrect joint information. It has already been demonstrated that dividing the human
body into partial regions can improve the effectiveness of the person re-identification
task [27], and the person re-identification algorithm in occluded images requires the strict
alignment of the local features of the image [25]. In this paper, we use a combination of
human joint features and global features to obtain better person information, and then
update and aggregate the human joint features in different views via symmetric deformable
graph attention.

Specifically, the first step is the low-order feature extraction, as shown in Figure 2.
This module first detects the original input image through the pre-trained OpenPose hu-
man pose estimation model, so as to obtain 13 pieces of human joint information and
the corresponding confidence levels of the joints. If the confidence level is more signif-
icant, it means that the image is a less occluded area, and we then use the Gaussian
function to obtain the heat map related to the 13 joints of the human body. Meanwhile,
the fully connected layer and pooling layer of ResNet50 will be removed from the back-
bone network of this model, and then the original image is inputted to obtain the global
features. Secondly, the global feature map mg and the joint feature map mnp obtained
above are passed through an outer product (

⊗
) and global average pooling (g(·)) op-

erations, and then the local features VF
l and the global features VF

g for a set of joints
are obtained.

VF
l = {vF

nd}
N
nd=1 = g(mg ⊗mnp) (1)

VF
g = vF

N+1 = g(mg) (2)

where N indicates the number of critical points in the human body, N = 13.
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Figure 2. The flowchart of global and skeletal features.
⊗

denotes an outer product.

Traditional attention plays an important role in deep learning, which can give different
weights to different parts of the input and help the model to understand the input. How-
ever, it has some problems, such as only considering the global information, ignoring the
local information, and low sensitivity to input changes. When dealing with long sequences,
it is easily affected by long-distance dependence, which reduces the performance. However,
deformable graph attention is a technique that employs a deformable network to establish
the correlation between the content and spatial location in the input feature map. By gener-
ating a deformable mesh, this technique can dynamically apply attention weights to the
deformable version of the input feature map. Deforming the grid allows for the precise
tuning of each spatial location, which alters the receptive field of the attention mechanism
and improves the neural network’s ability to consider the relationship between the input
feature map’s content and the spatial location. Consequently, deformable graph attention
can adapt flexibly to local information and changes in the input, assigning different weights
to different parts of the input. We leverage deformable graph attention to perform feature
aggregation and updates on human joint features in various views, correcting incorrect
joint point information. Figure 3 illustrates this process in detail.

All the joint point features and global features in the two images to be matched are
used as the input of the symmetric deformable graph attention layer. The process of
deformable graph attention is shown in Figure 3. Deformable graph attention divides
the input sequence into two parts: one is the feature of the input nodes, and the other
is the offset of each node in different directions. These offsets can be learned through
convolutional layers and are usually represented as a vector, where each element represents
the magnitude of the offset in different directions. Then, for each node, its position is
shifted according to its corresponding offset.

Upon completion of the positional shift of nodes, the deformable graph attention
mechanism computes the similarity between nodes based on their adjusted positions and
assigns a weight to each node. This weight can be utilized to adjust the weighting of
information from different nodes, thereby amplifying or dampening the characteristics of
these nodes.
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Figure 3. An illustration of the deformable graph attention architecture. SKnode denotes the skeleton
node; Cin and Cin denote the number of channels in the input and output, respectively; N denotes
the number of joints, and φo f f set(·) is a sampling function. Only four sampling points are shown in
the figure.

Overall, deformable graph attention utilizes position offset information and node
similarity calculation to more comprehensively and accurately capture the relationships
and spatial positions between different nodes in the input sequence, thereby improving the
performance of the model.

In order to analyze joint attentional relationships with other joints, we utilize attention
mechanisms applied to graphs. This involves taking a flattened feature map represented
as x ∈ RN×C as input. We then obtain three matrices, namely Q, K, and V, by applying
different linear transformations to the input feature map x. The vectors q, k, and v are the
constituents of Q, K, and V, respectively. Let vi and vj represent any two distinct human
joints, and let atti,j denote the updated attention relationship between vj and vi, as shown
in Equation (4).

