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Abstract: A general review of the crystalline solutions of the generalized Skyrme model and their appli-
cation to the study of cold nuclear matter at finite density and the Equation of State (EOS) of neutron
stars is presented. For the relevant range of densities, the ground state of the Skyrme model on the three
torus is shown to correspond to configurations with different symmetries, with a sequence of phase
transitions between such configurations. The effects of nonzero finite isospin asymmetry are taken into
account by the canonical quantization of isospin collective coordinates, and some thermodynamical and
nuclear observables (such as the symmetry energy) are computed as a function of the density. We also
explore the extension of the model to accommodate strange degrees of freedom, and find a first-order
transition for the condensation of kaons in the Skyrme crystal background in a thermodynamically con-
sistent, non-perturbative way. Finally, an approximate EOS of dense matter is constructed by fitting
the free parameters of the model to some nuclear observables close to saturation density, which are
particularly relevant for the description of nuclear matter. The resulting neutron star mass–radius
curves already reasonably satisfy current astrophysical constraints.

Keywords: Skyrme model; Skyrme crystals; nuclear matter; neutron stars

1. Introduction

With the advent of gravitational wave and multi-messenger astronomy, the available
constraints on the equation of state (EOS) of neutron stars, namely, strongly interacting matter
at finite density, have improved significantly in the last decade. Furthermore, additional gravita-
tional wave measurements from neutron star mergers with improved precision from LIGO/Virgo
are expected to impose even stricter constraints on the EOS in the near future.

The physics of strong interactions is described by a nonabelian gauge theory, Quantum
Chromodynamics (QCD), whose nonperturbative nature at small and intermediate energy
or density regimes makes the computation of nuclear matter properties from first principles
extremely challenging. Indeed, a perturbative treatment is only available at asymptotically
high densities, while the main nonperturbative computational tool, lattice QCD, can be
used for arbitrarily low temperatures but only small densities, due to the fermion sign
problem. Hence, for sufficiently high densities (but not asymptotically high), the phase
diagram of QCD is poorly understood, and there is a big theoretical uncertainity on basic
observables such as the relevant degrees of freedom or the EOS in this regime, which,
on the other hand, is precisely the relevant region for the matter in the interior of neutron
stars. Indeed, as depicted in the schematic phase diagram of Figure 1, matter inside
neutron stars is expected to be both at finite baryonic and isospin densities, and almost
zero temperature (when compared with the relevant density scale).

As first principle approaches are currently not suitable for this task, a plethora of different
effective theories and phenomenological models have been proposed to either qualitatively
or quantitatively study the QCD phase diagram in the intermediate density regime.
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Figure 1. Schematic phase diagram of QCD.

Standard nuclear physics methods like relativistic mean field theory [1] or chiral
perturbation theory [2,3] can be used for this purpose (for a recent review we refer to [4]).
These theories are effective field theories (EFTs) in the sense that they introduce nucleons
and mesons as their basic fields, instead of the quarks and gluons of QCD. Further, they
depend on a rather large number of a priori unknown parameters which are usually
determined by fitting to nuclear forces and scattering data in the (non-relativistic) low
energy regime. Moreover, nucleons (and baryons in general) are treated as point particles.
The extrapolation of these models to baryon densities beyond nuclear saturation might,
therefore, be affected by rather large uncertainties [5].

The Skyrme model represents a slightly different type of EFT. This model, proposed
more than 60 years ago by Tony Skyrme [6,7], is an EFT of chiral mesons only, whereas
nucleons and baryons are realized as topological solitons (“Skyrmions”) of the mesonic
field, and their interactions are described by the same mesonic Lagrangian. In addition,
the topological degree of these solitonic solutions can be identified with the baryon number.
The argument for the identification of Skyrmions with baryons and nuclei was further
strengthened within the large Nc limit of QCD [8,9], for which the theory becomes an ef-
fective weakly interacting model of mesons, where baryons satisfy the usual properties
of solitons. The Skyrme model incorporates in a completely natural fashion several impor-
tant features of strong interaction physics, like chiral symmetry and its breaking, the con-
servation of baryon number, or the extended character of nucleons. As a consequence
of the latter, it also avoids short-distance singularities in nucleon–nucleon interactions. In
addition, it naturally incorporates the spin-statistics theorem in that Skyrmions quantized
with a half-odd integer spin are fermions, whereas for integer spin they are bosons [10].
For a recent review, we refer to [11].

Skyrme’s idea of baryons as topological solitons is shared with a number of other ap-
proaches. First of all, holographic models based on the conjectured gauge/gravity duality
have proven to be useful as tools for studying the nonperturbative regimes of QCD-like
theories. For a recent review on the application of holographic models to the description
of neutron stars, see [12]. The Skyrme model has, in fact, been shown to appear as a holo-
graphic boundary theory in several holographic QCD models such as the Sakai–Sugimoto
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model. A flat space version of these holographic models was proposed in [13], such
that the holographic dual of the flat space instantons provides the Skyrme field coupled
to an infinite tower of vector mesons. The full holographic dual maintains the conformal
symmetry inherited from the instanton, whereas any truncation to a finite number of vector
mesons breaks conformal invariance. Secondly, in a different but related approach a class
of generalized nuclear effective theories have been developed in the last two decades
which maintain the field contents and topological structure of the Skyrme model at low
energies while flowing towards an effective theory compatible with the symmetries of QCD
at higher energies (for a recent review, see [14] in this special issue). This flow is achieved
by a coupling of the Skyrme field to the dilaton [15] and an infinite tower of vector mesons
via hidden local symmetry [16,17], where these fields flow from a spontaneously broken
to an unbroken phase. As a consequence, these nuclear effective theories still share some
topological structures with the Skyrme model, while their dynamical content is, in general,
different and much harder to calculate. For that reason, instead of the prohibitively dif-
ficult full numerical simulations of those field theories, sometimes it is assumed that they
inherit some topological structures from the Skyrme model, and the consequences of these
assumptions are worked out using more standard effective field theory methods of nuclear
physics. We shall comment on some of these assumptions in our conclusions. A detailed
discussion of all the issues mentioned in this last paragraph can be found in [18].

1.1. The Skyrme Model

As said, Skyrme’s original motivation was to reproduce baryons as topological soliton
solutions from a purely mesonic field theory. In its simplest version, the basic fields
of the Skyrme model are just the pion fields combined in an SU(2) valued field U as

U = σI+ iπaτa, U†U = I −→ σ2 + πaπa = 1, a = 1, 2, 3 (1)

where τa are the Pauli matrices. Left (L) and right (R) chiral transformations act on this
field like U → LUR. The two simplest terms of the resulting effective (Skyrme model)
Lagrangian can be easily guessed from low-energy considerations, namely the so-called
nonlinear sigma model (or Dirichlet) term

L2 = − f 2
π

16
Tr{LµLµ} , Lµ = U†∂µU (2)

providing a kinetic term for the pions, and the pion mass potential

L0 =
m2

π f 2
π

8
Tr{U − I}. (3)

Here, fπ is the pion decay constant, whose physical value in the conventions used here is
fπ = 186 MeV. Further, Lµ are the components of the left-invariant Maurer–Cartan form
of the SU(2) group, mπ is the pion mass, and I is the 2× 2 identity matrix. These two terms
alone, however, cannot support the existence of static (soliton) solutions, because they are
unstable under a spatial rescaling x → Λx. To stabilize them, Skyrme added the term

L4 =
1

32e2 Tr{[Lµ, Lν]
2} (4)

where e is a dimensionless parameter. Here, the notation Ln means that the corresponding
term contains n first derivatives. L4 is the only Poincare invariant four derivative term that
leads to a positive Hamiltonian which is quadratic in momenta.

In the original version [6,7], Skyrme only considered the model L24 = L2 + L4.
The resulting static solutions of the Skyrme field are maps from real space R3 to the
SU(2) group manifold, which is S3. In addition, in order to have finite energy solutions,
the field must tend to the vacuum of the theory at spatial infinity. We take U(x → ∞) = I,
such that the infinity of R3 is compactified into a point. Then, the base manifold has
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the topology of the S3, so the Skyrme field maps the S3 onto itself and we may conclude
from homotopy theory that the Skyrme model allows for the existence of topologically
nontrivial configurations [19]. These solitonic solutions can be classified according to their
different topologies via the topological number B, and the idea of Skyrme was to identify
this integer number with the baryon number, and these topological solutions, which are
called Skyrmions, with baryons [20,21]. An explicit expression for B in terms of the Skyrme
field can be found from the topological current

Bµ =
εµνρσ

24π2 Tr{LνLρLσ}. (5)

It is straightforward to see that the divergence of the topological current vanishes
identically, (∂µBµ = 0), which implies the conservation of the topological number,

B =
∫

d3xB0, (6)

which is an integer. Furthermore, the choice of a vacuum value for the Skyrme field
at spatial infinite represents the spontaneous chiral symmetry breaking of QCD. These
analogies between the Skyrme model and QCD at low energies support the idea that
the fundamental fields of the Skyrme model, πa, may be identified with the physical pions.

In our approach, we will also add a term which is of sixth order in first derivatives,

L6 = λ2π4BµBµ (7)

where λ is a parameter. This term is, again, singled out as being the only Poincare invariant
term of sixth order which leads to a standard Hamiltonian quadratic in momenta. We will
argue that this term is, in a certain sense, the most important one for our purposes. The
generalized Skyrme model that we will consider is, therefore,

L = L2 + L4 + L6 + L0 (8)

and we will refer to the individual terms as the quadratic, quartic, sextic and potential terms,
respectively.

For the simplest model L24, the collective coordinate quantization of the spin and
isospin degrees of freedom of the B = 1 Skyrmion allowed to describe the proton, the neu-
tron and some higher excitations (e.g., the delta resonance) and calculate some of their
observables with a precision of about 30% [22], as could be expected naively from the large
Nc arguments with an expansion parameter N−1

c for Nc = 3. A better precision, there-
fore, requires the inclusion of further terms and further (meson) fields into the effective
model. The simplest Skyrme model L24 also has some problems in the description of higher
B Skyrmions which should correspond to atomic nuclei with weight number A = B.
While the model is partially successful in describing some nuclear spectra in terms of spin
and isospin excitations, one major problem is that the binding energies of Skyrmions
of baryon charge B against their decomposition into B nucleons are up to ten times higher
than the binding energies of the corresponding physical nuclei. Moreover, the resulting
Skyrmions for large B are rather hollow structures, at variance with the quite constant
baryon densities inside physical nuclei.

The inclusion of the mass term for the pions, apart from reproducing the explicit
chiral symmetry breaking, already improves some of these shortcomings. Indeed, this term
induces, e.g., the α-clustering for larger values of B [23], which is a known property of some
nuclei. As a consequence, for some nuclei which are known to have α particle subclusters,
the Skyrme model with pion mass term already provides an excellent description of nuclear
spectra [24], particularly when vibrational degrees of freedom are taken into account
in addition to spin and isospin [25]. However, the binding energy problem remains.
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Finally, the sextic term was first considered in [26]. In [27] it was shown that combined
with a potential term it leads to a BPS model which reproduces many important features
of physical nuclei, like small binding energies and the spherical and compact shapes [28].
This potential should be chosen different from the pion mass term (e.g., L0,k ' Tr{U − I}k,
k ∈ N), because otherwise the BPS submodel would correspond to the unphysical limit
of infinite pion mass. Based on additional BPS bounds for generalized Skyrme models
discovered in [29,30], it was later found that these additional potentials L0,k serve to reduce
binding energies already on their own, both without [31] and with [32,33] the sextic term.

A further improvement was achieved by the inclusion of the rho mesons [34], based
on the instanton-inspired approach to vector meson coupling in the Skyrme model of ref. [13].
The cases B ≤ 8 were investigated numerically, and it was found that realistic cluster struc-
tures emerged for all Skyrmions, even for substructures different from α particles. In
addition, the binding energies were reduced significantly.

The upshot of all this is that (i) there has been significant progress in the last years
in the Skyrme model as a model for nuclei and nuclear matter, where several shortcomings
of the model have been improved significantly, and clear strategies for their resolution
have been found; and (ii) progress is still slower than one would like, not because of a fun-
damental problem of the model, but because calculations are hard. Already the starting
point for any investigation, i.e., the Skyrmion solution for a given B, is difficult to find,
especially for the extended versions of the model where more terms and/or more fields are
included. A parameter scan of the extended models with the aim of fitting the parameters
and coupling constants of a model to physical observables in order to identify promising
regions in parameter space is a challenging numerical problem with current techniques.

We shall, therefore, use a simpler version of the Skyrme model and fit only those ob-
servables which are most relevant for nuclear matter at sufficiently high densities because,
as we will see, the most widely used configuration for Skyrme matter (the Skyrme crys-
tal) allows to model nuclear matter only above nuclear saturation density (in Section 2.4,
however, we will discuss non-crystalline solutions consisting of regularly arranged clusters
of Skyrmions surrounded by empty space. These solutions have a much better behavior
at low density, but we will not attempt to model nuclear matter below saturation with these
configurations in the present paper). At such high densities, potential terms like L0,k are
irrelevant, as follows from simple scaling arguments, and may be ignored. For reasons
of simplicity, we will also ignore vector mesons, although the adequacy of this approxi-
mation is more difficult to gauge (we shall, however, take into account the effect of kaon
condensation in Section 4, because a kaon condensate can be studied in the background
of an unmodified Skyrme crystal in leading approximation). On the other hand, the sextic
term (7) will provide the leading contribution to the Skyrme crystal energy at high density,
as follows from scaling arguments, again.

1.2. Skyrme Matter

The inclusion of the sextic term is, in fact, mandatory for any realistic modeling
of nuclear matter by Skyrme matter at sufficiently high densities, and its inclusion should
provide already a rather reasonable description there. First of all, this term precisely de-
scribes the repulsive nuclear force in the high density regime [35]. Secondly, the Skyrme
model without the sextic term leads to a maximum neutron star mass of about 1.5 M� [36],
whereas NS of up to two solar masses are firmly established, and there are clear indi-
cations that the maximum possible NS mass may, in fact, be as high as 2.3–2.5 M�.
Thirdly, a related fact is that the Skyrme model without the sextic term always leads
to an EOS with a speed of sound which is below the conformal bound c2

s < 1/3 for all
pressures. However, EOSs with such a restricted speed of sound are strongly disfavored
according to a recent analysis [37].

