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Abstract: It is agreed by industry experts that manufacturing processes are evaluated using quantita-
tive indicators of units produced from this process. For example, the Cpy process capability index
is usually unknown and therefore estimated based on a sample drawn from the requested process.
In this paper, Cpy process capability index estimates were generated using two iterative methods and
a Bayesian method of estimation based on stepwise controlled type II data from the Pareto model.
In iterative methods, besides the traditional probability-based estimation, there are other competitive
methods, known as bootstrap, which are alternative methods to the common probability method,
especially in small samples. In the Bayesian method, we have applied the Gibbs sampling procedure
with the help of the significant sampling technique. Moreover, the approximate and highest confi-
dence intervals for the posterior intensity of Cpy were also obtained. Massive simulation studies have
been performed to evaluate the behavior of Cpy. Ultimately, application to real-life data is seen to
demonstrate the proposed methodology and its applicability.

Keywords: statistical model; process capability index; parametric bootstrap; simulation; statistics
and numerical data; importance sampling technique

1. Introduction

Process capability indicators are statistical measures of the inherent variability of a
process and its ability to meet specifications. They are used to evaluate the quality and
performance of parts and processes. Some common process capability indicators are: (i) Cp
and Cpk: They show how capable a process is of meeting its specification limits, used with
continuous data. Cp measures the potential capability of a process, while Cpk measures the
actual capability during production. They are calculated as ratios of the specification width
to the process width; (ii) Sigma: It is a capability estimate typically used with attribute
data (i.e., with defect rates). It reflects the non-conformance rate of a process by expressing
this performance in the form of a single number; and (iii) Cpm: It is a capability estimate
that takes into account the deviation of the process mean from the target value. It is
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used when the process output has a nominal or optimal value that is different from the
midpoint of the specification limits. Process capability indicators can be applied to different
fields and industries. For example, in agriculture, capability assessment is a method to
assess land suitability for existing and potential agricultural and non-agricultural uses. It
identifies possible physical, chemical and degradation constraints to land use on particular
soils and landscapes. In medical sciences, the capability assessment can help measure the
performance, precision and trueness of a process within the specifications and incorporate
the loss function in capability analysis. Some examples of applications in the health field
are: Assessment of quality control processes at a clinical laboratory chain; evaluation of
well-being and social care interventions using the capability approach; measurement of
process capability for electronic industries using a new index based on symmetric loss
function. In engineering, the process capability indicators are appropriate and practical
tools for asses ensuring that manufactured products conform to specifications. Moreover,
product design information can be provided to reduce cost due to product failure. Therefore,
quality control engineers use various statistical process methods to measure the capacity of
a manufacturing process and to determine required specifications. In the literature, there
are many compounds that can be applied to provide numerical measures of the ability
of a process, see Montgomery [1] and Kane [2]. These vehicles/compounds include the
process capability index/indicator (PCI), which provides a numerical indication of whether
or not the production process is capable of producing products within specification limits.
This specification is determined by the minimum specification limit L, the upper limit U,
and the target value T. Many articles seem to introduce new indicators or examine the
properties of existing indicators based on various assumptions. For example, Kotz and
Johnson [3] presented an extensive bibliography on process capacity indicators. Kaminsky
et al. [4] provided an overview of the use of product conforming process capacity indicators.
Schneider et al. [5] discussed the uses PCI in the supplier certification process. The widest
indices in particular of normally distributed characteristics are Cp, Cpk, Cpm and Cpmk. For
more precise details and clarifications about these indices, we refer to Juran [6], Chan et al.
[7], Kotz and Lovelace [8], Pearn et al. [9] and Gunter [10]. On the other hand, there are
several PCIs that are valid for both nonnormal and typical output process characteristics,
see Pearn and Chen [11,12], Clements [13] and Polansky [14].

In recent years, Maiti et al. [15] listed a new generic index Cpy related directly or
indirectly to most PCIs described in the past. Moreover, they include the characteristics of
normal, continuous, abnormal as well as discrete quality and are defined as follows:

Cpy =
F(U)− F(L)

F(UDL)− F(LDL)
=

P
P0

, (1)

where F is the distribution function of the quality characteristic X. L and U are the lower
and upper limits of the specification, respectively. LDL and UDL are the desirable lower
and upper limits, respectively. It can also be formulated in terms of tail probabilities as

Cpy =
1
P0

(
1−

[
F(U) + F(L)

])
, (2)

where P is the output of the process, and P0 is the desired yield. For normal operation with

LDL = µ− 3σ , UDL = µ + 3σ ⇒ Cpy =
P

0.9973
. (3)

From (3) we observe that, if P > P0, then Cpy > 1, if P = P0 (for a normal process,
P = 0.9973), then Cpy = 1, if P < P0 then Cpy < 1 and the value of Cpy → 0 as P→ 0. From
the perspective of reliability research, survival analysis, and life test trials/experiments, it
is usually not possible to observe all life spans of all products under test due to time con-
straints or other constraints such as money, material resources, mechanical or experimental
difficulties, etc. Data collection. For this reason, reducing the total time and high cost of
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testing is vital. In this type of experiment, units may fail or be removed prior to failure,
which are used for future experiments. Thus, censored/controlled sampling may occur in
practice. Nowadays, control methodologies in reliability analysis have several types that
have been implemented in lifetime experiments. In practice, there are usually two random
variables, the time and the number of failed units. This control charts strategy shows how
the examiner imagines the experience based on a predetermined time. The first type of
control regimen involves calculating a random number of units, which means that the exact
time to stop the trial may be assumed. On the other hand, the type II control system involves
a predetermined number of failure units and a random time. In both control schemes, units
cannot be removed from the experiment until the final stage or failure of the number of
units. However, the proposed methodology, incremental type II control/censorship (PT2C),
has more flexibility than type II control by allowing units to be withdrawn from testing at
different observed failure times. This approach has been explored in various studies such
as Balakrishnan and Sandhu [16], Balakrishnan et al. [17], Fernindez et al. [18], Aslam et al.
[19], Panahi [20], Wang et al. [21], Wang et al. [22], Luo et al. [23], Saberzadeh et al. [24],
and Zhuang et al. [25]. [17], Fernindez et al. [18], Aslam et al. [19] and Panahi [20], Wang
et al. [21], Wang et al. [22], Luo et al. [23], Saberzadeh et al. [24] and Zhuang et al. [25].