Q = xWQ, K = xWK, V = xWV (3)

atti = ∑
j∈N

atti,j = ∑
j∈N(i)

so f tmax(
qi · kᵀj√

dim
)vj (4)

where WQ, WK, WV ∈ RC×C are the transform matrix; q ∈ Q, k ∈ K, v ∈ V; dim denotes the
dimension of Q, K, V; and atti denotes the attention relation between vi and other joints.

As shown in Figure 3, the deformable graph attention inputs query tokens Q into
a weight network θo f f set(·) to generate offset ∆pe = θo f f set(Q), and takes the node after
the deformation operation as the key and value, and then the transformation matrix of
Formula (3) becomes

Q = xWQ, K
′
= x

′
WK, V

′
= x

′
WV (5)

where ∆pe = θo f f set(Q), x′ = φ(x; pe + ∆pe). (6)

where K
′

and V
′

denote the vector of the deformation, respectively. In addition, we define
the sampling function, denoted by φ(·; ·), to perform bilinear interpolation.

φ(N; (pex, pey)) = ∑
(nx ,ny)

m(pex, nx)m(pey, ny)N[ny, nx, :] (7)
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where (nx, ny) denotes the index of all joints N ∈ RN×C, and m(pex, nx) = max(0, 1−
|pex − nx|); m(pey, ny|) = max(0, 1 − |pey − ny|). Then, the attention output after the
position shift is used as shown in Equation (8):

atti = ∑
j∈N

atti,j = ∑
j∈N(i)

so f tmax(
qi · k

′ᵀ
j√

dim
)v
′
j (8)

where q ∈ Q, k
′ ∈ K

′
, v
′ ∈ V

′
.

To improve the relevance of local joint information in the human body, we have in-
troduced natural joint connections into an attention layer. This is achieved through the
design of a symmetric adjacency matrix, denoted by A ∈ RN×N , where each element
aij represents the relationship between joint vi and joint vj. By incorporating this adja-
cency matrix, we can express the attention relationship between joint vi and other joints
using Formula (9).

atti = ∑
j∈N

atti,j = ∑
j∈N(i)

so f tmax(
qi · k

′ᵀ
j√

dim
+ aij)v

′
j (9)

Then, the attention representation of all joints is given by Equation (10).

att = so f tmax(
Q · K′ᵀ√

dim
+ A)V

′
(10)

To capture more comprehensive feature representations and improve model perfor-
mance, we designed a symmetric deformable graph attention layer that calculates attention
from two different perspectives on the input human joint information. Here, we used a
multi-head attention approach to calculate the expression of the symmetric deformable
graph attention layer. As shown in Figure 3, we set two attention heads, and then use the
concat(·) operation to combine the attention of each head. The overall expression of the
symmetric deformable graph attention is shown in Formula (11).

MHatt(Q, K, V) = Concat(att1, att2) (11)

The loss function La of this module includes the triplet loss Lt and the classification
loss Lc, as shown in Equation (12).

La =
1

N + 1

N+1

∑
j=1

β j[Lt(VF
j ) + Lc(VF

j )]

=
1

N + 1

N+1

∑
j=1

β j[max(α + dVF
aj ,V

F
pj
− dVF

aj ,V
F
nj

, 0)− log pVF
j
]

(12)

where N denotes the number of human joints, N = 13, β j denotes the confidence of the
jth joint, a and p are the same person, a and n are different persons, dVF

aj ,V
F
pj

denotes the

similarity between a and p, dVF
aj ,V

F
nj

denotes the similarity between a and n, α denotes the

minimum interval between dVF
aj ,V

F
pj

and dVF
aj ,V

F
nj

, and pVF
j

denotes the probability that the

feature VF
j is correctly classified.

3.2. Inter-Node Aggregation and Update

The occluded person image is incomplete, and to utilize more person-related semantic
information, a deformable graph convolution algorithm is used to aggregate and update
features on the nodes in the same view. The general structure of deformable graph convo-
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lution is shown in Figure 4, which adaptively changes the receptive field and aggregates
the neighborhood information of the nodes on the image.