In principle, the ultimate goal of a sufficiently general Skyrme model would be to de-
scribe nuclear matter covering a large range of densities, from individual baryons to isolated
nuclei where nB ∼ n0 = 0.16 fm−3, to the cores of neutron stars nB ∼ 10n0. We will find,
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however, that the currently available Skyrme matter solutions only allow to model nu-
clear matter above nuclear saturation density n0. We will, therefore, restrict to model
(8) which contains four parameters, the pion decay constant fπ , the Skyrme parameter
e, the pion mass mπ and λ2. From these parameters, we fix the pion mass to its physical
value, mπ = 140 MeV, whereas we will use the other three to fit our solutions to reproduce
the nuclear matter properties most relevant for our considerations. In particular, as is
common practice in the Skyrme model, we will not fix the pion decay constant fπ to its
physical value. The idea is that in the still rather restricted version (8) of the Skyrme model
this modified value of fπ partly takes into account the effect of neglected terms, whereas
in more complete, general versions of the model the optimum value of fπ should flow to its
physical value.

We will consider static solutions of the Skyrme field and we adopt the usual Skyrme
units of energy and length to work with more manageable expressions,

Es =
3π2 fπ

e
, xs =

1
fπe

. (9)

Then, the static energy functional in these units becomes

E =
1

24π2

∫
d3x

[
−1

2
Tr
{

L2
i

}
− 1

4
Tr
{[

Li, Lj
]2}

+ 8λ2π4 f 2
πe4(B0)2 +

(
mπ

fπe

)2
Tr(I−U)

]
=

1
24π2

∫
d3x
[
(∂inA)

2 +
(
∂inA∂jnB − ∂inB∂jnA

)2
+ c6(εABCDnA∂1nB∂2nC∂3nD)

2 + c0(1− σ)
]
, (10)

where we have defined c6 = 2λ2 f 2
πe4 and c0 = 2m2

π/( fπe)2. In the last expression, we
introduced the field configuration Equation (1) and adopted the vectorial notation nA =
(σ, πa). Recall that U ∈ SU(2) implies that nA is a unit vector, nAnA = 1, with A = 0, 1, 2, 3.
It is also possible to find from Equation (10) a lower bound for the energy per baryon
number, which is known as the BPS (Bogomol’nyi–Prasad–Sommerfield) bound [29,30].
For this choice of units, the standard Skyrme model (λ2 = mπ = 0) becomes independent
of the value of the parameters fπ and e, and its BPS bound is equal to 1.

Unfortunately, trying to numerically calculate the Skyrmion solution for B >> 1,
corresponding to a macroscopic amount of nuclear matter, is not feasible. Some simplifying
assumptions, therefore, must be made for a description of nuclear matter within the Skyrme
model. The simplest and most widely used assumption is that Skyrmionic matter forms
a cubic lattice [38–45]. That is to say, there exists a cubic unit cell with a baryon content
Bcell and side length lcell (i.e., volume Vcell = l3

cell), such that the Skyrme field is periodic
in all three Cartesian directions under the translation xi → xi + lcell. It is then sufficient
to minimize the energy functional within one unit cell, and the extension to an arbitrary
amount of Skyrme matter is trivial. In addition to periodicity, usually some further discrete
symmetries are assumed, leading to different cubic crystal types such as, e.g., simple cubic
(SC), face-centered cubic (FCC) or body-centered cubic (BCC), and the resulting solutions
are known as Skyrme crystals.

It must be emphasized, however, that the mere existence of solutions for any of these
crystal types by itself does not imply their physical relevance. Indeed, the minimization
of the Skyrme model energy functional leads to an elliptic PDE, and elliptic systems
typically always have a solution for sufficiently regular boundary conditions. The reason
that some crystals are considered relevant is that the corresponding solutions are of rather
low energy. More precisely, the crystal energy per unit cell as a function of the lattice length,
Ecell(lcell), is a convex function with a minimum for a certain l0,cell. For some crystals,
the resulting energy at the minimum l0,cell is only slightly above the topological energy
bound. For the FCC crystal for the original Skyrme model, e.g., Ecell(l0,cell) is only about
3.7% above the bound, which is very close, because it is well known that the bound cannot
be saturated.
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For lcell 6= l0,cell, the energy grows rather quickly. Here, the region lcell > l0,cell defines
a thermodynamically unstable regime (formally, the pressure is negative). In this region,
it is expected that equilibrium configurations of nuclear matter are, instead, given by larger
clusters of nuclear matter (large nuclei, or a “nuclear pasta” phase in an intermediate
region close to l0,cell) surrounded by almost empty space. We shall find some indications
for the formation of larger nuclei in our investigations. This more inhomogeneous phase
ameliorates the thermodynamical instability without resolving it completely. That is to say,
the energy for lcell > l0,cell still is slightly above Ecell(l0,cell), but the difference between
Ecell(l0,cell) and, say, limlcell→∞ Ecell(lcell) can be made smaller than 5%.

The nuclear pasta phase between l0,cell and the low density phase where large nuclei
appear could, in principle, lead to a thermodynamically stable description for all densities.
The formation of nuclear pasta, however, is expected to result from a subtle interplay
between the strong and the Coulomb forces. While the coupling of the Skyrme model
to the electromagnetic field is known [46], and promising results concerning the com-
putation of Coulomb effect in the case of α-particle Skyrmions have been reported [47],
a viable treatment of macroscopic amounts of Skyrmionic matter coupled to electromag-
netism which could give rise to the strong inhomogeneities implied by nuclear pasta is
currently not available. As a consequence, all currently existing descriptions of nuclear
matter based on Skyrme crystals approach zero pressure already at a finite baryon den-
sity nB = Bcell/Vcell, corresponding to the nuclear saturation density n0 = Bcell/V0,cell.
This implies that compact stars based on Skyrme crystals alone have no outer core and
crust. On the other hand, the region nB ≤ n0 is well described by standard methods
of nuclear physics and can be joined with Skyrmionic matter at higher densities. We shall
make use of this possibility on several occasions.

The region lcell < l0,cell of the Skyrme crystal is thermodynamically stable, but this
does not necessarily imply that it provides the true minimum energy configuration for all
baryon densities nB > n0. However, other good candidates for these minimizers have not
been found within the Skyrme model; therefore, we shall simply assume that they are given
by Skyrme crystals and work out the consequences of this assumption as far as possible.

The paper is organized as follows: In Section 2, we introduce different types of clas-
sical Skyrme crystal solutions. We discuss their properties and possible phase transi-
tions between them in several versions of Skyrme models. We also present evidence
for a high density crystal–fluid transition and a low density transition from a crystal
to a non-homogeneous phase. This section is partly based on our previous work [45], but
most of the results have been newly computed. Section 3 is devoted to the semiclassical
quantization of the Skyrme crystals, which allows to pass from symmetric to asymmetric
nuclear matter. Here, we show how to compute the symmetry energy and particle (proton,
neutron and lepton) fractions within the Skyrme theory. This part reviews the material
recently published in [48]. Next, in Section 4, we take into account the strangeness degrees
of freedom by extending the Skyrme field to a SU(3)-valued matrix field. In particular,
we compute the kaon condensation in the semiclassical Skyrme crystal, briefly review-
ing the very recent results of [49]. In Section 5, we apply all the previously investigated
crystal solutions to the description of neutron stars. Concretely, in Section 5.2 we briefly
review the construction of an EOS motivated by the generalized Skyrme model [50], which
already leads to a very successful description of NS. In Section 5.3, we use the full semi-
classical Skyrme crystal of the generalized model to describe both nuclear matter and NS,
and we scan the model parameter space to find particularly promising parameter values.
In Section 5.4, we include the effects of the kaon condensate on NS properties. Finally,
Section 6 contains our conclusions and an outlook to further research.

2. Skyrme Crystals

Skyrmions have been extensively studied, and solutions for finite values of B were
found both in the standard Skyrme and the BPS submodels with different shapes and
properties. The usual procedure to find a minimal energy solution considers the different
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possible symmetries for the Skyrmion and then the solution is the one with the lowest
energy. However, it becomes more difficult to find the minimal energy solutions for increas-
ing B since the number of possible configurations grows quickly [51]. A simple estimation
shows that the number of nucleons inside an NS must be of the order of M�/mp ∼ 1057,
then obtaining a solution via the usual procedure becomes an impossible task.

Skyrme crystals are solutions obtained imposing periodic boundary conditions, then
they are infinitely spatially extended solutions so they formally have infinite baryon number.
For this reason, Skyrmion crystals are good candidates to describe infinite nuclear matter
and to reproduce the conditions inside NS. To construct these periodic solutions, we split
the crystal in finite unit cells where we construct the Skyrmion configuration, then the main
difference to obtain the crystal with respect to the isolated Skyrmions lies in the boundary
conditions. Now Skyrme crystals compactify the real space into T3; however, since the T3

is still an oriented and compact manifold, the Hopf’s degree theorem ensures the existence
of topological solitons labelled by an integer number.

From all the possible unit cells in three dimensions that we may use to construct
a Skyrme crystal, we will consider cubic unit cells throughout this work, but we will allow
for different symmetries within them. Additionally, since the crystal is infinitely extended
it has infinite energy and baryon number; however, the unit cell is finite in size; hence,
it carries a finite amount of energy and baryon number. Then, the energy per unit cell as
well as the energy per baryon number of the crystal are completely well defined and finite,

Ecrystal

Bcrystal
=

NcellsEcell
NcellsBcell

=
Ecell
Bcell

. (11)

The first Skyrme crystal was proposed in 1985 for the standard Skyrme model by Kle-
banov [38], motivated by the phenomenological application of crystals to the interior of NS.
He considered the simplest possible crystal with a simple cubic (SC) unit cell, in which
eight B = 1 Skyrmions were located in the corners of the cube in the maximal attractive
channel with respect to their nearest neighbors. Then, he computed the minimal energy
field configuration respecting these conditions for different values of the unit cell side
length and found that the lowest value of the energy was just 8% above the BPS bound. In
the following, we will explain how we construct Skyrme crystals via the procedure given
in [40] with the different symmetries that have been proposed, and we will compare them
within the generalized Skyrme model.

2.1. Crystal Ansatz

The starting point in the construction of the Skyrme crystal proposed in [40] is the ex-
pansion of the fields in Fourier series,

σ =
∞

∑
a,b,c

βabc cos
( aπx

L

)
cos
(

bπy
L

)
cos
( cπz

L

)

π1 =
∞

∑
h,k,l

αhkl sin
(

hπx
L

)
cos
(

kπy
L

)
cos
(

lπz
L

)

π2 =
∞

∑
h,k,l

αhkl cos
(

lπx
L

)
sin
(

hπy
L

)
cos
(

kπz
L

)

π3 =
∞

∑
h,k,l

αhkl cos
(

kπx
L

)
cos
(

lπy
L

)
sin
(

hπz
L

)
.

(12)

Here, the unit cell extends from −L to L in all three Cartesian directions, so the side
length of the unit cell is l = 2L. Then, the symmetries of a given crystal impose some
conditions on the Skyrme field which, in the end, are translated into some constraints
on the coefficients of the expansions βabc and αhkl . Finally, the constrained coefficients
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are varied in order to obtain the lowest energy configuration. Although the expansion
series of the fields are infinite, even the truncation to the first coefficients provides a good
approximation to the solution, then the addition of higher modes produces corrections
to the energy which become smaller for higher orders. This conclusion is also seen numeri-
cally; while the first coefficients are of order ∼1, we have calculated that the next orders
decay to the ∼4%, ∼0.3% and ∼0.06% of the first-order results. Hence, we may safely
truncate the series to a finite number of coefficients; we take around 30 coefficients to obtain
the solution for each crystal. Finally, these expansions of the fields break the normalization
condition of the vector nA, then we have to renormalize it

nA −→
nA√
nAnA

. (13)

The crystal considered by Klebanov has the simplest unit cell. It is invariant under
cubic symmetry transformations:

A1 : (x, y, z)→ (−x, y, z),

(σ, π1, π2, π3)→ (σ,−π1, π2, π3), (14)

A2 : (x, y, z)→ (y, z, x),

(σ, π1, π2, π3)→ (σ, π2, π3, π1), (15)

and it has an additional periodicity symmetry on the side length of the unit cell,

A3 : (x, y, z)→ (x + L, y, z),

(σ, π1, π2, π3)→ (σ,−π1, π2,−π3). (16)

Indeed, all the symmetries shown in this work are based on the cubic symmetry; hence,
they will all satisfy symmetries A1 and A2. The last symmetry, A3, repeats the location
of a Skyrmion with period L and performs the mutual isorotation between nearest neigh-
bors. Under these symmetries, the energy is periodic in L but the fields are periodic in 2L,
then we take the ranges of the unit cell to be [−L, L] and perform the integrals of the energy
and baryon numbers within these limits.

We proceed now to show how to construct other symmetries of interest and show
the numerical results.

2.1.1. Face Centered Cubic Crystal of Skyrmions

This symmetry was proposed in [41] in order to have a new solution with lower energy
for very large values of L. It shares symmetries A1 and A2 and also two additional symmetries,

C3 : (x, y, z)→ (x, z,−y),

(σ, π1, π2, π3)→ (σ,−π1, π3,−π2), (17)

C4 : (x, y, z)→ (x + L, y + L, z),

(σ, π1, π2, π3)→ (σ,−π1,−π2, π3). (18)

In this case, the energy and baryon number are periodic in 2L, and the unit cell has the shape
on an FCC lattice of Skyrmions. We have eight B = 1 Skyrmions in the corners of the cube,
symmetry C4 locates other six Skyrmions in center of the faces and it also isorotates them
by π with respect to their nearest neighbors. Hence, this lattice differs from the first in that
each Skyrmion is surrounded by 12 nearest neighbors all of them in the maximal attractive
channel. Since we have the eight Skyrmions in the corners and other six in the faces
of the cube, the total baryon number in this unit cell is Bcell = 4.
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As we mentioned before, these symmetries impose some constraints on the Fourier
coefficients. They can be easily obtained imposing the symmetries on the field ansätze
Equation (12). In this case the non-vanishing coefficients are obtained from the combination
of the following restrictions,

• h is odd, k and l are even or h is even, k and l are odd,
• a, b, c are all odd or a, b, c are all even.