Let X(R1,. . . ,Rm)
1:m:n , X(R1,. . . ,Rm)

2:m:n , . . . , X(R1,. . . ,Rm)
m:m:n be the PT2C scheme described by Balakr-

ishnan and Sandhu [16], see Figure 1. Probability function associated with PT2C with the
scheme Ri ≥ 0, i = 1, 2, . . . , m can be formulated as

L(θ; x) = A◦
m

∏
i=1

fX(x; θ)[1− FX(x; θ)]Ri , 0 < x1 < · · · < xm < ∞, (4)

where A◦ = n(n− R1 − 1) · · · (n− R1 − R2 − · · · − Rm−1 −m + 1).

Figure 1. Description of PT2C scheme.

Several authors have discussed the statistical inference about PCIs based on cen-
sored samples from different lifetime distributions, see for example, Wu and Chiu [26],
Hong et al. [27], Lee et al. [28], Saha et al. [29], Ahmadi and Doostparast [30,31] and
EL-Sagheer et al. [32].

In this paper, our main objective is to estimate Cpy using four different approaches,
namely maximum likelihood, percentile bootstrap, bootstrap-t, and Bayes under PT2C
samples from a Pareto distribution. Estimation techniques for model parameters are
methods used to estimate the values of parameters within a model. These techniques
generally use collected data and a model of the system to produce an estimate of the
parameters of the system. There are a variety of techniques that can be used to estimate the
parameters of a model. The most common techniques are maximum likelihood estimation
(MLE) and Bayesian estimation. MLE is a method of estimating the parameters of a
statistical model using the observations of a sample. It is based on the probability of
the observations given the model parameters. Bayesian estimation is similar to MLE but
takes into account the prior beliefs of the model parameters. It uses Bayesian probability
theory to calculate the posterior probability of the model parameters given the observations.
Other estimation techniques include the least squares method, which is used to estimate
parameters of linear models, and the expectation-maximization algorithm, which is used to
estimate parameters. The approximate confidence interval (ACI) of Cpy is constructed based
on the asymptotic normality of MLE. In the Bayesian framework, Markov chain Monte
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Carlo (MCMC) techniques are applied due to the complexity of the system of equations to
solve.

The rest of the paper is organized as follows. In Section 2, we have developed Cpy for
the Pareto model. Section 3 deals with MLE for the index Cpy and asymptotic confidence in-
terval. Bootstrap methods are investigated in Section 4. Bayes estimators using importance
sampling technique under gamma priors with SELF are discussed in Section 5. In Section 6,
a simulation study is conducted to compare the performance of the proposed techniques.
Two real data sets are reported and discussed in Section 7. Finally, a brief conclusion is
listed in Section 8.

2. The Index Cpy for Pareto Model

Pareto [33] provided a lifetime model that contains two parameters as a model for the
distribution of incomes called Pareto distribution (PD). The probability density function
(PDF) and cumulative distribution function (CDF) of the PD can be proposed as

fX(x; λ, ρ) =
ρλρ

(x + λ)ρ+1 , x > 0, λ, ρ > 0, (5)

and

FX(x; λ, ρ) = 1−
(

λ

x + λ

)ρ

, x > 0, λ, ρ > 0, (6)

where λ and ρ are the scale and shape parameters, respectively. The importance of studying
this distribution lies in the fact that it is a model applied for income distribution, and also as
a loss model in property and accident insurance. This model has a heavy right-tail behavior,
which makes it suitable for embedding large events in applications such as leverage loss
pricing, for more details, we refer to Verma and Betti [34]. The PD is a very flexible model
used for reliability and life testing studies, see Lawless [35] and Kim et al. [36]. Now, using
(2), (5) and (6) the index Cpy, where the quality characteristic X follows the PD, can be
obtained as

Cpy =
1
P0

[(
λ

L + λ

)ρ

−
(

λ

U + λ

)ρ]
. (7)

3. The Maximum Likelihood Estimation (MLE) Approach

Distributions. It is The MLE is a widely used statistical technique used to obtain the
unknown parameters of a given statistical model using data from a sample. MLE is based
on the principle that the set of parameter values that maximize the probability of obtaining
the observed data is the most likely value of the unknown parameter. MLE is a well-
established and widely used method in many scientific fields because it is characterized
by its ease in estimating the parameters of a particular population given a sample. It also
has the advantage of being easy to implement computationally. The MLE technique is
commonly used in applications such as regression analysis, hypothesis testing, and model
fitting. In MLE, the parameters of interest are estimated from the sample data by finding
the maximum likelihood estimates of the parameters. This is achieved by setting up the
likelihood function, which is the probability of the observed data given the parameters,
and then maximizing the likelihood function with respect to the model parameters. Let
X1 < X2 < . . . < Xm be a PT2C sample from PD(λ, ρ), with PDF and CDF as given in (5)
and (6), respectively. Then, according to (4), the likelihood function (LF) of PT2C given as

L(λ, ρ|x) = A◦ρm
m

∏
i=1

λρ(Ri+1)(xi + λ)−[ρ(Ri+1)+1], (8)

where C is defined in (4). The corresponding log-LF `(λ, ρ|x) = ln L(λ, ρ|x) is

`(λ, ρ|x) ∝ m ln ρ +
m

∑
i=1

ρ(Ri + 1) ln λ−
m

∑
i=1

[ρ(Ri + 1) + 1] ln(xi + λ). (9)
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Thus, the likelihood equations are

m

∑
i=1

ρ(Ri + 1)
λ

−
m

∑
i=1

ρ(Ri + 1) + 1
xi + λ

= 0, (10)

and
m
ρ
+

m

∑
i=1

(Ri + 1) ln λ−
m

∑
i=1

(Ri + 1) ln(xi + λ) = 0. (11)

The Newton Raphson (NR) technique is applied to solve the previous system numeri-
cally. Once MLEs of λ and ρ denoted by λ̂ and ρ̂ are derived, the MLEs of the index Cpy
can be obtained as

ĈML
py =

1
P0

( λ̂

L + λ̂

)ρ̂

−
(

λ̂

U + λ̂

)ρ̂
. (12)

The Fisher information matrix (FIM) is needed to create the ACIs for λ and ρ, see
Cohen [37]

I◦(λ, ρ) = −E


∂2`(λ, ρ|x)

∂λ2
∂2`(λ, ρ|x)

∂λ∂ρ
∂2`(λ, ρ|x)

∂ρ∂λ

∂2`(λ, ρ|x)
∂ρ2

. (13)

Thus, the elements of the FIM can be reported as

∂2`(λ, ρ|x)
∂λ2 =

m

∑
i=1

ρ(Ri + 1) + 1

(xi + λ)2 −
m

∑
i=1

ρ(Ri + 1)
λ2 , (14)

∂2`(λ, ρ|x)
∂λ∂ρ

=
∂2`(λ, ρ|x)

∂ρ∂λ
=

m

∑
i=1

(Ri + 1)
λ

−
m

∑
i=1

(Ri + 1)
xi + λ

, (15)

and
∂2`(λ, ρ|x)

∂ρ2 =
−m
ρ2 . (16)

Further, the inverse of I◦(λ, ρ) is given by

I−1
◦ (λ, ρ) =

[
var(λ̂) cov(λ̂, ρ̂)

cov(ρ̂, λ̂) var(ρ̂)

]
. (17)

To calculate the ACI for Ĉpy, Greene [38] utilized the delta approach for this issue.