In a traditional Graph Convolutional Network (GCN), the relationship between nodes
depends on the degree of the nodes, and GCN has a single transformation for non-2D
convolutional relationships. In contrast, deformable graph convolution is more flexible,
redefining the relationships between the nodes and the convolution kernel function. Firstly,
the joints are embedded in a potential position space, and the position of the joints in the
space is used to determine the coordinates of the joints; secondly, the relationship vector
between the joints is calculated from the coordinates of the joints.

Figure 4. An illustration of deformable graph convolution. Only three joints are taken as examples in
the figure. Deformable GConv, through kernel vector deformation ∆k(en), allows the convolution
kernel k fde f orm(·, ·) to adaptively deform for each central node n. This process facilitates more
flexible graph convolutions and promotes feature aggregation and updates between nodes within the
same view.

Specifically, each joint point in this module is embedded in a potential position space
for localization, so that the coordinates and relationships of the joint points are obtained.
The inputs to each node in the model are the node position coordinates and the node
feature representation. The process of obtaining the node position coordinates is simple.
Given an input image x, n is an joint in the original input feature map x. Then, the location
embedding pe(h)n of the joint n is obtained after smoothing h times the projection on the
original input feature map x, as shown in Equation (13):

pe(h)n = W(h)
pe e(h)n , where

e(0)n = xn, e(h)n =
1

d̃eg(n)
∑

mεÑ(n)

e(h−1)
m

(13)

W(h)
pe is a learnable weight matrix, d̃eg(n) denotes the degree matrix of joint n, eh

n is
the feature obtained by smoothing h projections of joint n in the input image, and Ñ(n)
denotes the neighborhood of joint n.

The relationship between joints is represented by a relationship vector, i.e., rm,n repre-
sents the relationship between node n and its neighbor joints m. When joint n and neighbor
joint m have different positional embeddings, the relative positions of the nodes in space
are used to represent the relationship, and when joint n and neighbor joint m have the
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same positional embedding, a normalized relationship vector is defined to encode the
positional embedding. Then, the relationship between the joint n and the neighboring joint
m is expressed as shown in Equation (14).

rm,n =

{
rm,n

′||0] ∈ Rdpe+1 if pem 6= pen

[0, 0, ..., 1] ∈ Rdpe+1 otherwise
(14)

where pem and pen denote the positional embedding of neighboring joints m and n, respec-
tively. r′m,n =

pem−pen
‖pem−pen‖2

, where [||] is a concatenation operator.

Then, the kernel function k f (. . . ) is defined as shown in Equation (15):

k f (rm,n) =
S

∑
s

am,n,sWs

where am,n,s =
exp(rT

m,n p̃ek)

Z

(15)

where p̃ek ∈ Rdpe+1 denotes the kernel vector, Ws ∈ Rdy+dh is the weight matrix, and Z ∈ R
is a normalization factor.

In order to improve the flexibility of the model and to obtain more information between
joints, the kernel function is then further optimized so that the kernel function considers
not only the relationship between the central joint n and the neighboring node m, but
also the relationships between neighboring joints. The kernel vector p̃ek is dynamically
translated by the deformable vector ∆k(en) ∈ Rdpe+1 according to the feature en ∈ Rdx after
the projection of the central node n. The deformable graph convolution method (DGCN) is
shown in Equation (16).

yn = ∑
m∈Ñ(n)

k f de f orm(rm,n, ∆k(en))hm (16)

where k f de f orm(rm,n, ∆k(en)) = ∑S
s=1 âm,n,kWs and âm,n,k =

exp(rT
m,n( p̃ek+∆k(en)))

∑m′ exp(rT
m′ ,n( p̃ek+∆k(en)))

; the de-

formation vector ∆k(en) ∈ Rdpe+1 is generated by a simple MLP network.
A better person feature V∗ is obtained by using a deformable graph convolution layer

in the inter-node aggregation and update module, as shown in Equation (17).