We show the resulting energy density contours in Figure 2, and the three-dimensional
energy density plot in Figure 3. The crystal symmetry is clearly visible in the plots.
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Figure 2. Energy density contour plots of the face-centered cubic (FCC) unit cell of Skyrmions
for a large value of L = 10. Each plot shows different heights of the unit cell, which are z = 0, L/2
and L because in this case also the energy density has periodicity in 2L.

Figure 3. The energy density of the FCC unit cell is shown in 3D. The FCC symmetry is clearly visible
as well as in the contours Figure 2 plot. We adopt the Runge coloring convention [52] in this figure
to represent the pion fields.
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2.1.2. Body Centered Cubic Crystal of Half-Skyrmions

This unit cell was proposed in [39] to be the one with the lowest energy for small
values of L. It introduces an additional symmetry,

B4 : (x, y, z)→ (L/2− z, L/2− y, L/2− x),

(σ, π1, π2, π3)→ (−σ, π2, π1, π3). (19)

to those of the Klebanov crystal (A1, A2 and A3). The motivation of this new crystal
comes from the appearance of an additional symmetry when two B = 1 Skyrmions are
brought together and form the lower energy B = 2 field configuration, in which the B = 1
Skyrmions have lost their individual identity. This new symmetry produces a unit cell
which may be seen as a BCC of half-Skyrmions, which are solutions for which σ = −1 at the
center of the cube of side length L until some radius r0 for which σ = 0. This solution carries
a half of baryon charge and it is undefined outside r0. However, a new half-Skyrmion
solution can be defined via the transformation (σ, πa)→ (−σ,−πa); these new solutions
are located in the corners of the cube, connected to the σ = 0 value at r = r0 of the central
half-Skyrmion, forming a cube of side length L. As a result, the mean value of the σ field
in this cube is exactly 0, so the energy coming from the potential term L0 ∼ (σ− 1) will
scale exactly as 8c0L3. Further, the eight half-Skyrmions in the corners contribute a total
baryon number of 1/2, so the cube of side length L contains a baryon charge of B = 1.

The energy and baryon densities are also periodic in L but, again, the fields have a 2L
periodicity, then we have Bcell = 8 within our unit cell of side length 2L. The restrictions
imposed on the Fourier coefficients by the last symmetries are

• h, k are odd, l is even.
• a, b and c are even.
• βabc = βbca = βcab.

• αhkl = −(−1)
h+k+l

2 αkhl .

• βabc = −(−1)
a+b+c

2 βbac.

We show the resulting energy density plots in Figures 4 and 5.
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Figure 4. Energy density contour plots for the unit cell of the body-centered-cubic (BCC) crystal
at the minimum of energy. In this case, the energy density has period L so we show the cuts at z = 0,
z = L/4 and z = L/2.
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Figure 5. The tridimensional energy density plot of the BCC unit cell is shown. Again we represent
the pion fields using the Runge coloring convention.

2.1.3. Enhanced Face Centered Cubic Crystal of Skyrmions

This new crystal configuration was almost simultaneously found in two different
publications [40,42] to be the one with the lowest energy in the standard Skyrme model.
It may be seen as the half-Skyrmion version of the FCC crystal explained before. Indeed,
it shares the symmetries A1, A2, C3 and an additional symmetry,

D4 : (x, y, z)→ (x + L, y, z),

(σ, π1, π2, π3)→ (−σ,−π1, π2, π3), (20)

then some of the FCC crystal Fourier coefficients are set to 0 in this crystal.
Concretely, this new unit cell only allows the Fourier coefficients which satisfy the conditions

• h is odd, k and l are even,
• a, b, c are all odd.

Since this crystal has less free Fourier coefficients than the FCC crystal, it is a particular
case of the last one which we shall call FCC+. As a result, the FCC+ crystal will always have
equal or larger energy than the FCC crystal. This may lead to phase transitions between
the crystals at some length of the unit cell, as we will see later. As in the FCC crystal,
the half-Skyrmion solutions with σ = −1 in their center are located at the corners and faces
of the unit cell. Further, the opposite half-Skyrmions with σ = 1 occupy the body center
and the link centers of the unit cube. As a consequence, the mean value of the σ field is 0,
again, as in the BCC crystal. The energy and baryon densities are periodic in L and they
have the appearance of a simple cubic unit cell of half-Skyrmions. However, since the fields
are periodic in 2L we take that to be the side length of the unit cell; hence, the unit cell
still has the shape of an FCC crystal with the alternating half-Skyrmion solutions. Then,
the baryon content within our unit cell is again Bcell = 4. We show the resulting energy
density plots in Figures 6 and 7.
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Figure 6. Energy density contour plots for the unit cell of the enhanced face-centered cubic crystal
(FCC+) at the minimum of energy. It can be appreciated in the figure that this crystal can also be
viewed as a simple cubic crystal of half-Skyrmions. The energy density has the same period as
the BCC, so the cuts are the same.

Figure 7. The energy density in three dimensions for the FCC+ crystal. Again the Runge coloring
convention is used as in the last two cases.

2.2. Energy Curves

Each crystal configuration explained before is constructed imposing the corresponding
symmetry transformations, then we fix the value of L and use a Nelder–Mead algorithm [53]
from the GSL C++ library to find the optimal values of the remaining free Fourier coef-
ficients that minimize the energy functional. For different values of L we may construct
the curve E(L) for all the different crystals and combinations of terms in the Lagrangian
Equation (8). For all cases, we always find a convex curve with a minimum located at some
value of L which is different in each case.

It will be important for the next sections to obtain an analytical expression of the energy
curve. Then, we may try to guess a specific fitting curve just by studying the scaling of each
term in the energy functional. We find that Ei ∼ L3−i, where i represents the number
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of derivatives in the i−term, and the three comes from the integration over 3D space.
Hence, we use the following fit for the energy curves in each case,

E(L) = k + k2L +
k4

L
+ c6

k6

L3 + c0k0L3. (21)

In order to show the main properties of Skyrme crystals and the impact that the dif-
ferent terms have in the E(L) curve, we fix the value of the physical constants that appear
in the generalized Skyrme model to some standard values,

fπ = 129 MeV, e = 5.45, λ2 = 5 MeV fm3, mπ = 140 MeV. (22)

We may see from Figure 8 how the E(L) curves change turning on and off the different
terms. The pion-mass potential is an attractive term, so we would expect that more compact
solutions are preferable. On the other hand, the sextic term is repulsive so the opposite
effect is expected. These behaviors are visible in Figure 8 where the length parameter value
at which the minimal energy configuration is achieved, denoted by L0, is shifted to smaller
values when the potential term is introduced, whereas it increases when the sextic term is
present. Larger values of mπ or λ2 will increase these effects, and values of the parameters
different from Equation (22) lead to completely different results. However, the Skyrme
units, in which we are computing the curves, produce a universal E(L) curve in the L24
case in the sense that it does not depend on the value of the parameters. We also note
that the expression Equation (21) that we are using to fit the energy of the crystals is quite
accurate for the FCC+ and BCC cases; however, the FCC crystal has a non-trivial behavior
for large values of L, invalidating the expression of our fit in this region.
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Figure 8. Energy curves of the different Skyrme crystals considering the different terms in the gen-
eralized Skyrme Lagrangian. We also show the BPS bound in each case to see how close it is to the
minima of the crystals.

For comparison, we also include the topological lower energy bounds in each case
in Figure 8. For the L24 case, this bound coincides with the Skyrme–Faddeev bound
originally given already in [7], whereas more stringent bounds can be derived once more
terms are included in the Lagrangian [29,30]. Here, we always use the most stringent
bound.

As in previous work [44,45], we conclude that the FCC+ crystal reaches the lowest
energy in the standard Skyrme model between the crystals considered here. In that case,
the minimum is only a 3.7% above the BPS bound, which also places the Skyrme crystal as
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the Skyrmion solution with the lowest energy ever achieved in the standard Skyrme model.
Obviously, when the other terms are included the energy increases, but so does the BPS
bound of the model, which we show in each plot. We also conclude that for the parameters
that we consider here, the lowest energy configuration is achieved for the FCC+ crystal
in the generalized model. The location and the value of the energy at the minimum, L0 and
E0, respectively, for this case, as well as the amount by which it is above the BPS bound
in percentage, are shown in Tables 1 and 2 below.

Table 1. FCC+ crystal.

Model L0 E0/B Minimum (%)

L24 4.7 1.04 4

L240 4.1 1.09 5

L246 6.2 1.18 5

L2460 5.3 1.30 7

Table 2. BCC crystal.

Model L0 E0/B Minimum (%)

L24 5.5 1.08 8

L240 4.9 1.13 9

L246 7.3 1.23 9

L2460 6.4 1.34 10

In the second column, we show the position L = L0 where the energy E(L) takes its
minimum in each case, and the corresponding minimum value E(L0) in the third column.
In the last column, we show [(Emin − Ebound)/Ebound]× 100, i.e., the percentage deviation
of the minimum crystal energy from the energy bound for the lattice.

The values of the coefficients in Equation (21) are obtained in each case using the Python
optimization library GEKKO.

We remark that the fitting constants shown in Tables 3 and 4 will change if we use
different values of c6 and c0. However, it will be shown in the next section that a value
for the constants of the energy curve fit independent of the parameters may be obtained
for the FCC+ crystal solution.

Table 3. Fitting constants for the numerically obtained E(L) curves for the FCC+ crystal.

Model k k2 k4 k6 k0

L24 0.047 0.105 2.344 0 0

L240 0.022 0.109 2.384 0 0.008

L246 0.006 0.106 2.750 0.905 0

L2460 0.334 0.074 1.747 1.062 0.010

Table 4. Fitting constants for the numerically obtained E(L) curves for the BCC crystal.

Model k k2 k4 k6 k0

L24 0.017 0.096 2.988 0 0

L240 −0.022 0.101 3.061 0 0.004

L246 0.040 0.093 3.150 1.710 0

L2460 0.172 0.078 2.798 1.751 0.005
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2.3. Phase Transitions

We may anticipate from Figure 8 that even though the FCC+ crystal reaches the lowest
energy at the minimum, it may not be the crystal with the lowest energy for all values
of L. This is clear in the region with large values of L, for which the FCC crystal has lower
energy than the FCC+. We will also see that there is a phase transition from the FCC to the
BCC crystal at small values of L; however, since they do not have the same baryon content
within the unit cell, a more careful comparison is necessary. We will study in the following
the possible phase transitions that we may have since it may lead to an interesting phe-
nomenology of the Skyrme crystals. For simplicity, since L is a measure of the size of unit
cell it is also a measure of the baryon density, then we will also refer to the region of small
values of L as the high density regime and for large values of L the low density regime.

2.3.1. Low Density Phase Transition

As we noted in the construction of the crystals, the FCC+ crystal will always have
energy larger than or equal to the FCC. In Figure 8, we see that the energies of both crystals
are indistinguishable at high densities, but at some value of the length the curves split
and the FCC crystal becomes the ground state. This behavior in the E(L) curves suggests
a phase transition between the crystals, but the presence of the pion-mass potential term
is crucial in the understanding of this possible transition. Concretely, this potential term
explicitly breaks chiral invariance, then it is not compatible with the FCC+ symmetry
σ → −σ. However, the relevance of the potential term in the energy decreases at high
densities, so both crystals tend to the same energy in the chiral limit. Hence, when this term
is not included in the Lagrangian both crystals are allowed and we find an FCC to FCC+

second-order phase transition, but when the potential term is present the FCC crystal is
always the ground state and the energy curves approach asymptotically.

This phase transition has been extensively studied in [54], where the σ field was
proposed to be the order parameter of the transition.

We show in Figure 9 the mean value of the σ field in the unit cell for the cases L24 and
L240 since they represent the cases without and with pion-mass potential term, respectively.
The addition of the sextic term does not qualitatively change the curves.
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Figure 9. The mean value of the σ field within the unit cell shows the second-order transition
from the FCC to the FCC+ crystal when the pion-mass term is not included, and the asymptotic
approach when it is included.

Although the FCC+ is not the ground state crystal it is a good approximation to the
FCC crystal at large densities. Indeed, for the values of the parameters that we have consid-
ered, the transition point (in the case without potential term) always occurs at densities
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smaller than the minimum of energy, and even with potential term the FCC+ crystal is
already a good approximation to the FCC crystal.

2.3.2. High Density Phase Transition

Now we want to compare the energy curves between the BCC and the FCC crystals.
An important point here is that whilst the FCC unit cell contains four baryons, the BCC
unit cell has eight baryon units. If we want to compare both crystals, we need to do it at the
same baryon density, which may be easily defined,

nB =
Bcell
Vcell

. (23)

Hence, if we want to compare the energies we may calculate the density of both
crystals and find the point at which the BCC crystal is more energetically favorable than
the FCC crystal.

We find that the different terms that we consider in the Lagrangian have an important
impact on the transition point. Concretely, the sextic term locates the transition at physi-
cally reasonable densities, i.e., the same order of magnitude as the density at the energy
minimum. Without the sextic term, we find the transition point at very high densities,
and the addition of the pion-mass term shifts the transition density to even higher values;
therefore, we only plot the cases in which we include the sextic term, see Figure 10 and
Table 5.
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Figure 10. The comparison between the energies of the BCC and FCC crystals at the same baryon
density shows that the first one becomes more favorable at some point, denoted by the red cross
in the plots. The sextic term is crucial to have this transition at realistic densities. Both n and E are
shown in Skyrme units.

Table 5. Ratio between the transition density and the density at which the minimum of the energy is
achieved for the FCC+ crystal.