Assume ω = (
∂Cpy
∂λ , ∂Cpy

∂ρ ). Then, the variance Ĉpy can be listed as

var(Ĉpy) ' (ωT I−1
◦ (λ̂, ρ̂)ω)↓(θ=θ̂), (18)

where ωT is the transpose matrix of ω. Thus, the (1− γ)100% ACI for Ĉpy can be derived as[
Ĉpy ∓ z γ

2

√
var(Ĉpy)

]
. (19)

4. Bootstrap Methods

Bootstrap methods are a set of powerful statistical tools that are used in the field of
data science and machine learning. These methods are used to identify potential sources
of bias and variance in the results. Bootstrapping is also used to identify potential areas
for improvement in the model. Bootstrapping has become increasingly popular in recent
years due to its ability to provide a powerful and reliable way to estimate the parameters
of a particular population given a sample. Bootstrapping involves the resampling of data
from a given population in order to obtain a more accurate estimation of the true mean
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and variance of the population. This process enables researchers to obtain a more reliable
assessment of the accuracy of a given model. Furthermore, bootstrapping is used to identify
potential sources of bias and variance in the results. By resampling the data multiple times,
researchers can identify potential areas of improvement in the model. This is especially
useful when the model is being used in prediction. Smoothing/bootstrap techniques are
applied to provide more accurate confidence intervals, especially in small samples. The
bootstrap methodology was originally developed by Efron [39], for more details see Davison
and Hinkley [40]. In this segment, we consider the two most commonly utilized bootstrap
approaches, namely, percentile bootstrap (boot-p) and bootstrap-t (boot-t) methods to
obtain a more widely utilized CIs using the same steps mentioned in DiCiccio and Efron
[41]. Figure 2 shows a simple description of the bootstrap procedure. The following
algorithms describe the two types of bootstrap.

Figure 2. Bootstrap procedure.

4.1. Boot-P Algorithm

1. From the original data x1, x2, . . . , xm compute the MLEs of the unknown parameters
λ and ρ, and denote the estimates as λ̂ and ρ̂.

2. Based on λ̂ and ρ̂, we generate independent bootstrap samples x∗1 , x∗2 , . . . , x∗m with the
same values of Ri, i = 1, 2, . . . , m, from PD and then again we compute the parameters
(λ̂, ρ̂), using MLE as well as Ĉ∗py of Cpy.

3. Repeat Step 2, N times to get a set of bootstrap samples of Cpy, say Ĉ∗(i)py , i = 1, 2, . . . , N

and arrange Ĉ∗(i)py in an ascending order
{

Ĉ∗[1]py , Ĉ∗[2]py , . . . , Ĉ∗[N]
py

}
.

4. Let Ĉ∗(τ)py be the τ percentile of Ĉ∗(k)py i.eĈ∗(τ)py is itself 1
N

N
k=1 I

(
Ĉ∗(k)py < Ĉ∗(τ)py

)
= τ,

0 < τ < 1, where, I(.) is the indicator function. Thus, the (1− γ)100% boot-p CIs of
Cpy is given by [

Ĉ
∗(N( γ

2 ))
py , Ĉ

∗(N(1− γ
2 ))

py

]
(20)

4.2. Boot-T Algorithm

1. The same as boot-p algorithm.
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2. Compute the t-statistics T∗Cpy
=

Ĉ∗py−Ĉpy√
var(Ĉ∗py)

, where var(Ĉ∗py) obtained using delta

method in (18)
3. Repeat Step 2 and 3, N times, we have T∗(1)Cpy

, T∗(2)Cpy
, . . . , T∗(N)

Cpy
.

4. Let Ω(x) = P
(

T∗Cpy
≤ x

)
be the CDF of T∗Cpy

. Define Ĉ∗py(x) = Ĉpy +Ω−1(x)
√

var(Ĉ∗py)

for given x. Then, two-side 100(1− γ)% boot-t CIs of Cpy is given by[
Ĉ∗py

(
N
(γ

2

))
, Ĉ∗py

(
N
(

1− γ

2

))]
(21)

5. Bayesian Estimation

Bayesian estimation is a powerful tool used to infer unknown parameters from mea-
sured data. It relies on Bayes’ theorem, which is a theorem from probability theory that
provides a means of updating the probability for a hypothesis as more evidence is collected.
This approach has many advantages over traditional maximum likelihood estimation
techniques due to its ability to incorporate prior knowledge into the estimation process.
In addition, it has the capability to provide an estimate of the uncertainty associated with
each parameter. Due to its many advantages, Bayesian estimation has become increasingly
popular in a wide range of applications, including signal processing, machine learning,
and artificial intelligence. For example, Bayesian estimation can be used to determine the
parameters of a linear system given a set of observations. In machine learning, it can be
used to determine the most likely hypothesis given a set of data. Similarly, it can be used
in artificial intelligence for predicting the outcome of an event given a set of conditions.
The family of gamma distributions is known to be flexible enough to cover a large variety
of the experimenter’s prior beliefs, see Kundu and Howlader [42]. Let that the parameters
λ and ρ be stochastically independently distributed (SID) with conjugate gamma prior
model. Suppose that λ ∼Gamma(a1, b1) and ρ ∼Gamma(a2, b2) and that these two priors
are independent. Consequently, the joint prior density of λ and ρ can be written as

π(λ, ρ) ∝ λa1−1ρa2−1e−(b1λ+b2ρ), λ > 0, ρ > 0, (22)

where ai and bi , i = 1, 2 are the hyper-parameters. Subsequently, via Bayes’ theorem, the
joint posterior density function of λ and ρ for given data is

π∗(λ, ρ|x) = L(λ,ρ|x)π(λ,ρ)∫ ∞
0
∫ ∞

0 L(λ,ρ|x)π(λ,ρ)dλdρ

∝ λa1−1ρm+a2−1e−b1λ

[
m
∏
i=1

λρ

xi+λ

]
× exp

{
−ρ

[
b2 −

m
∑

i=1
Ri ln λ +

m
∑

i=1
(Ri + 1) ln(xi + λ)

]}
∝ π∗1 (λ|ρ, x)π∗2 (ρ|λ, x)h(λ, ρ|x).