V∗ = DGCN(VF) (17)

The loss function of the graph convolution feature fusion module contains the triplet
loss Lt and the classification loss Lc, and the loss function Lb is calculated as shown
in Equation (18).

Lb =
1

nd + 1

N+1

∑
j=1

β j

[
Lt(VF

j ) + Lt(VF
c )
]

(18)

where β j denotes the confidence level of the jth joint, and the meanings of triplet loss and
classification loss are shown in the feature extraction module’s loss function La.

Finally, for the two sets of input images x1 and x2, their higher-order relational features
V∗1 = {V∗1,nd}

N
nd=1 and V∗2 = {V∗2,nd}

N
nd=1 can be obtained by Equation (17), where the cosine

similarity of images x1 and x2 can be obtained, as shown in Equation (19).

s∗(x1,x2)
=

1
nd + 1

N+1

∑
j=1

√
β1,jβ2,j cos (V∗1,nd, V∗2,nd) (19)

β1,j denotes the confidence of the jth joint of picture x1, and β2,j denotes the confidence
of the jth joint of picture x2.
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3.3. Graph Matching Module

Traditional person re-identification measures the similarity of local features with
one-to-one feature matching. It cannot effectively solve the problem of matching the
content of occluded person images. In order to more accurately measure the similarity
between occluded persons, this paper uses an improved fusion graph matching method for
feature matching, as shown in Figure 5. Firstly, the higher-order features corresponding to
two different person images are obtained from the graph convolution information fusion
module as the input of the person feature matching module. Then, a similarity matrix is
obtained using the fusion graph matching method to measure the similarity of the person
images. Finally, the crossover process of similarity prediction is used afterward to obtain
the respective matched feature results separately.

Figure 5. Figure matching operation process.
⊗

denotes the outer product operation and � denotes
the matrix summation operation.

Specifically, for the matching matrix U updating process, firstly, the graphs G1 =
(V1, E1) and G2 = (V2, E2) are obtained based on the given image pairs x1, x2 combined
with the human body topology information, where V1, V2 denote the set of nodes corre-
sponding to the joints of the human body, and E1, E2 denote the set of edges between the
joints. For each pair of joints between edges in E1, the matching degree between two points
(i, j) within this edge and two nodes (a, b) of the corresponding edge in E2 is computed
in turn to obtain the similarity matrix M ∈ [0, 1]KK×KK. For example, Mia;jb denotes the
matching degree between (i, j) in G1 and (a, b) in G2. For the absence edge of two joint pairs,
its corresponding element in the similarity matrix M is set to 0. Therefore, the elements on
the diagonal of the similarity matrix denote the matching degree between nodes in G1 and
G2, and the elements on the non-diagonal denote the edge-to-edge confidence degree in the
two graphs. Then, let U ∈ [0, 1]nd×nd be a matching strategy between G1 and G2, where uia
denotes the matching degree between nodes vi ∈ V1 and va ∈ V2. Initialize U as a nd× nd
unit matrix U0 and expand the elements in U0 in order of rank to obtain the indicator vector
U
′
0, and then the power iteration algorithm [28] is used to iteratively update U

′
0 based on

the similarity matrix M. The iterative updating process is as follows.

U
′
i+1 =

MU
′
i∥∥MU′i
∥∥

2

(20)

Then, the optimal matching vector U
′′

is obtained, as shown in Equation (21).

U
′′
= argmax U

′T MU
′

u′
, s.t.

∥∥∥U
′
∥∥∥

2
= 1 (21)
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The vector U
′′

is matrixed to obtain the optimal matching result. Then, U∗ is nor-
malized and the softmax activation function is performed to finally obtain the matching
matrix U

′∗.
The whole process of feature matching is shown in Figure 5. Two input sets of images

Vin
1 and Vin

2 are passed through the fully connected layer (fc) and the relu activation
function to obtain Vm

1 and Vm
2 , respectively. In addition, the optimal matching matrix U

′∗

can be obtained by Equations (20) and (21). The final output Vout
1 and Vout

2 can be derived
from the following Equations (22) and (23), respectively.