Model nPT/n0

L246 3.7

L2460 2.4

Since the energy curves have different slopes at the transition point, there is a discontinuity
in the derivative of the energy. This implies that the FCC-to-BCC is a first-order phase transition
and we must perform a Maxwell construction (MC) in order to avoid unphysical regions.
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The pressure of a system acquires great relevance when phase transitions are present
since it must remain finite and continuous in order to have a physical transition. The pres-
sure, as well as the energy density of the crystal, can be obtained from their thermodynami-
cal definition,

p = − ∂E
∂V

= − 1
24L2

∂Ecell
∂L

, (24)

ρ =
E
V

=
Ecell

8L3 . (25)

From these expressions, we may conclude that there is a discontinuity in the pressure
of the crystal and this is in contradiction with the Gibbs conditions that must be preserved
in every phase transition,

p1 = p2, µ1
B = µ2

B. (26)

For this analysis, we will identify the FCC crystal as phase 1 and the BCC crystal
as phase 2. In addition, in our system the baryon charge is conserved so we must find
the mixed phase which has the associated chemical potential (µB) common to both phases.

The MC introduces a mixed phase which preserves the Gibbs conditions in this case.
The main idea of this construction is to find one point in each of the energy curves which
have the same pressure; we denote it by pPT , and join them with the curve which has
the same value of µB for the two phases. Mathematically this means that we have to find
the points (V1, V2) of each phase that have the same slope in the E(V) diagram and are
both tangent to the straight line with the same slope (which is pPT).

We must be careful for this calculation since we are dealing now with the volumes
of the unit cells. This means that same volumes have different baryon content in each
crystal, so we need to rescale them in order to have the same baryon number,

nFCC = nBCC −→ VFCC =
VBCC

2
. (27)

The final energy curve with a physical phase transition starts at low densities in the FCC
crystal until we find the mixed phase which joins to the BCC crystal,

E(V) =


EFCC(V), V ≥ V1
EFCC(V1)− pPT(V −V1), V1 ≥ V ≥ V2
EBCC(V), V ≤ V2

(28)

see Figure 11.
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Figure 11. Maxwell construction in the FCC-to-BCC phase transition. The red cross denotes again
the transition point, but now the black crosses denote where the mixed phase starts. At low densities
we are in the FCC phase (green line) until we reach the mixed phase (black line), which joins to the
BCC phase (blue line).
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We may use the FCC+ energy curve for these calculations since at the density at which
the transition occurs the FCC and FCC+ crystals are the same in the L246 case and the dif-
ference between them in the L2460 case is negligible.

2.3.3. Fluid-like Transition

From the previous calculations, we know how to calculate the most important ther-
modynamical magnitudes (pressure, energy and baryon densities) for the Skyrme crystal.
We also know that decreasing the size of the unit cell increases the densities as well as
the pressure; hence, we may try to calculate how homogeneous the crystal becomes for in-
creasing density and if a transition to a fluid is possible.

Indeed, it is known that the BPS Skyrme submodel (L60) describes a perfect fluid due
to the properties of the sextic term. Then, it seems reasonable that, since the sextic term is
the most important one at small values of L, the crystal becomes more homogeneous within
the unit cell. To study the degree of homogeneity, we will compare the energy density
profiles obtained from the numerical minimization with a constant density profile with
the value of the mean energy density of the unit cell, ρmean = Ecell/Vcell.

At the minimum of the energy, we expect to have a highly inhomogeneous crystal,
where the Skyrmions are surrounded by regions of vacuum, and reducing the size of the unit
cell will decrease the inhomogeneity. However, we also expect to increase this effect with
the addition of the sextic term, so we will compare the L240 and L2460 cases, since we want
to consider the more realistic cases in which pions have mass. To compare the energy
densities within the unit cell, we define the radial energy profile (REP) enclosed within
a sphere of radius r,

E(r) =
∫ r

0
d3x ρ, (29)

where ρ is the ρmean in the case of the constant energy density unit cell and the integrand
of Equation (10) in the real case. We calculate both REP for each case at the baryon density
of the minimal energy (n0), and at the higher densities 3n0 and 7n0. We show in Figure 12
the ratio χ = E(r)/Emean(r) of the two REPs for each case.

Figure 12. REP for the L240 (blue) and L2460 (red) cases, for n0 (continuous lines), 3n0 (dashed lines)
and 7n0 (dashed-dotted lines). The degree of homogeneity almost does not change for L240, whereas
the energy density becomes much more homogeneous with increasing baryon density for L2460.

2.4. New Lattice Solutions

For the moment, we have mostly focused on the behavior of Skyrme crystals in the re-
gion to the left of the minimum of the E(L) curve. The reason is that, from Equation (25)
we may observe that the minimum corresponds to the point p = 0, and the region L ≥ L0
has negative pressure; hence, it is unstable. It is the aim of this section to show that there
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is a new branch of solutions which have different energies in the low density regime and
tend to the FCC+ crystal at high energies.

The fact that the Skyrme crystal has a minimum is not a bad behavior, since this
is expected to occur in symmetric nuclear matter. However, the energy of the crystals
seems to diverge with L, but this is due to the Fourier expansion that we use to construct
the Skyrme crystal, in which we impose the Skyrmions to be in fixed positions and we do
not allow them to move freely within the unit cell to find the lowest energy configuration.
This is a correct procedure for small values of L; however, if we increase the size of the unit
cell the Skyrmion can only spread instead of clustering to form a compact configuration
surrounded by vacuum.

This motivated us to find new lower energy configurations with a new numerical
minimization method which lets the Skyrmions move freely within the unit cell. We use
a gradient flow method to find the field configurations with minimal energy, locating
a B = 4 Skyrmion in the center of the unit cell. The motivation for this new lattice starts
with the similarities between the isolated B = 4 Skyrmion, which has cubic symmetry, and
the FCC+ symmetry. Indeed, the B = 4 Skyrmion is quite similar to the crystal in the sense
that it is composed of eight half-Skyrmions located in the corners of a cube.

In addition, the study of the B = 4 Skyrmion in periodic boundary conditions under
different deformations showed the phase transitions it may suffer [55].
Concretely, the phase transition between the FCC+ and the B = 4 Skyrmion lattice was
found at a certain value of L, then the new lattice becomes a more energetically favorable
crystal. Since the isolated B = 4 Skyrmion aims to describe an alpha particle, we will refer
to this configuration as the α-lattice.

We calculated the energy for the α-lattice at different values of L for the L240 and
L2460 models. This new lattice has lower energy than the crystal at a certain value of L
and, furthermore, it tends to a constant value at L → ∞. Indeed, it tends to the value
of the isolated B = 4 Skyrmion, so we may construct other cubic lattices with larger values
of B, since it is known that the energy per baryon of Skyrmions decreases for increasing
values of the baryon charge. We show the energy of the next simplest cubic lattice, which is
a multiple of the α−lattice, the B = 32 lattice.

As expected, both the α and B = 32 lattices have less energy than the FCC crystal
at low densities, since they achieve a more compact configuration surrounded by vacuum.
Decreasing the size of the unit cell forces the Skyrmion within the unit cell to recover
the FCC+ crystal configuration. The transition for both lattices may be seen in Figure 13. In
Figure 14, the corresponding energy density contours are shown for the L240 model.
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Figure 13. Energy per baryon number for the different lattices that we consider with and without
sextic term. These α and B = 32 lattices are important in the low density regime where they have
much lower energies than the standard crystal. However, already for densities which are slightly
smaller than at the minimum of the energy all these lattices tend to the same FCC crystal.



Symmetry 2023, 15, 899 21 of 48

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x/L

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

y/
L

L= 3

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x/L

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

y/
L

L= 5

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x/L

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

y/
L

L= 6

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x/L

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

y/
L

L= 7

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x/L

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

y/
L

L= 3

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x/L

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

y/
L

L= 5

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x/L

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

y/
L

L= 6

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x/L

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

y/
L

L= 7

Figure 14. Energy density contour of the α and B = 32 lattices at different sizes of the unit cell.
The shape of the isolated Skyrmion is visible at very large values of L, whereas the FCC+ crystal is
recovered at high densities. The legend of the colors is as in Figure 6.

3. Isospin Quantization and Symmetry Energy

The classical cristalline solutions presented in the previous sections can be understood
as models for infinite, isospin symmetric nuclear matter, that is, with the same number
of protons and neutrons. However, it is well known that nuclear matter in the interior
of neutron stars cannot be completely isospin symmetric, with all but a small fraction
of the total baryonic degrees of freedom being protons at a given density. The magnitude
that determines the fraction of protons over the total baryon number is the so-called
symmetry energy, namely, the change in the binding energy of the system as the neutron-to-
proton ratio is changed at a fixed value of the total baryon number, and its knowledge is
essential to determine the composition of nuclear matter at high densities.

For an finite nuclear system with total baryon number A = N + Z, with N (Z) being
the number of neutrons (protons), the isospin asymmetry parameter is defined as δ = (N−
Z)/A = (1− 2γ), with γ = Z/A being the proton fraction. For an infinite system, the above
quantities can be defined with densities instead of total numbers. The binding energy of infinite
nuclear matter is thus parametrized as a function of both the baryon density and the asymmetry
parameter,

E
A
(nB, δ) = EN(nB) + SN(nB)δ

2 +O
(

δ3
)

, (30)

with EN(nB) being the binding energy of isospin-symmetric matter, and SN(nB) being
the symmetry energy. Although its dependence on the density has proven difficult to mea-
sure experimentally, it is usually parametrized as an expansion in powers of the baryon
density around nuclear saturation n0,

SN(nB) = S0 +
1
3

Lε +
1

18
Ksymε2 + · · · (31)

with ε = (n− n0)/n0, and

L = 3n0
∂SN
∂n

∣∣∣∣
n=n0

, Ksym = 9n2
0

∂2SN

∂n2

∣∣∣∣
n=n0

(32)

the slope and curvature of the symmetry energy at saturation, respectively. The symmetry
energy at saturation is well constrained (S0 ∼ 30 MeV) by nuclear experiments [56], but
the values of the slope and higher order coefficients are still very uncertain. However,
recent efforts on the analysis of up to date combined astrophysical and nuclear observations
have allowed to constrain the value of these quantities with reasonable uncertainty above
nuclear saturation [57–61].
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In the Skyrme model, due to the SU(2) isospin symmetry of the Lagrangian, isospin
degrees of freedom represent zero-modes, which are quantized using standard canonical
quantization in terms of some collective coordinate parametrization (see, e.g., [22,24,62,63]).

Following this approach, we consider a (time-dependent) isospin transformation
of a static Skyrme field configuration,

U(~x)→ Ũ(~x, t) ≡ g(t)U(~x)g†(t). (33)

Then, the time component of the left invariant form Lµ becomes Ũ†∂0Ũ = gTag†ωa,
where Ta is the su(2)-valued current,

Ta =
i
2

U†[τa, U] = i(πaπb − πcπcδab + σπcεabc)τb ≡ iTa
b τb, (34)

and ~ω
.
= g† ġ = i

2 ωaτa is the isospin angular velocity. The time dependence of the new
Skyrme field induces a kinetic term in the energy functional, given by the following
(remember that we are using the mostly minus convention for the metric signature)

T =
1

24π2

∫
{a Tr{L0L0} − 2b Tr{[L0, Lk][L0, Lk]} − c BiBi}d3x =

1
2

ωiΛijωj

where Λij is the isospin inertia tensor, given by

Λij =
1

24π2

∫
d3x
{

2a Tr{TiTj} − 4b Tr{[Ti, Lk][Tj, Lk]} −
c

32π4 εabc Tr{TiLbLc}εars Tr{TjLrLs}
}

, (35)

and the values of a, b, c, d are easily obtained from Equation (8),

a = −1
2

, b =
1
4

, c = −8λ2π4 f 2
πe4

h̄3 , d =
m2

π

f 2
πe2

. (36)

Due to the symmetries of the cristalline phases, the complete isospin inertia tensor
for the unit cell of a cubic crystal turns out to be proportional to the identity, and the associ-
ated eigenvalue (the isospin moment of inertia) can be written

Λ =
1

24π2

[
2aΛ(2) − 4bΛ(4) − c

32π4 Λ(6)
]
, (37)

where the contribution from each term in the Lagrangian, denoted by Λ(n), can be found
in [48]. This fact enormously simplifies the kinetic term in the Lagrangian of an isospinning
cubic crystal with a number Ncells ≡ N of unit cells, which is reduced to

T =
1
2

ωiΛijωj = N
1
2

Λωaωa, (38)

and, by defining the corresponding canonical momentum Ja = ∂L/∂ωa = NΛωa, we may
write it in Hamiltonian form,

H =
1

2NΛ
Ja Ja. (39)

Now, following the standard canonical quantization procedure, we promote the isospin
angular momentum variables to operators, so that we may diagonalise the Hamiltonian
in a basis of eigenstates with a definite value of the total isospin angular momentum,

H =
h̄2

2NΛ
Jtot(Jtot + 1) (40)

The total isospin angular momentum of the full crystal will be given by the product
of the total number of unit cells times the total isospin of each unit cell, which can be
obtained by composing the isospin of each of the cells. In the charge neutral case, all cells
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will have the highest possible value of isospin angular momentum, so that in each unit
cell with baryon number Bcell, the total isospin will be 1

2 Bcell, and hence the total isospin
of the full crystal will be Jtot = 1

2 NBcell.
Therefore, the quantum correction to the energy (per unit cell) in the charge neutral

case (completely asymmetric matter) due to the isospin degrees of freedom will be given
by (assuming N → ∞)

Eiso =
h̄2

8Λ
B2

cell. (41)

Such correction could also have been obtained directly by introducing an ‘external’
isospin chemical potential µI , and promoting the regular derivatives in the Skyrme La-
grangian to covariant derivatives of the form [64]

∂µU → DµU = ∂µU − iµI
2

δµ0[τ
3, U], (42)

so that, if U is a static configuration, the time component of the Maurer–Cartan form becomes

L0 = − i
2

µIU†[τ3, U] = −µI T3. (43)

This expression is equivalent to that of an iso-rotating field with angular velocity
ωa = −µIδ3a. Thus, it is straightforward to obtain the isospin chemical potential for the Skyrmion
crystal using its thermodynamical definition µI = − ∂E

∂nI
, where nI is the (third component

of) the isospin number density. Given that (Jtot)2 = J2
1 + J2

2 + J2
3 and nI = J3/N, we may

write the isospin energy per unit cell as

Eiso =
h̄2

2Λ

(
n2

I +
J2
2

N2 +
J2
1

N2

)
(44)

and then

µI = −
∂Eiso

∂nI
= − h̄2

Λ
nI . (45)

For B < ∞ Skyrmions, isospin quantization (together with spin) induces a set of con-
straints (Finkelstein–Rubinstein constraints [10,65]) which characterize the allowed states
with a given value of total spin and isospin angular momentum, and thus the ground states
and lowest energy spin and isospin excitations have been studied for many Skyrmions with
B ≤ 12 [24,63]. However, in the case of a crystal, to compute the contribution of the quan-
tization of the global isospin zero modes to the total energy we would need to know,
in principle, the quantum isospin state of the whole crystal. This is of course impossible
in the thermodynamic limit, and some additional approximation becomes necessary.