(23)

where

π∗1 (λ|ρ, x) ∝
λa1−1e−b1λ(

b2 −
m
∑

i=1
Ri ln λ +

m
∑

i=1
(Ri + 1) ln(xi + λ)

)m+a2
, (24)

π∗2 (ρ|λ, x) ∼ Gamma

(
m + a2, b2 −

m

∑
i=1

Ri ln λ +
m

∑
i=1

(Ri + 1) ln(xi + λ)

)
, (25)

and

h(λ, ρ|x) =
m

∏
i=1

λρ

xi + λ
. (26)
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The SELF can be written as

LSE(η, η̂) = (η̂ − η)2, (27)

where, η̂ is the estimation of η. Thus, the Bayesian estimation of η under SELF is η̂ = Eη(η|x).
Then, Bayes estimate of ϕ(λ, ρ) using SELF is computed by

ϕ̂BS(λ, ρ) =

∫ ∞
0

∫ ∞
0 ϕ(λ, ρ)L(λ, ρ|x)π(λ, ρ)dλdρ∫ ∞
0

∫ ∞
0 L(λ, ρ|x)π(λ, ρ)dλdρ

. (28)

Obviously, estimators of λ and ρ under SELF can be obtained by the importance
sampling method.

Importance Sampling Procedure (ISP)

The ISP is one of the famous MCMC techniques. Also, it is consider an effective
approach to attain Bayes estimates for ϕ(λ, ρ). Moreover, the associated higher posterior
density (HPD) intervals can be constructed through this method under PT2C data. MCMC
is an important technique in the field of statistical computing. It is a powerful tool that can
be used to sample from a given probability distribution, allowing for the estimation of a
variety of parameters. The Markov chain, a collection of random variables that adheres to
the Markov property, which claims that a system’s future state is solely reliant on its present
state, is the foundation of MCMC. MCMC algorithms use the Markov chain to sample from
a target probability distribution and estimate various parameters. In particular, they are
used to compute expectations, like the mean and variance, of a given model. The MCMC
algorithm works by constructing a Markov chain whose state space is equal to the space
of possible values of the target probability distribution. Starting from an initial state, the
algorithm iteratively generates a sequence of states which are accepted or rejected based on
the value of the target distribution at each state. As mentioned previously that π∗2 (ρ|λ, x)
is the PDF of a gamma distribution and, therefore, samples of ρ can be easily generated
using any gamma generating routine. The density function π∗1 (λ|ρ, x) cannot be reduced
analytically to a well-known distribution, and thus cannot be directly sampled by standard
methods. Through the ISP, we extract the sample from π∗1 (λ|ρ, x) and π∗2 (ρ|λ, x) and attain
the Bayes estimates of (λ, ρ) and the corresponding estimator of the index Cpy. The ISP
approach is described as follows.

(1) Begin with initial guess value
{

λ0, ρ0}.
(2) Put j = 1,
(3) Generate λ(j) from π∗1 (λ|ρ, x) utilizing the way/methodology reported via

Metropolis et al. [43] with the N((λ(j−1), σ2).
(4) Generate ρ(j) from π∗2 (ρ|λ, x).
(5) Put j = j + 1.
(6) Repeat Steps 2–5, for N times and simulate the sequence of samples of (λ1, ρ1), (λ2, ρ2),

. . . , (λN , ρN).
(7) The Bayesian estimate of ϕ(λ, ρ) can be calculated by

ϕ̂(λ, ρ) =

1
N−N0

N
∑

i=N0+1
ϕ(λi, ρi)h(λi, ρi|x)

1
N−N0

N
∑

i=N0+1
h(λi, ρi|x)

, (29)

where N0 is the burn-in-period of MCMC.



Symmetry 2023, 15, 879 9 of 22

(8) Using the above sequence in Step 6 and 7, we can obtain the sequence Cpy1, Cpy2, . . . ,
CpyN , and then

ĈMCMC
py = E(Cpy|x) ≈

1
N − N0

N

∑
k=N0+1

Cpyk. (30)

To compute the CRIs of Cpy, sort C(j)
py , j = N0 + 1, N0 + 2, . . . , N in ascending order

as
{

C(1)
py < C(2)

py < . . . < C(N)
py

}
. Then, the 100(1− γ)% symmetric CRIs of Cpy can be

obtained by [
Cpy(N( γ

2 ))
, Cpy(N(1− γ

2 ))

]
. (31)

6. Simulation Study and Discussion

In this segment, a lot of simulation experiments are performed to evaluate and test the
performance of the four estimation techniques (ML, boot-p, boot-t, MCMC) by Monte Carlo
simulations of the index Cpy for PD. Point estimation is evaluated by mean squared errors
(MSE), while interval estimation is evaluated based on mean lengths (ALs) and coverage
probability (CPs) calculated as the number of CIs that covered true values divided by 10,000.
Here, for the simulation study, we considered a different setting of parameter values such
as (λ, ρ) = (1, 0.085), (1.5, 0.22), (2.2, 0.5), (15, 3) and (35, 4.19) with the (L, U) as (1.05, 33)
and P0 = 0.95. Then, the true values (TV) of Cpy are evaluated to be 0.210313, 0.40858,
0.60299, 0.82715 and 0.864893, respectively.

For Bayesian computation: Bayes estimates and the HPD credible intervals (CRIs) are
computed based on N = 12,000 MCMC samples and discard the first values N0 = 2000
as “burn-in” with the hyper-parameters (a1, b1) = (3, 2) and (a2, b2) = (1, 1), respectively.
For comparison purposes, we consider (n, m) = (30, 15), (30, 20), (50, 30), (50, 40), (80, 55),
(80, 70), (100, 80) and (100, 90). For all the combinations of sample size, three various cen-
soring schemes (CS) are determined. For simplicity, we abbreviate the censoring schemes.
For example, (1, 1, 1, 1, 0, 0, 0) is represented as (1∗4, 0∗3). Toward this end, we considered
the various PT2C schemes which are listed in Table 1. The simulation results are listed in
Tables 2–11, according to which we note the following:

1. It should be observed that the MSEs and average interval lengths drop from Tables 2–11
as sample sizes (n, m) rise.

2. The first scheme is the best strategy in terms of having lesser MSEs and ALs for fixed
sample sizes and observed failures.