Vout
1 = f c(concat(Vm

1 , U
′∗ ⊗Vm

2 )) + Vm
1 (22)

Vout
2 = f c(concat(Vm

2 , U
′∗ ⊗Vm

1 )) + Vm
2 (23)

Finally, the similarity SQ
x1,x2 between image x1 and image x2 is obtained by combin-

ing the U
′∗ obtained by Equation (21) with the similarity s∗x1,x2

of the feature cosine, as
shown in Equation (24).

SQ
x1,x2 =

1
nd + 1

(s∗x1,x2
U
′∗ + cos (Vg

1,nd+1, Vg
2,nd+1)) (24)

V∗1 and V∗2 denote the features of higher order of images x1 and x2, s∗x1,x2
is the cosine

similarity of V∗1 and V∗2 , and Vg
1,nd+1 and Vg

2,nd+1 denote the global features of images x1
and x2, respectively. The loss function Lc of this module includes the verification loss Lv
and the matching loss Lm.

Lm = −U
′′T MU

′′
(25)

Lv = y log SQ
x1,x2 + (1− y) log (1− SQ

x1,x2) (26)

Lc = µmLm + µvLv (27)

SQ
x1,x2 denotes the similarity between person image x1 and image x2; y denotes the

person image verification result, i.e., the value of y is 1 if x1 and x2 are images of the same
person, otherwise the value of y is 0; and µm and µv denote the weight values of Lm and
Lv, respectively. For two sets of images x1 and x2, the cosine similarity S∗x1,x2

of images
x1 and x2 can be obtained according to Equation (19), and the topological relationship
similarity SQ

x1,x2 of images x1 and x2 can be obtained from Equation (24); then, S∗x1,x2
and

SQ
x1,x2 constitute the final similarity rule of this model, as shown in Equation (28).

s = γSQ
x1,x2 + (1− γ)S∗x1,x2

(28)

The similarity s between the query image and the image to be queried is calculated
sequentially according to Equation (28). Then, the top n most similar images are retrieved
according to the size of s.

4. Experiments and Analysis

In this paper, the effectiveness of the model is evaluated using two occluded-type
datasets, Occluded-Duck [7] and Occluded-ReID [6], and two larger person re-identification
datasets, Market-1501 [29] and DukeMTMC-ReID [30]. The Occluded-Duck dataset is
composed of occluded and non-repeated person images selected from the DukeMTMC-
ReID dataset, which contains 15,618 training images, 17,661 test images, and 2210 occluded
query images. The Occluded-ReID dataset contains a total of 2000 images of 200 occluded
persons taken with moving cameras. Each person ID consists of 5 full-body images and
5 occluded images, where the person images are all resized to 128 × 64. The Market-1501
dataset includes 1501 persons captured by 6 cameras, with a total of 32,668 person images.
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The training set contains 751 persons with 12,936 person images, the test set contains
750 persons with 19,732 images, and the query image set contains 3368 person images.
The DukeMTMC-ReID dataset contains a total of 1404 persons with 36,411 pictures. The
training set contains 16,522 images, and the test set contains 17,661 images and 2228 person
images as the query set.

In this paper, the Cumulative Match Characteristic (CMC) and mean Average Precision
(mAP) are used to evaluate the performance of the model. CMC seeks to rank the target
images in the query set with the images in the test set according to the magnitude of image
similarity. Rank-1 is used as the evaluation criterion of CMC in this paper, where Rank-1
indicates the average accuracy of the first image retrieval. mAP indicates the actual ranking
result, i.e., the mean value of the average precision among all retrievals is calculated. mAP
can show the stability of the recognition accuracy of the model.

4.1. Comparison with Other Methods
4.1.1. Comparison on Occluded Datasets

In order to verify the effectiveness of the methods in this paper, a comparison is
made with some occluded person ReID-based methods on two datasets, Occluded-Duck
and Occluded-ReID, including four categories of methods, namely overall-based person
ReID methods—Part-Aligned [31] and PCB [27]; overall-based combined with joint infor-
mation ReID methods—Part Bilinear [32] and FD-GAN [33]; local-based ReID methods—
AMC + SWM [2], DSR [34], and SFR [35]; and occluded ReID methods—Ad-Occluded [36],
TCSDO [37], FPR [38], PGFA [4], HOReID [39], and MoS [40], and other methods.