Following [48], since the total third component of isospin is a good quantum num-
ber for the total quantum state of the crystal, we perform a mean field approximation
and consider that the isospin density in an arbitrary Skyrmion crystal quantum state is
approximately uniform so that

〈
I0
3

〉
=
〈I3〉∫

d3x
=
〈Ψ|

∫
I0
3 d3x|Ψ〉

NVcell

.
=

nI
Vcell

(46)

where nI is the effective isospin charge per unit cell in this arbitrary quantum state.
The (mean field) effective proton fraction corresponding to such an isospin charge per unit
cell with baryon number Bcell is given by

nI = −
1
2
(1− 2γ)Bcell = −

Bcell
2

δ. (47)



Symmetry 2023, 15, 899 24 of 48

Hence, the isospin energy per unit cell of the Skyrmion crystal can be written in terms
of the asymmetry parameter

Eiso =
h̄2B2

cell
8Λ

δ2, (48)

from where we can readily read off the symmetry energy for Skyrme crystals

SN(nB) =
h̄2L3

Λ
nB. (49)

Therefore, the symmetry energy of a Skyrmion crystal is uniquely determined by the (isospin)
moment of inertia of each unit cell, which has an intrinsic dependence on the density.
On the other hand, the isospin energy correction depends, in the mean-field approximation, both
on Λ (hence the density) and the asymmetry parameter (or equivalently, the proton fraction).

However, a nonzero proton fraction would rapidly lead to a divergence in the Coulomb
energy of the total crystal in the infinite crystal limit. Therefore, a neutralizing background
of negatively charged leptons (electrons and possibly muons) must be included in the sys-
tem, such that the Coulomb forces are screened. The total system is thus characterized
at equilibrium by two conditions, namely the charge neutrality condition

np =
Z
V

= ne + nµ, (50)

and the β-equilibrium condition

µn = µp + µl =⇒ µI = µl , l = e, µ, (51)

i.e., the isospin chemical potential must equal that of charged leptons, which in turn means
that the direct and inverse beta decay processes such as n ↔ p + l + ν̄l take place at the
same rate. Leptons inside a neutron star can be described as a non-interacting, highly
degenerate fermi gas, so that the chemical potential for each type of lepton can be written

µl =
√
(h̄kF)2 + m2

l (52)

where kF = (3π2nl)
1/3 is the corresponding Fermi momentum, and ml is the mass of the cor-

responding lepton. For sufficiently high densities, then, the electron chemical potential
becomes larger than the mass of the muon, µe ≥ mµ, and the production of muons is
preferred by the system. We can estimate the total proton fraction by enforcing both beta
equilibrium and charge neutrality. Neglecting the contribution of muons in a first step,
to the charge density, from Equation (50) we can relate the electron density to the pro-
ton fraction parameter, ne = γBcell/(2L)3. The β equilibrium condition then provides
an equation which defines γ implicitly as a function of the lattice length parameter,

h̄L
Λ

(1− 2γ) =

(
3π2

B2
cell

)1/3

γ1/3 (53)

where we also assumed the ultrarelativistic electron approximation, i.e., ml/kF ' 0.
Including the muon contribution in the charge density yields a slightly more compli-

cated expression for the β-equilibrium condition, given by

h̄Bcell
2Λ

(1− 2γ) =

[
3π2

(
γBcell

8L3 − nµ

)] 1
3

, (54)

where

nµ =
1

3π2

[(
h̄Bcell(1− 2γ)

2Λ

)2

−
(mµ

h̄

)2
] 3

2
. (55)
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The proton fraction inside beta-equilibrated matter determines, in addition, whether
a proto-neutron star will go through a cooling phase via the emission of neutrinos through
the direct Urca (DU) process n→ p + e + ν̄e. This process is expected to occur if the proton
fraction reaches a critical value, γp > xDU , the so-called DU threshold [66,67]. The DU
process allows for an enhanced cooling rate of NS. Whether it takes place or not in the hot
core of proto-neutron stars or during the merger of binary NS systems [68], therefore,
determines the proton fraction (and the symmetry energy) of matter at ultra-high densities.
It is, however, not clear whether this enhanced cooling actually occurs, although there is
recent evidence that supports it [69].

In npeµ matter, the DU threshold is given by [67]

xDU =
1

1 + (1 + ( ne
ne+nµ

)1/3)3 . (56)

We show the particle populations γi in beta-equilibrated Skyrmion matter in Figure 15
for the cases λ2 = 0, 1.5 MeV fm3.

1 2 3 4
n/n0

10 2

10 1

100

γ
i

n

p

µ

e

Figure 15. Fraction density γi for each particle as a function of the baryon density for λ2 = 0 (solid)
and λ2 = 1.5 (dashed). The corresponding DU threshold is also shown in black. This figure was
originally published in [48].

In both cases, a persistent population of protons and leptons at higher nucleon density
is expected, although we can see that in the case with the sextic term the fraction of charged
particles is smaller. This is explained by the lower symmetry energy of the sextic term,
which makes it much easier to convert protons into neutrons. Finally, for all values
of the parameters ( fπ , e, λ2) we considered, the DU threshold is not reached. One should,
however, not consider this fact as a prediction of the Skyrme model, because it strongly
depends on the parameter values. In addition, it is also generally assumed that around
2–3 times the nuclear saturation density, additional degrees of freedom (strange baryons)
appear and become important for the description of nuclear matter which, in particular,
may affect the proton fraction at these densities.

4. Kaon Condensate in Skyrmion Crystals

Up to this point, we have shown how to describe β-equilibrated npeµ-matter at finite
density in terms of a semi-classical Skyrmion crystal and a leptonic sea of electrons and
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muons, and we have determined the different particle fractions as a function of density
in the mean field approximation. However, for densities about twice nuclear saturation
and above, additional degrees of freedom are expected to become relevant for the physics
of dense nuclear matter. In particular, strange mesons (kaons) and hyperons are believed
to modify the EOS at sufficiently high density, which motivates the question of how
to describe an additional quark flavor using the Skyrme model approach.

Below we shall briefly review the crucial steps to determine whether kaon fields may
condense inside a Skyrme crystal for a sufficiently high density, and, if so, whether this
critical density value is relevant for the description of matter inside compact stars. A more
detailed discussion can be found in [49].

4.1. The Kaon Condensate Effective Potential

Following the bound-state approach first proposed in [70], we may extend the Skyrmion
field to a SU(3)-valued field U and consider kaon fluctuations on top of an SU(2) Skyrmion-
like background u. With the only requirement that unitarity must be preserved, different
ansätze have been proposed in the literature for the total SU(3) field describing both pions
and kaons. In this work, we choose the ansatz proposed by Blom et al. in [71]:

U =
√

UKUπ

√
UK. (57)

In this ansatz, Uπ represents the SU(3) embedding of the purely pionic part u, and
the field UK are the fluctuations in the strange directions. It can be shown that this ansatz is
equivalent to the one first proposed by Callan and Klebanov in [70] when computing static
properties of hyperons, although both may differ in other predictions of the model [72].

In the simplest SU(3) embedding, the SU(2) field u is extended to Uπ by filling the rest
of the entries with ones in the diagonal and zeros outside. On the other hand, the kaon
ansatz is modelled with a su(3)-valued matrix D which is non-trivial in the off-diagonal
elements:

Uπ =

(
u 0
0 1

)
, UK = ei 2

√
2

fπ
D , u = σ + iπaτa, D =

(
0 K

K† 0

)
(58)

where K consists of a scalar doublet of complex fields representing charged and neutral kaons:

K =

(
K+

K0

)
, K† = (K−, K̄0). (59)

We now extend the Generalized Skyrme Lagrangian (8) to include strange degrees
of freedom. First, we need to replace the potential term L0 in order to correctly take into
account the mass of the kaon fields. The new potential term has the form [72]:

Lnew
0 =

f 2
π

48

(
m2

π + 2m2
K

)
Tr
{

U + U† − 2
}
+

√
3

24
f 2
π

(
m2

π −m2
K

)
Tr
{

λ8

(
U + U†

)}
,

where λ8 is the eighth Gell–Mann matrix and mK is the vacuum kaon mass. In addition,
the effects of the chiral anomaly must be taken into account in the effective theory by means
of the Wess–Zumino–Witten (WZW) term, which can be expressed in terms of a five-
dimensional action:

SWZ = −i
Nc

240π2

∫
d5x εµναβγ Tr

{
LµLνLαLβLγ

}
. (60)

The onset of kaon condensation in the Skyrme model takes place at a critical density
ncond at which µe becomes greater than the energy of the kaon zero-momentum mode
(s-wave condensate). Thus, for baryon densities n ≥ ncond, the presence of kaons will be
more energetically favorable than electrons at the fermi surface, so kaons will be produced
at expense of electrons, and the macroscopic contribution of the kaon condensate to the
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energy must be taken into account when obtaining the EOS. To do so, we write the field
condensates (i.e., the non-zero vacuum expectation values (vev), 〈K±〉) as a homogeneous
field whose time dependence is given by:〈

K∓
〉
= φe∓iµK t (61)

The real constant φ corresponds to the zero-momentum component of the fields,
which acquires a nonvanishing, macroscopic value after the condensation. Its exact value
is determined from the minimization of the corresponding effective potential, which is
determined from the Skyrme Lagrangian. On the other hand, the phase µK is nothing but
the corresponding kaon chemical potential. First, we will need an explicit form of the SU(3)
Skyrme field in the kaon condensed phase. Assuming the charged kaons will be the first
mesons to condense, we drop the neutral kaon contribution and define the following matrix

D̃ =

 0 0 φeiµK t

0 0 0
φe−iµkt 0 0

 (62)

which results from substituting the kaon fields in D as defined in Equation (58) by their cor-
responding vev in the kaon condensed phase. Moreover, taking advantage of the property
D3 = φ2D, we may write the SU(3) element generated by D̃ explicitly in matrix form:

Σ = e
i
√

2
fπ
D̃
=

 cos φ̃ 0 ieiµK t sin φ̃
0 1 0

ie−iµK t sin φ̃ 0 cos φ̃

 (63)

where φ̃ =
√

2
fπ

φ is the dimensionless condensate amplitude.
Furthermore, assuming the backreaction from the kaon condensate to the Skyrmion

crystal is negligible, and thus the classically obtained crystal configuration will be the phys-
ically correct background even in the kaon condensed phase, we may write the SU(3) field
in this phase as U = ΣUπΣ, where Uπ is the SU(3) embedding of the SU(2) Skyrmion
background as in Equation (58). Introducing this U in the total action yields the standard
Skyrme action for the SU(2) field plus an effective potential term for the kaon condensate:

SSk(U) + SWZW(U) = SSk(Uπ)−
∫

dtVK(φ̃), (64)

where
VK =

1
24π2

∫
d3x
[
V(2)

K + V(4)
K + V(6)

K + V(0)
K

]
+ V(WZW)

K , (65)

with

V(0)
K = 2

m2
K

f 2
πe2

(1 + σ) sin2 φ̃ (66)

V(2)
K = µ2

K sin2 φ̃[(1 + σ2 + π2
3) sin2 φ̃− 2(1 + σ cos2 φ̃)]. (67)

V(4)
K = −2µ2

K sin2 φ̃
{
(1 + σ)∂in2 cos2 φ̃ + 2[∂iσ

2(1− π2
3) + ∂iπ

2
3(1− σ2) + 2σπ3∂iσ∂iπ3] sin2 φ̃

}
(68)

V(6)
K = −λ2 f 2

πe4µ2
K sin4(φ̃)(∂iπ3∂jσ− ∂iσ∂jπ3)

2, (69)

V(WZW)
K = −µK NcBcell sin2 φ̃. (70)

4.2. Quantum Corrections to the Effective Potential

In the above calculations, we have taken separately the contributions of a kaon con-
densate and an isospin angular momentum of the Skyrmion crystal. However, since
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kaons possess an isospin quantum number, the condensate interacts with the Skyrmion
isospin both indirectly via the charge neutrality and β equilibrium conditions, which relate
their corresponding chemical potentials, and also directly, due to the appearance of ad-
ditional contributions to the total energy when we consider a (time-dependent) isospin
transformation of the full Skyrme field + kaon condensate configuration U = ΣUπΣ:

U → Ũ ≡ A(t)UA†(t), (71)

where A is an element of SU(3) modelling an isospin rotation,

A =

(
a 0
0 1

)
, a ∈ SU(2). (72)

in analogy with the SU(2) case, we define the isospin angular velocity ~ω as A† Ȧ =
i
2 ωaλa (a = 1, 2, 3), with λA the Gell–Mann matrices generating SU(3) for A = 1, · · · 8.
Notice that ~ω is a three-vector, since A† Ȧ belongs to the isospin su(2) subalgebra of su(3).
Then, we may write the time component of the Maurer–Cartan current as Ũ†∂0Ũ =
AL0 A† + ATa A†ωa, where Ta is the su(3)-valued current:

Ta =
i
2

U†[λa, U] ≡ iTA
a λA, (73)

where we have made use of the parametrization (58).
Now the kinetic isorotational energy in this case takes the form

T =
1
2

ωaΛabωb + ∆aωa −VK (74)

where Λab is the isospin inertia tensor and ∆a is the kaon condensate isospin current, given by

Λab =
∫ {

2a Tr{TaTb} − 4b Tr{[Ta, Lk][Tb, Lk]} −
c

32π4 εlmn Tr{TaLmLn}ε lrs Tr{TjLrLs}
}

d3x, (75)

∆a =
∫ {

2a Tr{L0Ta} − 4b Tr{[Ta, Lk][L0, Lk]} −
c

32π4 εlmn Tr{L0LmLn}ε lrs Tr{TaLrLs}
}

d3x, (76)

where a, b and c are those in Equation (36). As argued previously, the symmetries of the crys-
talline configuration imply that the isospin inertia tensor becomes proportional to the
identity, i.e., Λcrystal

ab = Λδab. However, the presence of a kaon condensate breaks this
symmetry to a U(1) subgroup, so that Λab presents two different eigenvalues in the con-
densate phase, Λcond = diag(Λ, Λ, Λ3). Similarly, ∆a = 0 in the purely barionic phase, and
its third component acquires a non-zero value in the condensate phase, ∆cond = (0, 0, ∆).
The explicit expressions for Λ3 and ∆ in the condensed phase can be found in [49]. One can
check that in the non-condensed phase, φ = 0 and the results of the previous section are
recovered, namely, Λ3 = Λ, ∆ = 0.