3. As Cpy actual value rises, ALs also decrease in parallel.
4. As we predicted, Bayes estimates for Cpy have the smallest MSEs and shortest ALs.

Therefore, Bayes estimates outperform MLEs and bootstrap techniques.
5. In terms of MSEs and ALs, bootstrap techniques outperform the ML approach. Addi-

tionally, boot-t outperforms boot-p.
6. The estimates from the ML, bootstrap, and Bayesian approaches are all extremely

close, and the CP values for the ACI are very high (around 0.95). The highest CPs are
also found in the Bayesian CRIs.

7. In general, if prior knowledge about the problem under study is available, the
Bayesian strategy used in conjunction with the significant sampling procedure is
the optimum estimation approach.

8. Finally, we may say that the given inference methods produce reliable outcomes.
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Table 1. Various PT2C schemes.

(n, m) CS (R1, R2, . . . , Rm) (n, m) CS (R1, R2, . . . , Rm)

(30, 15) 1 (15, 0∗14) (30, 20) 1 (10, 0∗19)
2 (0∗5, 3∗5, 0∗5) 2 (0∗5, 1∗10, 0∗5)
3 (0∗14, 15) 3 (0∗19, 10)

(50, 30) 1 (20, 0∗29) (50, 40) 1 (10, 0∗39)
2 (0∗10, 2∗10, 0∗10) 2 (0∗15, 1∗10, 0∗15)
3 (0∗29, 20) 3 (0∗39, 10)

(80, 55) 1 (25, 0∗54) (80, 70) 1 (10, 0∗69)
2 (0∗25, 5∗5, 0∗25) 2 (0∗30, 1∗10, 0∗30)
3 (0∗54, 25) 3 (0∗69, 10)

(100, 80) 1 (20, 0∗79) (100, 90) 1 (10, 0∗89)
2 (0∗30, 1∗20, 0∗30) 2 (0∗40, 1∗10, 0∗40)
3 (0∗79, 20) 3 (0∗89, 10)

(150, 100) 1 (50, 0∗99)
2 (0∗45, 5∗10, 0∗45)
3 (0∗99, 50)

Table 2. MSE of Cpy using the different estimation methods when (λ, ρ) = (1, 0.085).

(n, m) TV of Cpy SC. MLE boot-p boot-t Bayesian

(30, 15) 0.2103132 1 0.0172172 0.0175135 0.0155224 0.0132312
2 0.0183546 0.0179924 0.0166452 0.0139874
3 0.0193215 0.0186954 0.0176584 0.0153625

(30, 20) 1 0.0054766 0.0049875 0.0042587 0.0039451
2 0.0061254 0.0058632 0.0055634 0.0044635
3 0.0066847 0.0062417 0.0059635 0.0049963

(50, 30) 1 0.0045632 0.0043581 0.0039457 0.0035145
2 0.0048635 0.0046258 0.0041996 0.0037657
3 0.0051329 0.0049935 0.0046573 0.0041562

(50, 40) 1 0.0041635 0.0039847 0.0037542 0.0034421
2 0.0044324 0.0042968 0.0040584 0.0038652
3 0.0049963 0.0046852 0.0044653 0.0042996

(80, 55) 1 0.0033254 0.0032417 0.0029963 0.0027547
2 0.0035416 0.0034658 0.0031547 0.0029984
3 0.0036991 0.0035987 0.0034758 0.0032845

(80, 70) 1 0.0029254 0.0028365 0.0026954 0.0025132
2 0.0032546 0.0031659 0.0029638 0.0027653
3 0.0033947 0.0032457 0.0032014 0.0030014

(100, 80) 1 0.0023014 0.0022110 0.0020365 0.0019653
2 0.0025615 0.0024635 0.0022874 0.0021047
3 0.0026874 0.0026001 0.0024638 0.0022746

(100, 90) 1 0.0015683 0.0013987 0.0012745 0.0011118
2 0.0017654 0.0016542 0.0015326 0.0013652
3 0.0018975 0.0017654 0.0016854 0.0014867

(150, 100) 1 0.0011354 0.0010257 0.0009979 0.0009745
2 0.0012978 0.0011564 0.0010365 0.0099997
3 0.0013568 0.0012456 0.0011356 0.0107764
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Table 3. MSE of Cpy using the different estimation methods when (λ, ρ) = (1.5, 0.22).

(n, m) TV of Cpy SC. MLE boot-p boot-t Bayesian

(30, 15) 0.4085856 1 0.0212123 0.0195125 0.0175264 0.0162325
2 0.0264525 0.0246536 0.0221633 0.0198365
3 0.0337614 0.0326624 0.0314570 0.0271542

(30, 20) 1 0.0075258 0.0075145 0.0073406 0.0071522
2 0.0088932 0.0087556 0.0085236 0.0083435
3 0.0094812 0.0092432 0.0090358 0.0088642

(50, 30) 1 0.0049747 0.0048540 0.0045347 0.0043346
2 0.0053435 0.0053642 0.0051166 0.0048257
3 0.0058595 0.0057715 0.0055055 0.0052369

(50, 40) 1 0.0044812 0.0044836 0.0042554 0.0041478
2 0.0047955 0.0047932 0.0045536 0.0043724
3 0.0527245 0.0050462 0.0048712 0.0046211

(80, 55) 1 0.0037569 0.0036545 0.0035874 0.0033108
2 0.0039432 0.0038555 0.0036456 0.0035348
3 0.0045347 0.0045663 0.0042532 0.0041570

(80, 70) 1 0.0032258 0.0032224 0.0030446 0.0028666
2 0.0035132 0.0035315 0.0032245 0.0031247
3 0.0039636 0.0038133 0.0035477 0.0034109

(100, 80) 1 0.0025725 0.0024242 0.0022355 0.0021296
2 0.0028574 0.0027302 0.0025266 0.0024309
3 0.0032232 0.0032510 0.0029178 0.0027510

(100, 90) 1 0.0018445 0.0018323 0.0017245 0.0015655
2 0.0021366 0.0021103 0.0020725 0.0019514
3 0.0024441 0.0023970 0.0022112 0.0021723

(150, 100) 1 0.0014568 0.0013657 0.0012368 0.0010963
2 0.0016478 0.0015639 0.0014698 0.0012362
3 0.0019112 0.0018365 0.0017546 0.0013996

Table 4. MSE of Cpy using the different estimation methods when (λ, ρ) = (2.2, 0.5).