As shown in Table 1, both PCB [27] and FD-GAN [33] obtained approximately 40%
Rank-1 scores on the Occluded-Duke dataset, i.e., there is no significant difference between
the standard holistic-based ReID method and the holistic-based ReID method combined
with joint information, which indicates that the use of joint information alone cannot signif-
icantly solve the occluded person re-identification problem. The local-based ReID method
and the occluded ReID method improve significantly on the occluded dataset; for example,
DSR [34] and FPR [38] have Rank-1 scores of 72.8% and 98.3% on the Occluded-ReID
dataset, respectively. The above results show that both the local-based ReID task and the
occluded-ReID task have difficulty extracting discriminative features and feature alignment.
Our method achieves the best performance on the Occluded-Duke and Occluded-ReID
datasets, with Rank-1 scores of 64.8% and 84.5%, respectively, demonstrating our method’s
effectiveness.

Table 1. Comparison of different methods on two occluded datasets.

Methods
Occluded-Duke Occluded-ReID

Rank-1 (%) mAP (%) Rank-1 (%) mAP (%)

Part-Aligned [31] 28.8 20.2 - -
PCB [27] 42.6 33.7 41.3 38.9

Part Bilinear [32] 36.9 - - -
FD-GAN [33] 40.8 - - -

AMC + SWM [2] - - 31.2 27.3
DSR [34] 40.8 30.4 72.8 62.8
SFR [35] 42.3 32 - -

Ad-Occluded [36] 44.5 32.2 - -
TCSDO [37] - - 73.7 77.9

FPR [38] - - 78.3 68.0
PGFA [4] 51.4 37.3 - -

HOReID [39] 55.1 43.8 80.3 70.2
MoS [40] 67.0 49.2 - -

EcReID (ours) 64.8 52.7 84.5 75.1
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4.1.2. Comparison on Market-1501 and DukeMTMC-ReID

In order to verify the effectiveness of our method, this paper compares it with other
mainstream person re-identification methods on two larger public datasets of person re-
identification, Market-1501 and DukeMTMC-ReID. These include overall-based person
re-identification methods—PCB [27], VPM [41], and BOT [42]; local-based ReID methods—
MGCAM [43] and FPR [38]; and human joint-based ReID methods—Pose-transfer [44],
PSE [45], PGFA [7], HOReID [39], and MoS [40]. The experimental results are shown
in Table 2.

Table 2. Comparison with other methods on Market-1501 and DukeMTMC datasets.

Methods
Market-1501 DukeMTMC-ReID

Rank-1(%) mAP(%) Rank-1(%) mAP(%)

PCB [27] 92.3 77.4 81.8 66.1
VPM [41] 93.0 80.8 83.6 72.6
BOT [42] 94.1 85.7 86.4 76.4

MGCAM [43] 83.8 74.3 46.7 46.0
FPR [38] 95.4 86.6 88.6 78.4

Pose-transfer [44] 87.7 68.9 30.1 28.2
PSE [45] 97.7 69.0 27.3 30.2
PGFA [7] 91.2 76.8 82.6 65.5