The quantization procedure now goes along the same lines as in the previous section.
However, the isospin breaking due to the kaon condensate implies that the canonical
momentum associated with the third component of the isospin angular velocity will now
be different, and is given by I3 = Λ3ω3 + ∆.

Thus, after a Legendre transformation to rewrite (74) in Hamiltonian form, and making
the N → ∞ approximation, one can write the quantum energy correction per unit cell
of the crystal in the kaon condensed phase as

Equant =
1

2Λ3
(I2

3 − ∆2). (77)

The first term on the right-hand side is just the isospin correction, while now there
is an additional second term due to the isospin of the kaons. Indeed, since the kaon field
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enters also in the expression of the isospin moment of inertia Λ3, both terms will depend
nontrivially on the kaon vev field.

When the kaon field develops a nonzero vev, apart from the neutron decay and lepton
capture processes, additional processes involving kaons may occur:

n↔ p + K−, l ↔ K− + νl (78)

such that the chemical equilibrium conditions µn = µp + µK, µl = µK are satisfied.
These are the extension of Equation (51) to the condensate phase.

The total energy within the unit cell may be obtained as the sum of the baryon, lepton
and kaon contributions:

E = Eclass + Eiso(γ, φ̃) + EK(µe, φ̃) + Ee(µe) + Θ(µ2
e −m2

µ)Eµ(µe) (79)

The kaon contribution is the effective potential energy

EK(µe, φ̃) = VK −
∆2

2Λ3
, (80)

which depends on the condensate φ̃ and on the lepton chemical potential through the ex-
plicit dependence on µK of both VK and ∆, and µK = µe due to the equilibrium conditions.
Therefore, the energy of the full system depends on the proton fraction, the kaon vev field
and the electron chemical potential. Their respective values can be obtained, for fixed nB
(or equivalently, fixed L) by minimizing the free energy

Ω = E− µe(Ne + Θ(µ2
e −m2

µ)Nµ − γB) (81)

with respect to γ, φ̃ and µe, i.e.,

∂Ω
∂γ

∣∣∣∣
nB

(γ, φ̃, µe) =
∂Ω
∂φ̃

∣∣∣∣
nB

(γ, φ̃, µe) =
∂Ω
∂µe

∣∣∣∣
nB

(γ, φ̃, µe) = 0. (82)

The first equation imposes the expected condition µe = µI = 2h̄2(1 − 2γ)/Λ3.
Then, after substituting into the other two conditions we get:

γnB−
(µ2

I −m2
e )

3/2 + (µ2
I −m2

µ)
3/2

3π2h̄3 +
nB
4

∂EK
∂µe

∣∣∣∣
µe=µI

= 0, (83)

∂VK

∂φ̃
− ∆

Λ3

∂∆
∂φ̃

+
∂Λ3

∂φ̃

(
∆2

2Λ2
3
−

µ2
I

2h̄2

)
= 0, (84)

which are precisely the charge neutrality condition, and the minimization of the grand canonical
potential with respect to the kaon field. We note here that we drop the ultrarelativistic consider-
ation for electrons since the appearance of kaons may decrease hugely the electron fraction. By
solving the system of Equations (83) and (84) for γ and φ̃, we obtain all the needed information
for the new kaon condensed phase. Then, we may compare the particle fractions and energies
between both phases, which we will call npeµ and npeµK.

Before solving the full system for different values of the lattice length L, we may try
to obtain the value of the length at which kaons condense, Lcond. This value is indeed
important since it will determine whether or not a condensate of kaons will appear at some
point in the interior of NS. This is accomplished with the same system of Equations (83)
and (84) by factoring the sin φ̃ from the second equation and setting φ̃ = 0. Then, we may
see the system as a pair of equations to obtain the values of γcond and Lcond, the values
of the proton fraction and the length parameter for which the kaons condense.
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We show in Table 6 below the density at which kaons condense for different val-
ues of the parameters as well as the values of some nuclear observables they yield.
All the values are given in units of MeV or fm, respectively.

Table 6. Sets of parameter values and observables at nuclear saturation.

Label fπ e λ2 E0 n0 S0 Lsym ncond/n0

set 1 133.71 5.72 5 920 0.165 23.5 29.1 2.3

set 2 138.11 6.34 5.78 915 0.175 24.5 28.3 2.2

set 3 120.96 5.64 2.68 783 0.175 28.7 38.7 1.6

set 4 139.26 5.61 2.74 912 0.22 28.6 38.9 1.6

Parameter sets 1 and 2 are chosen so that the energy per baryon and baryon density
at saturation are fitted to experimental values, whereas sets 3 and 4 correctly fit the symme-
try energy and slope at saturation. In Section 5.4, we shall always use set 1 of parameter
values.

5. Neutron Stars
5.1. TOV System of Equations

In order to calculate the mass and radius for a non-rotating NS we have to solve
the standard TOV (Tolman–Oppenheimer–Volkoff) system of ODEs. It is obtained inserting
a spherically symmetric ansatz of the spacetime metric,

ds2 = −A(r)dt2 + B(r)dr2 + r2(dθ2 + sin2 θdϕ2), (85)

in the Einstein equations,

Rµν −
1
2

gµνR = 8πGTµν. (86)

To describe matter inside the star, in the right-hand side of the equation, it is standard
to use the stress-energy tensor of a perfect fluid,

Tµν = (ρ + p)uµuν + pgµν, (87)

where the pressure p and the energy density ρ are not independent but related by the EOS.
Hence, the EOS describes the nuclear interactions inside the NS and different EOSs lead
to different observables.

The resulting TOV system involves three differential equations for A, B and p, which
must be solved for a given value of the pressure in the center of the NS (p(r = 0) = p0)
until the condition p(r = R) = 0 is achieved.

dA
dr

= Ar
(

8πGBp− 1− B
r2

)
, (88)

dB
dr

= Br
(

8πGBρ +
1− B

r2

)
, (89)

dp
dr

= − p + ρ

2A
dA
dr

. (90)

We use a fourth-order Runge–Kutta method of step ∆r = 1 m to solve the system in or-
der to obtain the main observables from the solutions. The radial point at which the pressure
vanishes defines the radius of the NS, and the mass M is obtained from the Schwarzschild
metric definition outside the star,

B(r = R) =
1

(1− 2GM
R )

. (91)
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For different values of the pressure in the center, we may obtain different couples
of values for the mass and radius, then we can represent the Mass–Radius (MR) curve
which is the most important result in this static problem. Different EOSs may lead to very
different MR curves, then the measurement of these observables can constrain the curve
and so the EOS. Indeed, the region of low mass values in the MR curve has been tightly
constrained from nuclear experiments at low densities.

The TOV system can be generalized via the Hartle–Thorne perturbative formalism
to consider rotating NS in a slow rotation approximation. In that case, more equations
are added to the TOV system; hence, a new set of observables like the moment of inertia,
rotational Love number and quadrupolar moment may be extracted. These observables are
typically obtained from isolated pulsars; hence, the importance in the extension of the TOV
system to the Hartle–Thorne formalism lies in the appearance of a new source of infor-
mation for NS to restrict the nuclear EOS. Furthermore, it is possible to extract from this
formalism an additional equation which describes how a compact object is deformed
by an external tidal force. The associated observable is the tidal deformability which can be
calculated from the GW spectrum emitted in NS collisions.

In this work, we will only consider the MR curves and the tidal deformability to com-
pare with recent observations.

5.2. A Generalized Skyrme EOS

In this section, we want to briefly review the construction of a Skyrme-model-based
EOS first discussed in [50], based on the following two observations. Firstly, neutron
stars based on the standard L24 model lead to too small maximum NS masses [36],
whereas the EOSs based on the L60 submodel imply rather large maximum masses [73].
Secondly, the sextic term provides the leading contribution to the EOS at large densities [35],
whereas it must be subleading at lower densities because of its scaling properties. This
motivates one to consider a generalized Skyrme model EOS in the study of NS which
interpolates between the standard L24 crystal EOS at intermediate densities and the L60
submodel EOS at large densities, as was done in [50]. Then, we will compare these results
with the full numerical generalized Skyrme crystal solutions.

Even though we have not compared the energy of the crystals with other Skyrmion
solutions, it is known that the crystalline configurations are, so far, the ones with the lowest
energy in the standard (L24) Skyrme model. In one of the works where the FCC+ crystal
was found [42], a parametrization of the energy in terms of the unit cell side length, similar
to Equation (21), is shown

E24(l) = E0

[
a
(

l
l0

+
l0
l

)
+ b
]

, (92)

where a = 0.474 and b = 0.0515 are dimensionless parameters, and E0, l0 are, respectively,
the energy and length scales of the minimum in the E(L) curve. The relation between
the lattice length used in [42] and the one used in this work is l = 2L. Since the standard
Skyrme model is relevant at lower energies, we want to identify the minimum of the crystal
with the saturation point of infinite nuclear matter, E0 = 923.3 MeV, l−3

0 = n0 = 0.16 fm−3.
The change in the values with respect to the ones originally used may be seen as a redefini-
tion for fπ and e. From Equation (92) we may obtain the pressure and the energy density
using Equation (25),

p24(l) = a
E0

3l2

(
l0
l2 −

1
l0

)
, (93)

which vanishes at the minimum l0.
On the other hand, for high densities the sextic term is the most relevant one since

the EOS yielded by this term is maximally stiff (ρ6 = p), with a speed of sound (c2
s = ∂p/∂ρ)

equal to 1. The BPS Skyrme model, even with a general potential term (with no derivatives
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of U), L0 = −µ2U , retains this property; moreover, its stress-energy tensor is of the perfect
fluid form from which we may easily obtain the EOS.

Tµν
BPS = (p + ρ)uµuν + pgµν, uµ =

Bµ√
gαβBαBβ

, (94)

p = λ2π4gαβBαBβ − µ2U , ρ = p + 2µ2U . (95)

Additionally, since the topological current B0 may be identified with the baryon
density nB in the Skyrme model, a full thermodynamical relation between p, ρ and nB can
be obtained

p + ρ = 2λ2π4n2
B. (96)

The dependence on the Skyrme field of the potential U may lead to a non-barotropic
EOS, but the idea to finally join both submodels is to take a constant potential which will
take into account the residual contributions when we are at high densities. Then, we define
the EOS at high densities as,

ρ = ρ6 + ρ0 = p + const. (97)

Besides the different properties that each submodel has, some attempts to describe
NS also motivate a generalized model from the combination of these two submodels
to describe nuclear matter from the saturation point n0 to very high densities (n ∼ 10n0).
Skyrmion crystals described by Equation (92) with the original parameters were used
to calculate NS observables [74]; however, the masses turn out to be too small (Mmax ≈
1.5M�) compared with the most recent measurements of NS (Mmax ≥ 2M�). Later, the BPS
Skyrme model was also coupled to gravity [73], using different potentials, and the NS
masses were too large (Mmax ≈ 3–4M�) compared to observations. These results are
themselves an evident motivation to combine the submodels and study the NS properties,
since we intuitively may think that a generalized model would lead to intermedium NS
masses, which are precisely in the region of observed masses (M ∼ 2–2.5M�).

In [27] the parameters of the BPS submodel (λ2, µ2) were fitted to reproduce the nu-
clear saturation point. However, from the previous discussions we use the parameters
of the standard Skyrme model to fit the minimum of the crystal to these values and construct
a generalized Skyrme EOS from the asymptotic values,

ρGen(p� pPT) = ρSk, ρGen(p� pPT) = p + const. (98)

The EOS ρSk(p) may be obtained from E24(l)/l3 and the relation between l and p24
in Equation (93). A simple construction, continuous and with a smooth transition between
the two descriptions is an interpolation of the form,

ρGen(p) =(1− α(p, pPT , β))ρSk + α(p, pPT , β)(p + ρSk(pPT)), (99)

α(p, pPT , β) =
(p/pPT)

β

1 + (p/pPT)β
. (100)

For this interpolation, the value of β measures how fast the transition is. Here, we
take the value β = 0.9 since depending on the value of pPT a larger value of β would lead
to a speed of sound larger than 1 in some regions inside the star. We will constrain the range
of values for pPT comparing the resulting maximum masses with the observations.

Although we have constructed a general EOS which is able to describe matter inside
NS, it is still not complete. We have seen that the low density model (the Skyrme crystal) is
only valid above nuclear saturation due to the presence of a minimum. For densities below
saturation, finite-size and electromagnetic effects become important so we need to take
them into account. The modelling of very large B nuclei or the coupling to electromagnetic
interactions is possible within the Skyrme model; however, how nuclear matter behaves
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below saturation is well known using standard methods such as many-body calculations.
Then, for our purpose we may use one of these models to describe the low density regimes
inside NS. Indeed, we will use the low density model to describe nuclear matter until
a certain pressure, denoted by p∗ and then we glue the generalized model Equation (99);
hence, we are adding a crust to our generalized EOS which will mainly affect NS with low
masses. We take the BCPM equation of state [75] as the model for low densities and perform
a similar interpolation as before between this model and Equation (99). For the same α(p)
function, taking β = 2 and replacing pPT by p∗, we called the combination of the two
models the Hybrid EOS,

ρHyb = (1− α(p, p∗, 2))ρBCPM + α(p, p∗, 2)ρGen. (101)

The resulting EOSs, as well as some standard nuclear physics EOSs, are shown in Figure 16.