(n, m) TV of Cpy SC. MLE boot-p boot-t Bayesian

(30, 15) 0.6029925 1 0.0324525 0.0315845 0.0297822 0.0255457
2 0.0411945 0.0415863 0.0373678 0.0295654
3 0.0522363 0.0525492 0.0445774 0.0365944

(30, 20) 1 0.0125425 0.0112381 0.0090655 0.0083535
2 0.0237436 0.0216570 0.0135863 0.0092557
3 0.0354547 0.0335693 0.0294325 0.0151985

(50, 30) 1 0.0094269 0.0092583 0.0085511 0.0079944
2 0.0113509 0.0104575 0.0091347 0.0085269
3 0.0265633 0.0235745 0.0156455 0.0118878

(50, 40) 1 0.0076510 0.0075377 0.0071363 0.0068259
2 0.0084325 0.0081525 0.0079545 0.0074674
3 0.0092922 0.0089740 0.0087944 0.0082845

(80, 55) 1 0.0055254 0.0053633 0.0049556 0.0047475
2 0.0061436 0.0059642 0.0055663 0.0052263
3 0.0068758 0.0067122 0.0064545 0.0059344

(80, 70) 1 0.0034566 0.0033745 0.0029877 0.0021966
2 0.0042570 0.0042488 0.0031569 0.0028578
3 0.0054312 0.0055120 0.0042488 0.0036344
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Table 4. Cont.

(n, m) TV of Cpy SC. MLE boot-p boot-t Bayesian

(100, 80) 1 0.0013644 0.0012923 0.0010189 0.0009976
2 0.0015765 0.0014956 0.0012856 0.0011566
3 0.0018978 0.0017689 0.0015223 0.0013445

(100, 90) 1 0.0011109 0.0010578 0.0009578 0.0009133
2 0.0013577 0.0012745 0.0011645 0.0010445
3 0.0016745 0.0015812 0.0013938 0.0012298

(150, 100) 1 0.0009535 0.0009324 0.0009135 0.0008645
2 0.0011356 0.0010758 0.0009997 0.0093457
3 0.0013587 0.0012785 0.0011024 0.0010534

Table 5. MSE of Cpy using the different estimation methods when (λ, ρ) = (15, 3).

(n, m) TV of Cpy SC. MLE boot-p boot-t Bayesian

(30, 15) 0.8271514 1 0.0334512 0.0324755 0.0305856 0.0286475
2 0.0456923 0.0449847 0.0415645 0.0378996
3 0.0498745 0.0497856 0.0453678 0.0423845

(30, 20) 1 0.0112956 0.0094512 0.0091345 0.0088435
2 0.0210478 0.0203635 0.0095912 0.0093747
3 0.0253689 0.0245866 0.0099823 0.0096925

(50, 30) 1 0.0091525 0.0091277 0.0088656 0.0084678
2 0.0097647 0.0096869 0.0092789 0.0089636
3 0.0154236 0.0136878 0.0116988 0.0099774

(50, 40) 1 0.0069725 0.0067612 0.0064145 0.0058478
2 0.0075447 0.0074556 0.0071275 0.0066555
3 0.0082912 0.0081458 0.0077347 0.0072647

(80, 55) 1 0.0051623 0.0051163 0.0048856 0.0045756
2 0.0056545 0.0055425 0.0053523 0.0051836
3 0.0062423 0.0062741 0.0059269 0.0056925

(80, 70) 1 0.0033556 0.0033647 0.0031547 0.0027455
2 0.0038347 0.0037858 0.0035555 0.0031534
3 0.0045258 0.0044799 0.0041465 0.0036674

(100, 80) 1 0.0018654 0.0017825 0.0014923 0.0010814
2 0.0021466 0.0021136 0.0019474 0.0012725
3 0.0026847 0.0025614 0.0022555 0.0016836

(100, 90) 1 0.0015636 0.0014874 0.0012736 0.0009447
2 0.0017947 0.0016585 0.0015233 0.0011058
3 0.0019164 0.0018795 0.0017657 0.0013469

(150, 100) 1 0.0012658 0.0011784 0.0010345 0.0008936
2 0.0013687 0.0012475 0.0011347 0.0009965
3 0.0014658 0.0013785 0.0012785 0.0011474
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Table 6. MSE of Cpy using the different estimation methods when (λ, ρ) = (35, 4.19).

(n, m) TV of Cpy SC. MLE boot-p boot-t Bayesian

(30, 15) 0.864893 1 0.0486532 0.0476583 0.0456391 0.0413284
2 0.0523214 0.0512474 0.0496355 0.0465213
3 0.0556325 0.0543652 0.0523657 0.0496382

(30, 20) 1 0.0376521 0.0365427 0.0345266 0.0312476
2 0.0396524 0.0387942 0.0370012 0.0332245
3 0.0412356 0.0409683 0.0392177 0.0376542

(50, 30) 1 0.0293651 0.0275412 0.0258433 0.0199685
2 0.0316525 0.0299653 0.0276543 0.0223144
3 0.0336241 0.0321451 0.0300258 0.0247581

(50, 40) 1 0.0199875 0.0189573 0.0166784 0.0136542
2 0.0213654 0.0199874 0.0183653 0.0156277
3 0.0236217 0.0223657 0.0199685 0.0169994

(80, 55) 1 0.0112584 0.0099678 0.0085748 0.0077486
2 0.0133657 0.0113699 0.0103654 0.0087459
3 0.0149968 0.0136547 0.0125873 0.0096548

(80, 70) 1 0.0079685 0.0071547 0.0069845 0.0058974
2 0.0082563 0.0080655 0.0077562 0.0069821
3 0.0093847 0.0089546 0.0085994 0.0074630

(100, 80) 1 0.0036124 0.0035478 0.0029687 0.0027123
2 0.0039258 0.0038654 0.0032999 0.0029487
3 0.0041369 0.0040753 0.0038547 0.0035243

(100, 90) 1 0.0025841 0.0023986 0.0022454 0.0017369
2 0.0026547 0.0024785 0.0024101 0.0018992
3 0.0027653 0.0026894 0.0025846 0.0020553

(150, 100) 1 0.0016478 0.0014658 0.0013654 0.0009457
2 0.0017856 0.0015945 0.0014783 0.0011986
3 0.0018365 0.0016887 0.0015475 0.0012548

Table 7. ALs and CPs of 95% ACIs for Cpy when (λ, ρ) = (1, 0.085) and true value of Cpy = 0.210313.