HOReID [39] 94.2 84.9 86.9 75.6
MoS [40] 94.7 86.8 88.7 77.0

EcReID (ours) 95.5 87.2 88.3 78.5

As can be seen from Table 2, the three person re-identification methods based only on
the whole PCB [27], VPM [41], and BOT [42] achieved good results in terms of recognition
accuracy; for example, BOT [42] achieved 94.1% and 85.7% for Rank-1 and mAP on the
Market-1501 dataset, respectively. However, the person re-identification method based
only on the whole could not better identify the human body part information as well
as joint information accurately, and it could not achieve the desired effect when solving
the occluded problem. In addition, FPR [38] and MGCAM [43] utilize partial human
information, but the recognition accuracy is not high; for example, the Rank-1 and mAP of
MGCAM [43] only reach 83.8% and 74.3%, respectively, on the Market-1501 dataset, and
only 46.7% and 46.0%, respectively, on the DukeMTMC-ReID dataset. The three methods
of Pose-transfer [44], PSE [45], and PGFA [7] use human keypoint information but ignore
the overall associations of person features, resulting in poor recognition accuracy; for
example, PSE achieves only 27.3% and 30.2% of Rank-1 and mAP on the DukeMTMC-ReID
dataset. The HOReID [39] method uses human joint information and fuses the joints using
adaptive graph convolution, but it does not extract person information very well and its
Rank-1 on the DukeMTMC-ReID dataset is only 86.9%. In contrast, we use symmetry
deformable graph attention to correct the incorrect node information and fuse the global
and local features of the image. In addition, we use a deformable graph convolution feature
fusion and update of joints in the same view. Finally, the model recognition results are
obtained using the graph matching algorithm. The Rank-1 and mAP of this model on
the Market-1501 dataset reached 95.5% and 87.2%, respectively; the Rank-1 and mAP on
the DukeMTMC-ReID dataset were 88.3% and 78.5%, respectively, and the experiments
showed that this model achieved better results on both the Market-1501 dataset and the
DukeMTMC-ReID dataset, proving the effectiveness of the method in this paper.

4.2. Ablation Experiments

To verify the effectiveness of our method, several different sets of ablation experiments
were conducted on the Occluded-Duke dataset for different model ablations and different
network layers.
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4.2.1. Ablation Analysis of Different Models

The first is the ablation of different modules. They are divided into four cases. The
first (Index-1) is the base person re-identification model after removing the methods in
this paper, i.e., person features are extracted using ResNet50, and then the target image is
retrieved based on the similarity. The second (Index-2) is a model with added symmetry
of deformable graph attention to correct incorrect joint information. The third (Index-3)
is a feature update and fusion of human joints in the same view using deformable graph
convolution. The fourth (Index-4) is the model that uses the graph matching algorithm to
match person features, which is the model proposed in this paper. The experimental results
are shown in Table 3.

Table 3. Ablation experiments on different models.

Index F G M Rank-1 (%) mAP (%)

1 × × × 49.9 39.5
2

√
× × 62.2 45.9

3
√ √

× 62.7 48.4
4

√ √ √
64.8 52.7

As can be seen from Table 3, the most basic person re-identification model, Index-1,
only uses the global features of images to recognize persons, and its Rank-1 and mAP only
reach 49.9% and 39.5%, respectively. On this basis, Index-2 extracts the local and global
features of human joints and uses symmetry deformable graph attention to obtain more
discriminative person features. Its mAP is improved by 6.4 %, and the Rank-1 is improved
by 12.3%, which shows that the use of the local features of human joints and symmetry
deformable graph attention can effectively improve the accuracy rate of person recognition.
Index-3 is based on Index-2, but we add the deformable graph convolutional network to
enhance the relations between the joints in the same view, and its mAP is improved by 2.5%,
which shows that the deformable graph convolutional network fuses local features and
global features, enhances the correlations of joints, and effectively suppresses the occluded
area’s impact on person re-identification. Index-4 shows the whole network architecture
of this paper, whose Rank-1 and mAP reach 64.8% and 52.7%, respectively. It can be seen
that each module working together can improve the model effect and make the extracted
person features more discriminative and robust.

4.2.2. Ablation Analysis of Different Network Layers

In this section, the symmetry deformable graph attentional layer (symDGAT), the
deformable graph convolutional feature fusion layer (DGCN), and the graph matching
layer (GM) are analyzed, respectively. The experimental results are shown in Table 4.

Table 4. Ablation experiments on different network layers.