Figure 16. Energy and baryon density of the standard Skyrme crystal, the BPS model, the Generalized
model with pPT = 50 MeV/fm3 and the Hybrid model, with the same pPT and p∗ = 2 MeV/fm3.
We also show some usually considered EOSs: APR4, WWF1, BCPM and we fill in orange and blue
the regions of allowed values for pPT and p∗. This figure was originally published in [50]

We sample the space of parameters (pPT , p∗) and restrict their values, solving the TOV
equations to compare the mass and radius results with some pulsar and GW measurements.
We plot in Figure 17 some representative results of the MR curves to show the accurate
agreement between the generalized Skyrme EOS and observations. We use the constraints
of maximum mass M/M� = 2.16+0.17

−0.15 from the combined analysis of the GW170817
event and quasi-universal relations from NS in [76], which constrains the medium mass
(∼1.4M�) region, also the heavier pulsar observations PSR J1614–2230 (1.928± 0.017M�) [77],
PSR J0348 + 0432 (2.01± 0.04M�) [78], PSR J0740 + 6620 (2.14+0.10

−0.09M�) [79], and some addi-
tional constraints from NICER, chiral EFT and multimessenger observations [80]. As expected,
it is found that pPT affects the maximum mass value, while p∗ mostly determines the radius
of the medium mass range. The allowed ranges for the two transition pressures in or-
der to satisfy the constraints are pPT ∈ [25, 50] MeV/fm3 and p∗ ∈ [0.5, 2] MeV/fm3.
We even allowed for maximal masses ∼2.7M� much larger than the observations, mainly
motivated by the [81] event in which a black hole and a secondary compact object falls
in the mass gap (2.5–2.7M�) [82], with the possibility of being the heaviest stable NS ever
observed. In addition, we want to remark that we may easily accommodate these very



Symmetry 2023, 15, 899 34 of 48

large values of NS masses, keeping reasonable values of the radii in the medium mass
region, which is not an easy task in general for other nuclear models.

Figure 17. Mass–Radius curves of the Hybrid model with the values pPT = {25, 40, 50},
p∗ = {0.5, 1, 2}MeV/fm3. We compare our results with those of other EOSs and constraints obtained
from different analyses. This figure was originally published in [50].

It is also possible to extend the calculations and solve an additional equation to obtain
the tidal deformability for a non-rotating NS [50]. The importance of this magnitude is that
it can be extracted from the waveform of the early phase inspiralling coalescence of two
NSs. Indeed, what can be measured is a mass weighted averaged of the two individual
deformabilities which is called effective tidal deformability Λ̃. Similarly, the individual
masses are not directly measured as well, but a magnitude called the chirp mass, Mc =
m1q3/5/(1 + q)1/5, with q = m1/m2 being the ratio between the two masses, has been
constrained at the 90% confidence level in the GW170817 event [83]. In Figure 18, we show
the effective tidal deformability obtained from our Hybrid model with the estimations
extracted from [84] of the effective tidal deformability for the measured values Mc =
1.188+0.004

−0.002 and q = 0.7− 1.

Figure 18. The effective tidal deformability Λ̃ of the Hybrid model against the mass ratio. The orange
regions show the PDFs obtained from [84], and we adopt the notation Hyb_pPT_p∗ for the curves.
This figure was originally published in [50].
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The estimated value of Λ̃ from the GW170817 event is rather low (smaller than 800) and
it is a new source to eliminate some EOSs which may satisfy the mass–radius constraints
but do not have a correct value of the deformability.

5.3. Skyrme Crystal EOS

The results from the last section provide a strong motivation to use the full crystal
solutions within the generalized Skyrme model, studied in the first section, to compute
NS observables. Besides being solutions of the generalized Skyrme model, we have seen
how the crystals allow to include isospin effects which furthermore led to the addition
of leptons, leading to a much more realistic description of nuclear matter at high densities.
However, these solutions and their properties depend on the values of the parameters that
appear in the model, which we have set to some standard values. Then, in order to be
acceptable candidates to describe realistic nuclear matter they must reproduce observables
from nuclear physics and NSs. In this section, we will study how to fit the parameters
to reproduce different nuclear observables using Skyrme crystals and, finally, we will
extract the most important NS observables and compare them with the most fiducial
measurements.

Scan of the Parameters

A remarkable property of the standard Skyrme model without potential term (namely,
the quadratic and quartic terms only) is that, with a suitable choice of units, one can factor
out all dimensionful constants from the energy functional, so that the constants remaining
inside it are just dimensionless numbers. This can be seen, for example, in Equation (21).
As a consequence, one can just forget about the numerical values of the coupling constants
and numerically find the different crystalline solutions at different unit cell lengths. Once
the relation between the (adimensional) energy and length E(L) is found, the values
of the coupling constants can be adjusted a posteriori in order to fit whatever observable we
are interested in. Unfortunately, the addition of the sextic and mass potential terms to the
energy functional spoils this property, as there is no choice of units that allows to factor
out all coupling constants in the energy functional. This means that, in order to be able
to obtain solutions, one needs first to give specific values to (some of) the coupling constants
appearing in the problem. However, this is problematic if one wants to fit the values
of energy and density to some physical values. For example, we want to identify the energy
and the density at the minimum of the crystal (L0) with the nuclear saturation point;
however, one cannot know the value of L0 without performing the numerical simulations,
but in order to do so you need to fix the values of the parameters.

Hence, the fitting of the Skyrmion crystal parameters in the generalized model to val-
ues at nuclear saturation is, in principle, a very difficult problem that needs to be solved
iteratively until a self-consistent solution is achieved. Given the computational cost of sim-
ulating a single unit cell at a given length, following this naive approach would make
it almost impossible to realize a significant scan of parameters in a reasonable time.

However, from the results of our numerical simulations we have observed that
the FCC+ crystal displays an almost perfect scaling property [45] with the unit cell length.
This property is stronger than the fact that each E(L) curve may be fitted by Equation (21);
it means that each of the terms in the energy functional scales with L independently as
Ei ∝ L−i+3, where i is again the number of spatial derivatives appearing in that particular
term. The values of the perfect scaling constants, which we label Ki, are then universal
in the sense that they will not change for different values of the parameters. This perfect
scaling property is a characteristic of the field configuration, and not only of its energy.
For example, in Figure 19 it is observed that also the isospin moment of inertia of the crystal
unit cell displays a sufficiently well perfect scaling. This is important in our analysis since
we also want to fit the values of the symmetry energy and its derivatives.



Symmetry 2023, 15, 899 36 of 48

2 3 4 5 6 7 8 9 10
L

1.0

1.5

2.0

2.5

3.0

3.5

4.0

E
/B

λ 2 = 0

λ 2 = 1.5

λ 2 = 3.5

λ 2 = 5

2 3 4 5 6 7 8 9 10
L

10

20

30

40

50

Λ

Figure 19. Energy and isospin moment of inertia of a Skyrmion crystal as obtained via the full
numerical minimization (dots) and the perfect scaling fit (solid curves), for the models with and
without sextic term.

Although the scaling is not perfect, in general the biggest deviations from the full
numerical values of energy start far from the minimum, at which the perfect scaling fit is
most precise.

Thus, we take advantage of this property in order to fit the magnitudes obtained
from generalized Skyrme crystals to their physical values (up to a certain error). We do so
following an iterative process based on five main steps:

1. Due to the perfect scaling property, the (adimensional) energy and isospin moment
of inertia approximately satisfy the following expressions,

E(L, c6, c0) = K2L +
K4

L
+ c6

K6

L3 + c0K0L3, (102)

Λ(L, c6, c0) = Λ2L3 + Λ4L + c6
Λ6

L
, (103)

and the values of Ki and Λi are “universal”, i.e., they do not depend on the param-
eters or on L. Hence, these values are obtained from the contribution of each term
independently, for only one choice of the parameters and for a single value of the unit
cell length L. For simplicity, we set c0 and c6 equal to one. The values of the universal
scaling constants are shown in Table 7.

Table 7. Perfect scaling parametrization constants.

n 0 2 4 6

Kn 0.034 0.466 9.617 4.329

Λn – 0.038 1.393 0.883

2. We fix the energy scale Es to a desired value in MeV. This is equivalent to fixing one
of the three free parameters of the model, for instance, fπ .

3. Then, we calculate L0 by minimizing (102) and the values of E0, n0, S0 and Lsym

for different pairs of values (e, λ2).
4. When we find a set of parameters ( fπ , e, λ2) that fits the nuclear magnitudes within

their respective errors of at most 15% then we calculate the corresponding EOS and
solve the TOV system to obtain the mass–radius curve.

5. Finally, we accept the sets of values that satisfy the constraints, Mmax ≥ 2M� and
R1.4M� ≤ 12.5 km. These constraints are motivated from pulsar measurements [78,85,86].
We find that there is more than one set of parameters, so there is a residual freedom
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in the choice of these values that satisfy the nuclear physics magnitudes at saturation
and NS observables.

We plot in Figure 20 the result of a scan for a fixed value of the energy scale; for other
values of Es, new sets of parameters were found.

5 6 7 8 9 10
e

10 1

100

101

102

103

E0

S0

n0

Figure 20. Scan of the parameters (e, λ2) for a fixed value of Es. Each colored line corresponds
to a fixed value of λ2 and the black horizontal lines are the experimental values of E0, n0 and S0.
The yellow dots are the optimal values and they lie in the black vertical line which is the corresponding
value of e.

The scan of parameters underscores the motivation for the generalized Skyrme model.
The nuclear physics magnitudes are better fitted for very low or even null values of λ2 since
the sextic term reduces the value of S0. However, those sets of parameters are not accepted
since they do not satisfy the maximum mass requirement. This reflects the importance
of the sextic term in the extension of the Skyrme model to very high densities as inside NSs.

In Figure 21, we plot 560 symmetry energy curves obtained from a first quick scan
in blue, and in red we plot 23 representative cases from the larger set which have been
fully minimized. We also represent at densities larger than n0 some restrictions obtained
from the most recent constraints of the analysis of neutron star observations, and at densities
smaller than the saturation point which are more restrictive.
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60

S
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)

Figure 21. Symmetry energy of Skyrme crystals as a function of the density. We show 23 differ-
ent curves from the scanned values. The shaded regions constrain the symmetry energy at sub-
saturation [87] and supra-saturation [61] densities.
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We obtained the EOSs from these 23 sets of parameters and compared them with some
constraints obtained from a recent analysis [37]. In that work they build a huge number
of physically well motivated EOSs and compared the resulting NSs with pulsars and GW
observations. They conclude that the conformal limit in the speed of sound (c2

s = 1/3) is
expected to be surpassed inside NSs. In Figure 22, we show the EOSs obtained from our
analysis and a good agreement is found with their results. The majority of our EOSs exceeds
the conformal bound too, and all of them lie inside the constrained region in the (ρ, p)
diagram. We cut the low density region in Figure 22 due to the absence of a crust in our
EOSs. However, it is remarkable how the Skyrme model correctly describes the high
density regime, which corresponds to the core of the NSs and hence is mainly responsible
for the mass of the star. Moreover, the BCPM [75] EOS is represented as an accepted
candidate to compare with in the diagram.
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Figure 22. The EOS for the same 23 values shown before. In black, we plot the resulting EOS without
isospin effects, whilst in red we consider npeµ matter. We find a good agreement between our EOS
and the shaded regions obtained from the analysis in [37] at high densities. The purple region is
an estimation for the range of the maximum central density inside NSs, and the dots represent
the maximum central energy densities in our models.

In a more extensive analysis of the parameters, we found ∼10, 000 accepted sets of pa-
rameters. In order to obtain these values, we made the scan with the steps: ∆Es = 5 MeV,
∆e = 0.01, ∆λ2 = 0.01 MeV fm3. As briefly mentioned before, the constraints on the sym-
metry energy yield rather stringent upper bounds on the sextic term coupling constant, we
find that λ2 . 3.4 MeV fm3. Nevertheless, we remark that a lower bound for this constant
can also be obtained from the maximum mass requirement of neutron star EOSs [88]. In
this analysis, we found a lower bound of λ2 & 0.29 MeV fm3.

We solved the system for the same 23 cases and in Figure 23 we plot the MR curves,
again with and without isospin effects for each case. The main conclusion is that the isospin
always increases the radii of the stars. On the other hand, the isospin increases the masses
of the stars with M . 2.3 M�; for larger values, the masses are reduced. This effect is
also visible in Figure 22, where the red curves lie below the black lines at lower densities;
hence, the reds are stiffer, whilst for very high densities the situation is slightly the opposite.
Another keypoint is that all the sets of parameters obtained in this analysis allow one
to have a wide range of maximum masses, Mmax ∼ 2–2.5M�. This was an important feature
in the NS obtained in the last section, and it is still possible using the fully minimized
Skyrme crystals. This is of great important for the Skyrme model since it would be able
to describe possible high-mass measurements as in [81]. In addition, despite the difference
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in the maximum masses, the radii of the stars do not change as much when choosing
some parameters or others, R1.4M� ∼ 12–13 km. However, a final comment about the radii
of the NS requires the presence of a crust, since it will affect the radii of low mass NSs.
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¯
)

Figure 23. Mass–Radius curves for the 23 representative sets of parameters considered. The colors
of the lines represent the same as in Figure 22. The shaded regions correspond to GW (blue and
orange) and pulsar (green) constraints.

As can be seen, all the black lines satisfy (in good approximation) our Mmax and R1.4M�
restrictions although they were imposed on the mass–radius curves resulting from the PS
approximation. We checked that the mass–radius curves obtained via the PS approximation
are indeed quite similar to those of the fully minimized results for these 23 cases, so
it confirms the PS approximation as a powerful and accurate tool for Skyrmion crystals.

We also plot in Figure 23 the most likely mass–radius relations for the NS corre-
sponding to GW170817 [83] and GW190425 [81] events. The green regions represent
the estimations for the mass and radius values of J0030+0451 (bottom) [89], and a more
recent analysis of the PSR J0740+6620 mass and radius from NICER (top) [85]. The purple
region constrains the mass–radius curves from the statistical analysis done in [37]; in addi-
tion, they also give an estimation for the maximum central energy density that an NS may
support. We also do the comparison in Figure 22 between the range of values that they
obtain (purple region) and our values (dots).