(n, m) SC. MLE boot-p boot-t Bayesian

ALs CPs ALs CPs ALs CPs ALs CPs

(30, 15) 1 0.6125844 0.9162 0.5963587 0.9227 0.5765478 0.9428 0.5536241 0.9456
2 0.6354821 0.9175 0.6265833 0.9344 0.5963470 0.9429 0.5778422 0.9484
3 0.6635423 0.9084 0.6569932 0.9295 0.6254715 0.9385 0.5996254 0.9415

(30, 20) 1 0.5696874 0.9237 0.5463542 0.9456 0.5294573 0.9436 0.5025875 0.9491
2 0.5769335 0.9188 0.5632479 0.9344 0.5502141 0.9354 0.5300542 0.9517
3 0.5963241 0.9199 0.5865477 0.9347 0.5746893 0.9467 0.5563274 0.9485

(50, 30) 1 0.5236211 0.9243 0.5147223 0.9273 0.4963582 0.9502 0.4701472 0.9623
2 0.5462833 0.9277 0.5362474 0.9415 0.5214765 0.9590 0.4936921 0.9637
3 0.5698244 0.9387 0.5578432 0.9388 0.5471288 0.9296 0.5203690 0.9551

(50, 40) 1 0.4869582 0.9344 0.4765417 0.9249 0.4569580 0.9379 0.4401245 0.9542
2 0.4999587 0.9412 0.4895784 0.9197 0.4712354 0.9417 0.4625832 0.9574
3 0.5123471 0.9392 0.4936574 0.9346 0.4896251 0.9297 0.4755625 0.9495

(80, 55) 1 0.4563582 0.9566 0.4468572 0.9357 0.4325174 0.9358 0.4199635 0.9647
2 0.4763521 0.9384 0.4636981 0.9253 0.4521014 0.9395 0.4360149 0.9588
3 0.4968932 0.9488 0.4825899 0.9287 0.4789652 0.9387 0.4586933 0.9624

(80, 70) 1 0.4263558 0.9436 0.4125130 0.9418 0.3999524 0.9518 0.3786542 0.9545
2 0.4463587 0.9394 0.4352812 0.9399 0.4200142 0.9429 0.3965241 0.9556
3 0.4599983 0.9287 0.4500124 0.9440 0.4469524 0.9385 0.4125837 0.9649
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Table 7. Cont.

(n, m) SC. MLE boot-p boot-t Bayesian

(100, 80) 1 0.3999974 0.9413 0.3865475 0.9424 0.3769873 0.9534 0.3614728 0.9618
2 0.4163589 0.9360 0.4025639 0.9377 0.3965472 0.9415 0.3856455 0.9597
3 0.4365271 0.9387 0.4251786 0.9394 0.4153628 0.9424 0.4055766 0.9541

(100, 90) 1 0.3699657 0.9538 0.3578491 0.9495 0.3485647 0.9553 0.3278459 0.9642
2 0.3935644 0.9479 0.3879654 0.9526 0.3748965 0.9522 0.3564721 0.9553
3 0.4125432 0.9480 0.3996543 0.9547 0.3847517 0.9491 0.3665423 0.9495

(150, 100) 1 0.2845688 0.9499 0.2769542 0.9377 0.2598476 0.9424 0.2356478 0.9545
2 0.3025479 0.9511 0.2965487 0.9394 0.2798654 0.9553 0.2586344 0.9556
3 0.3265478 0.9499 0.3158974 0.9495 0.2996572 0.9522 0.2736955 0.9649

Table 8. ALs and CPs of 95% ACIs for Cpy when (λ, ρ) = (1.5, 0.22) and true value of Cpy = 0.40858.

(n, m) SC. MLE boot-p boot-t Bayesian

ALs CPs ALs CPs ALs CPs ALs CPs

(30, 15) 1 0.5436123 0.9151 0.5234458 0.9223 0.5174547 0.9416 0.4987124 0.9457
2 0.5634455 0.9172 0.5457256 0.9346 0.5299635 0.9425 0.5136685 0.9488
3 0.5987258 0.9095 0.5763364 0.9295 0.5568452 0.9394 0.5398745 0.9415

(30, 20) 1 0.5163145 0.9234 0.4987475 0.9414 0.4786786 0.9417 0.4582365 0.9493
2 0.5366635 0.9197 0.5214258 0.9367 0.4999367 0.9358 0.4791896 0.9514
3 0.5523856 0.9187 0.5497364 0.9348 0.5211954 0.9459 0.5156784 0.9487

(50, 30) 1 0.4837658 0.9238 0.4756784 0.9299 0.4561654 0.9505 0.4199562 0.9625
2 0.5036478 0.9279 0.4987691 0.9417 0.4738361 0.9493 0.4401784 0.9636
3 0.5264369 0.9374 0.5135354 0.9380 0.4976364 0.9280 0.4655367 0.9558

(50, 40) 1 0.4599458 0.9345 0.4489745 0.9241 0.4397745 0.9374 0.4001457 0.9540
2 0.4765789 0.9410 0.4684126 0.9192 0.4512684 0.9415 0.4327693 0.9579
3 0.4899452 0.9395 0.4857475 0.9343 0.4711452 0.9286 0.4536573 0.9495

(80, 55) 1 0.4361397 0.9416 0.4236943 0.9364 0.4008784 0.9347 0.3899021 0.9647
2 0.4469452 0.9377 0.4367764 0.9256 0.4233698 0.9398 0.4111035 0.9584
3 0.4598783 0.9424 0.4497785 0.9272 0.4388784 0.9284 0.4257470 0.9625

(80, 70) 1 0.4165746 0.9435 0.3999364 0.9413 0.3794367 0.9515 0.3597145 0.9544
2 0.4362453 0.9396 0.4251453 0.9391 0.3984658 0.9426 0.3765568 0.9556
3 0.4487881 0.9280 0.4358784 0.9407 0.4135745 0.9380 0.3899698 0.9647

(100, 80) 1 0.3984364 0.9412 0.3788659 0.9427 0.3579635 0.9537 0.3410784 0.9618
2 0.4156669 0.9363 0.3874743 0.9376 0.3695254 0.9418 0.3587369 0.9594
3 0.4358152 0.9380 0.4287334 0.9394 0.3895754 0.9420 0.3718578 0.9542

(100, 90) 1 0.3545468 0.9526 0.3465755 0.9495 0.3267368 0.9544 0.3111452 0.9644
2 0.3854475 0.9483 0.3647456 0.9516 0.3494741 0.9525 0.3378378 0.9556
3 0.3999693 0.9474 0.3894778 0.9527 0.3712058 0.9483 0.3562967 0.9497

(150, 100) 1 0.2900147 0.9396 0.2786584 0.9591 0.2658479 0.9518 0.2487642 0.9642
2 0.3125864 0.9280 0.3012124 0.9407 0.2836541 0.9421 0.2684571 0.9544
3 0.3365472 0.9412 0.3265875 0.9427 0.3110124 0.9543 0.2874614 0.9596
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Table 9. ALs and CPs of 95% ACIs for Cpy when (λ, ρ) = (2.2, 0.5) and true value of Cpy = 0.60299.