Index symDGAT DGCN GM Rank-1 (%) mAP (%)

1 ×
√ √

59.8 47.3
2

√
×

√
61.2 48.9

3
√ √

× 63.3 50.8
4

√ √ √
64.8 52.7

The experiments are divided into the following four cases. The first one (Index-1)
involves removing the symDGAT layer and using only the ordinary feature extraction
network, whose Rank-1 and mAP scores reach only 59.8% and 47.3%. The second one
(Index-2) involves removing the adaptive adjacency matrix Zadp obtained from Equation (6)
in the GCIF layer and using only the simple human keypoint adjacency matrix, whose
Rank-1 is 61.2% and mAP is 48.9%. The third one (Index-3) involves removing the graph
matching layer and using only the simple alignment matching with a Rank-1 of 63.3% and
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mAP of 50.8%. The fourth one (Index-4) involves using the symDGAT layer, GCIF layer,
and GM layer, i.e., the complete network architecture layer. Its Rank-1 is 64.8%, which is
5.0%, 3.6%, and 1.5% higher than those of Index-1, Index-2, and Index-3, respectively. Its
mAP is 52.7% higher than those of Index-1, Index-2, and Index-3, which are 5.4%, 3.8%,
and 1.9%. This result demonstrates the effectiveness of the symDGAT layer, GCIF layer,
and GM layer for solving the occluded person re-identification model.

4.3. Parameter Analysis

To prove the rationality of the hyperparameter selection, we test the parameters γ and
n in Equation (28) on the Occluded-Duke dataset, where n denotes the top n most similar
images retrieved by the model. The control variable method is used during the experiment,
i.e., one of the parameters is controlled not to change and the other parameter is changed to
observe the effect on the experimental results. The experiments prove that the best results
are achieved with γ = 0.6 and n = 5.

Firstly, n = 5 was fixed and the effect on the model results was observed by adjusting
the value of γ. The results of Rank-1 and mAP are shown in Figure 6.

Figure 6. Effects of different values of γ on Rank-1 and mAP.

As can be seen from Figure 6, the best results of Rank-1 and mAP were achieved
at γ = 0.6.

Secondly, we fixed γ = 0.6 and observed the effect on the model results by adjusting
the value of n. The results of Rank-1 and mAP are shown in Figure 7.

Figure 7. Effects of different values of n on Rank-1 and mAP.

As shown in Figure 7, the best values of Rank-1 and mAP are achieved when n = 5,
i.e., when the first five matched images are taken.
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As seen from the above graphs, the retrieval accuracy fluctuates within a small range
for different hyperparameters, and the experiments prove that the model is robust to
different hyperparameters.

4.4. Visualization of Experimental Results

In this paper, the visual analysis of the person re-identification results is shown in
Figure 8. Three sets of person image recognition results are visualized. In Figure 8a, the
recognition effect of the model is not satisfactory and the recognition rate is meager because
the person images are affected by occlusion, a low resolution, image similarity, and other
factors, while, in Figure 8b, the detection accuracy rate is greatly improved. The first five
retrieval results are matched with the target image. The red box in the figure indicates a
retrieval error, while no red box mark indicates a correct retrieval. Therefore, the results
prove that the proposed method can improve the recognition accuracy of occluded person
re-identification.

(a) Base model

(b) Our model

Figure 8. Comparison of the identification effect between the method in this paper and the benchmark
model method.
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Figure 9 displays a comparison of the thermal images between our method and the
baseline method. It is evident that the recognition process can be easily disrupted in the
occluded areas. Overall, our model demonstrates more comprehensive recognition and
higher accuracy when compared to the baseline method.

Figure 9. Heat map visualization of our method compared with the baseline method.

5. Conclusions

We propose a model based on the graph and deformable method, which extracts more
discriminative features and enhanced correlations from the skeleton. It is demonstrated
experimentally that the mutual help denoising block can effectively enhance the feature
extraction effect by using the mutual help of images in different views to correct the
incorrect joints. In addition, deformable graph convolution is used to aggregate and update
the joints in the same view to further increase the robustness of model recognition and
maximize the use of effective person feature information, and we also use the human
topological map matching algorithm to enhance the person image similarity calculation.
Finally, experiments on the Market-1501 dataset, DukeMTMC-ReID dataset, and two
occlusion datasets (Occluded-Duke and Occluded-ReID) prove the effectiveness of the
proposed method.
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