The greatest difference between the NSs obtained using the interpolation between
the submodels in the last section and those obtained from the minimization of the general-
ized Skyrme model using crystal solutions is found in the radii. Although we still have
freedom to reach very high masses∼2.5 M�, the radius increases when we consider the full
model. The low-mass region (∼1.4 M�) in the MR curves of Figures 17 and 23 differ due
to the presence of a crust in the first case. We do not include a crust in the EOS shown
in this section since it would be more interesting to consider an EOS which already has
a crust entirely obtained from the Skyrme model. This is still an open problem due to the



Symmetry 2023, 15, 899 40 of 48

behavior of the Skyrme crystals at low densities, but the study of the new lattices presented
in the first section may lead to the correct description of the full EOS within the Skyrme
model. Nonetheless, we have seen that the inclusion of a crust via the simple construction
Equation (101) increases the radius of the NS around 1 km.

On the other hand, the 2.5 M� NS radius in Figure 17 is around 11.5 km, while
the radius for the same mass in Figure 23 reaches 13 km. These high-mass NSs are hardly
affected by the presence of a crust, so the numerical simulation of the Skyrme crystal
leads to a stiffer EOS. Nevertheless, the high-mass region of the last plot may be sharply
improved with the inclusion of strangeness degrees of freedom in the system. Taking into
account this effect provides even more realistic EOSs; in addition, it is known that it will
decrease the maximal mass as well as the radius, leading to a softer EOS at high densities.

5.4. Including Kaons

The main ingredient to obtain the EOS for the Skyrme crystal is the energy dependence
on the unit cell size. We have shown the results in the npeµ matter case above. However,
once we include kaons, the change in the energy curve leads to a first-order phase transition,
see Figure 24. This can be clearly seen in the right plot of Figure 24, where we show
the resulting EOS. There exists a region of diminishing pressure, which implies a first-order
phase transition which, in principle, can be treated by a Maxwell construction or a Gibbs
construction.
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Figure 24. Left plot: energy against the side length of the crystal, calculated with more points near
the condensation values for both branches and their interpolations. Right plot: pressure against
the energy density from which we conclude that there is a first-order phase transition. All magnitudes
are shown in Skyrme units.

The Maxwell construction (MC) is the standard procedure to obtain a physical EOS
when a first-order transition is present. Indeed, the MC has already been used for Skyrme
crystals to describe the transition between crystals with different symmetries [45]. The MC is
based on a mixed phase of constant pressure which connects the two solutions.
However, the MC is only correct if there exists a single conserved charge (in this case,
the baryon number) for which the associated chemical potential is enforced to be common
for both phases in the mixed phase [90]. If, instead, an additional charge is conserved, like
the electric charge in the case of npeµ matter, the Gibbs conditions for the phase equilibrium,

pI = pII, µI
i = µII

i , i = B, q (104)
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cannot be both satisfied in a standard MC. In the last expression µB and µq represent
the chemical potentials associated with the conserved baryon and electric charges, respec-
tively. Instead, one should perform a Gibbs construction (GC) [90,91]. Indeed, the GC
has also been proven useful in the context of a hadron-to-quark phase transition inside
NSs [92].

We may write the chemical potential of each particle species as a linear combination
of the chemical potentials associated with the conserved charges of our system:

µi = BiµB + qiµq, (105)

where Bi and qi are the baryon number and electric charge of the particle species i. Then, we
might identify the baryon and electric charge chemical potentials with the neutron and electron
chemical potentials, respectively. The main difference between MC and GC is that, in the mixed
phase, the first one imposes charge neutrality independently for both phases, whereas in the GC
it is only imposed globally in the mixed phase. Considering a volume fraction χ of the kaon
condensed phase, charge neutrality is imposed in the GC as:

nMP
q = (1− χ)nI

q + χnII
q = 0. (106)

The mixed phase in the GC is calculated by identifying first the contributions to the
pressure and charge densities in each phase separately. Then, we have to solve the system
of equations composed by Equations (84), (104) and (106).

We show our results in Figures 25 and 26, using in all figures the parameter set 1
from Table 6. We find that the mixed phase of the GC and, therefore, the density at which
the kaon condensate sets in, is smaller density than the value obtained in Table 6. This is
also found in [91], for which the GC mixed phase extends to a larger region than the one
obtained from the MC, because the mixed phase in the GC no longer is for constant pressure.
In our case, even the minimum of E(L) is shifted to slightly lower values, see Figure 25
and, hence, the use of the GC affects the low density regime of the EOS, as can be seen
in Figure 26.
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Figure 25. E(L) curves for the two phases. The different slopes at the point of phase separation
indicate a first-order phase transition. We also show the curves resulting from a Maxwell construction
(MC) and a Gibbs construction (GC).
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Figure 26. EOS for the three different cases that we have constructed. The jump in the MC due to the
first-order transition and the different behavior of the GC at low densities are clearly visible. We also show
the standard nuclear physics EOS of [75] (BCPM) and a hybrid EoS obtained by joining the BCPM EOS
at low pressure with the GC EOS at high pressure. This figure was originally published in [49].

We may also calculate the particle fractions in the mixed phase of the GC using
an expression equivalent to Equations (106) for each particle. We show the new particle
fractions in Figure 27. In addition, during the mixed phase, we find that there are more
protons in the second phase than in the first one. However, the presence of more kaons
than protons in the second phase results in a partial negative charge density. That negative
charge is compensated by the overall positive charge density of the first phase. In both
phases the number of electrons is much less than that of protons and kaons.
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Figure 27. Particle fractions for the Gibbs Construction of the kaon condensation phase transition.
This figure was originally published in [49].
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Once we have obtained the EOS by performing a Gibbs construction, the correspond-
ing NS solutions can be obtained. We show in the left panel of Figure 28 the mass–radius
curves for the four different sets of parameters given in Table 6.
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Figure 28. Mass–Radius curves of NS with a kaon condensed core. The different sets of parameters
that we consider are shown with different colors. Left panel: Solid lines represent npeµ matter,
dashed-dotted lines are obtained with an MC and the dashed with the GC. Right panel: The effect
of adding a standard nuclear physics crust to the Skyrme crystal EoS with kaon condensate obtained
from the Gibbs construction (GC). This figure was originally published in [49].

In the right panel of Figure 28, we show the same curves but after the addition
of a crust to the NS. We do so by joining the GC equations of state of the Skyrme crys-
tal with the BCPM EOS [75] for low densities, exactly as in Section 5.2. The two EOSs
join at the pressure p = p∗ where they coincide, i.e., where ρBCPM(p∗) = ρ,crystal(p∗).
In terms of the baryon density, the joining occurs at nB,∗ ∼ 1.1n0 for the parameter sets
1–3, and for nB,∗ ∼ 1.2n0 for the set 4. Again, as in [50], we assume a smooth joining
between the two EOSs (concretely, described by a quadratic interpolation) in order to avoid
an artificial phase transition at p∗. We also plot in Figure 28 the most likely mass–radius
relations for the NS corresponding to GW170817 [83] and GW190425 [81] events (orange and
blue regions). The green regions represent the estimations for the mass and radius values
of PSR J0740+6620 (top) [89] and J0030+0451 (bottom) [85]. The purple region constraints
the mass–radius curves from the statistical analysis done in [37]. We find that the NSs resulting
from the addition of a crust to the Skyrme crystal EOS with a nonzero kaon condensate agree
very well with these recent constraints. Further, the softening of the EOS due to the presence
of kaons and the resulting smaller NS radii are important for this agreement.

6. Conclusions and Outlook

It was the main purpose of the present paper to report and review recent progress
on the modeling of nuclear matter in terms of Skyrme crystals and its application to neutron
stars. To put our results in perspective, in the first instant let us underline that, despite
its conceptual strengths and some partial successes, the Skyrme model in its current state
of exploration is not yet quantitatively competitive with more standard methods of nuclear
physics in the description of the large number of available data on nuclei and nuclear matter
at low densities. We believe, nevertheless, that the investigation of the Skyrme model as
a possible model to describe nuclear matter is a worthy enterprise, for the following reasons.

Firstly, once the assumption of periodicity of Skyrmionic matter is accepted, the Skyrme
model actually simplifies at higher densities and shows a more universal behavior which
does not depend on many details (e.g., potential terms) which would be very relevant
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at low densities. The results reported in the present review are a clear demonstration of this
fact. The Skyrme model, therefore, provides a rather simple alternative for the descrip-
tion of nuclear matter at high densities which is based on the qualitative assumptions
that (i) in the high-pressure region repulsive nuclear forces are more important than, e.g.,
degeneracy pressure, (ii) the extended character of nucleons—which is a built-in property
of the model—is important and (iii) the deconfinement transition is irrelevant inside NSs.
The inclusion of further hadronic degrees of freedom, on the other hand, is in principle
straightforward, and we considered the condensation of kaons as a relevant example.

Secondly, the methods and calculations presented in this article can be applied with
only minor modifications to more extended versions of the Skyrme model, where additional
terms and further degrees of freedom (e.g., vector mesons) are included. In other words,
once promising candidates among these extended Skyrme models have been identified,
their application to the study of nuclear matter at high densities and the resulting NS is
relatively straightforward. The difficult part in finding these promising models is related
to the calculation of Skyrmion solutions, particularly for higher baryon number B, and
to the identification and calculation of the most relevant quantum corrections. It is our hope
that powerful up-to-date computing resources together with modern machine learning
techniques such as neural networks or other artificial-intelligence-based methods will
allow to find such promising models via a systematic exploration of the parameter space
of the extended Skyrme models. In any case, the progress achieved in recent years is
encouraging.

In our investigation, we placed special emphasis on the importance of the sextic
term of the Skyrme model for a viable description of strongly interacting matter at high
densities. Further, the impact of this term on the resulting EOS and properties of NS
was studied in detail. We also included the important effects of isospin quantization,
relevant for the modeling of non-symmetric nuclear matter, and of kaon condensation
on the Skyrmionic matter properties. The overall behavior of the resulting models of nuclear
matter at high density and the resulting NS is already in good agreement with observa-
tional data for certain choices of the coupling constants of the underlying Skyrme crystal.
Still, there remain some minor differences with the EOSs and NSs that are most favored
by recent observations. In particular, there are indications that the Skyrme crystal EOS is
slightly too stiff in the intermediate density range (close to saturation), resulting in mass–
radius curves with slightly bigger radii than the most likely ones according to a statistical
analysis of observational data. On the other hand, these differences typically do not exceed
one kilometer, demonstrating that the Skyrme crystal framework in its current state of de-
velopment already provides a very reasonable description. There are several possible ways
to overcome the remaining discrepancies.

There are, in fact, still some open questions remaining in the Skyrme crystal framework,
and many interesting ways in which the results reviewed here can be extended. For instance,
the ground state of the Skyrme model with periodic boundary conditions for values
of the lattice parameter L slightly above the value at the minimum is not known in the large
baryon number limit. That is to say, Skyrmion matter in this region is not correctly described
by the Skyrme crystal and will most likely be more inhomogeneous, see, e.g., Figure 13,
which would result in a softening of the EOS there. This implies that some observables,
such as the compression modulus, which measures the curvature of the energy vs lattice
length, will not be well reproduced in the Skyrme crystal at the saturation point. Further
investigations on the low density limit of the model are also required in order to be able
to describe the physics of neutron star crusts, without recurring to a matching with other
nuclear EOSs. In particular, a more realistic description of these intermediate and low
density regions will require the addition of further terms to the Lagrangian and the inclusion
of further degrees of freedom (DOFs) such as hyperons or additional mesons. Additional
DOFs, in general, tend to soften the EOSs, and some of these DOFs may have a significant
impact on the EOSs. This question should be further investigated.
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Further, a more meticulous treatment of the quantum corrections to the crystal EOS
should include, in addition to the isospin quantum effects, also the effect of quantum
fluctuations associated with non-zero modes such as, e.g., small fluctuation of the pion
fields on top of the crystal background. The excitation of such modes could play a relevant
role in the finite temperature case, but they might also be important in the zero temperature
limit, in which case they contribute to the one loop correction to the energy of the crystal,
or the Casimir energy. However, the computation of Casimir energies for solitons in three
dimensions without spherical symmetry is in general extremely difficult, especially in non-
renormalizable theories such as the Skyrme model, and in the case of Skyrmion crystals
some sort of mean field approximation will probably be necessary. A further natural
extension of the EOS presented here is the inclusion of the effects of finite temperature
and/or a large magnetic field, as well as the study of transport properties of Skyrmion
crystals, which are crucial for describing nonequilibrium processes of nuclear matter.

Finally, we want to comment on the relevance of our findings for the generalized
nuclear effective field theory (GnEFT) based on the hidden local symmetry [14] which
we already mentioned in the introduction. Owing to their different field contents, many
results are difficult to compare directly between the two theories. There are, however,
some results in the GnEFT which are based on the assumption of a Skyrmion-to-half-
Skyrmion phase transition somewhere above two times the nuclear saturation density [93].
All that we can say about this issue is that in all our investigations we did not find a sign
of this phase transition. For zero pion mass, we formally do find a Skyrmion-to-half-
Skyrmion phase transition (from the FCC to the FCC+ crystal), but this transition is located
on the thermodynamically unstable branch, i.e., at a baryon density below the density
n0 where the energy takes its minimum value; see Figure 8. Because of this instability,
the Skyrme crystal and its resulting EOS are physically irrelevant in this region and, further,
we know that there exist other, more inhomogeneous Skyrme matter solutions with lower
energy; see Figure 13. It was natural for our purposes to identify n0 with the nuclear
saturation density, but the present argument, in fact, does not depend on this identification.
In other words, our results for the generalized Skyrme model agree with the standard
Skyrme model results in [41], which the authors of that paper summarized as “Thus
the phase transition between a crystal of half-Skyrmions to a crystal of Skyrmions that
was investigated in Refs. [5–11,14] is not accessible, it appears on a thermodynamically
unstable branch of the phase diagram” (the reference numbers are the references of that
paper). Of course, even in the IR limit the effective coupling constants in the Skyrme-type
model appearing in the GnEFT are different from ours, and at higher densities the impact
of additional fields is difficult to gauge. However, taking into account that a Skyrmion-
to-half-Skyrmion phase transition in a physically relevant branch of the Skyrme crystal
EOS has not been found in the full numerical study of any Skyrme model, this transition is
probably rather unlikely to happen.
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