(n, m) SC. MLE boot-p boot-t Bayesian

ALs CPs ALs CPs ALs CPs ALs CPs

(30, 15) 1 0.4236335 0.9191 0.4147354 0.9277 0.3948745 0.9343 0.3782145 0.9396
2 0.4392478 0.9212 0.4288087 0.9318 0.4127965 0.9352 0.3899753 0.9415
3 0.4435568 0.9223 0.4410657 0.9299 0.4256784 0.9261 0.4023968 0.9384

(30, 20) 1 0.3854457 0.9314 0.3799964 0.9344 0.3657589 0.9414 0.3389096 0.9413
2 0.3984665 0.9295 0.3895357 0.9355 0.3766965 0.9435 0.3511445 0.9528
3 0.4028098 0.9286 0.4001951 0.9416 0.3945357 0.9396 0.3764078 0.9429

(50, 30) 1 0.3469756 0.9318 0.3455789 0.9347 0.3312459 0.9457 0.3125530 0.9517
2 0.3654096 0.9247 0.3599369 0.9459 0.3487786 0.9418 0.3327786 0.9525
3 0.3845147 0.9251 0.3816457 0.9519 0.3655328 0.9387 0.3144478 0.9498

(50, 40) 1 0.3168145 0.9410 0.3111785 0.9525 0.2995336 0.9519 0.2756458 0.9558
2 0.3365023 0.9373 0.3299096 0.9504 0.3157554 0.9498 0.2899692 0.9617
3 0.3487024 0.9364 0.3466365 0.9487 0.3324478 0.9465 0.3055746 0.9575

(80, 55) 1 0.2865458 0.9425 0.2745784 0.9518 0.2563235 0.9527 0.2410364 0.9564
2 0.3045965 0.9416 0.2998562 0.9529 0.2767967 0.9478 0.2654785 0.9613
3 0.3177098 0.9450 0.3124078 0.9494 0.2954783 0.9517 0.2863257 0.9604

(80, 70) 1 0.2461784 0.9481 0.2357950 0.9545 0.2262473 0.9568 0.2098127 0.9555
2 0.2576145 0.9432 0.2501475 0.9416 0.2355145 0.9419 0.2211365 0.9496
3 0.2658635 0.9393 0.2612456 0.9447 0.2436698 0.9395 0.2275478 0.9517

(100, 80) 1 0.1836988 0.9497 0.1754124 0.9518 0.1568754 0.9513 0.1277589 0.9643
2 0.1911884 0.9385 0.1889098 0.9494 0.1657789 0.9454 0.1356256 0.9562
3 0.1986461 0.9371 0.1934365 0.9415 0.1785456 0.9445 0.1512447 0.9525

(100, 90) 1 0.1547778 0.9572 0.1456745 0.9480 0.1369365 0.9546 0.1124557 0.9534
2 0.1699357 0.9535 0.1587096 0.9543 0.1511745 0.9498 0.1235357 0.9617
3 0.1853456 0.9496 0.1783365 0.9509 0.1694692 0.9517 0.1452786 0.9553

(150, 100) 1 0.1236547 0.9485 0.1136585 0.9594 0.1036547 0.9457 0.0996847 0.9662
2 0.1365428 0.9371 0.1235487 0.9416 0.1164782 0.9446 0.1100352 0.9625
3 0.1436952 0.9472 0.1354266 0.9380 0.1284578 0.9544 0.1196548 0.9534

Table 10. ALs and CPs of 95% ACIs for Cpy when (λ, ρ) = (15, 3) and true value of Cpy = 0.82715.

(n, m) SC. MLE boot-p boot-t Bayesian

ALs CPs ALs CPs ALs CPs ALs CPs

(30, 15) 1 0.3657325 0.9292 0.3577456 0.9419 0.3356365 0.9421 0.3142365 0.9515
2 0.3765568 0.9313 0.3689784 0.9398 0.3512951 0.9316 0.3288475 0.9544
3 0.3812698 0.9286 0.3799456 0.9317 0.3657753 0.9335 0.3433125 0.9497

(30, 20) 1 0.3254745 0.9125 0.3155085 0.9424 0.2966654 0.9414 0.2745058 0.9466
2 0.3356695 0.9254 0.3341320 0.9385 0.3152852 0.9397 0.2857047 0.9525
3 0.3399254 0.9177 0.3391470 0.9426 0.3257657 0.9372 0.2999450 0.9534

(50, 30) 1 0.2863247 0.9388 0.2789365 0.9396 0.2569958 0.9417 0.2365360 0.9616
2 0.2958869 0.9295 0.2895960 0.9283 0.2761748 0.9393 0.2564475 0.9585
3 0.3056547 0.9274 0.2987458 0.9214 0.2814369 0.942 0.2631650 0.9574

(50, 40) 1 0.2456124 0.9385 0.2387789 0.9395 0.2269756 0.9511 0.2054145 0.9641
2 0.2563586 0.9346 0.2497562 0.9456 0.2354354 0.9490 0.2200365 0.9582
3 0.2732698 0.9379 0.2699365 0.9397 0.2497698 0.9432 0.2358875 0.9543

(80, 55) 1 0.1956784 0.9418 0.1877745 0.9418 0.1763478 0.9523 0.1564556 0.9644
2 0.2121658 0.9387 0.2045556 0.9429 0.1954544 0.9514 0.1764778 0.9585
3 0.2236324 0.9401 0.2154778 0.9384 0.2077457 0.9477 0.1899097 0.9597
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Table 10. Cont.

(n, m) SC. MLE boot-p boot-t Bayesian

ALs CPs ALs CPs ALs CPs ALs CPs

(80, 70) 1 0.1458478 0.9512 0.1411098 0.9425 0.1365639 0.9558 0.1254445 0.9648
2 0.1568456 0.9493 0.1522457 0.9416 0.1467563 0.9515 0.1321456 0.9665
3 0.1636876 0.9416 0.1612635 0.9399 0.1574485 0.9534 0.1399789 0.9594

(100, 80) 1 0.1236894 0.9525 0.1214478 0.9518 0.1158254 0.9562 0.1111524 0.9693
2 0.1358853 0.9424 0.1341524 0.9477 0.1257852 0.9523 0.1204325 0.9644
3 0.1456235 0.9434 0.1399456 0.9417 0.1298789 0.9517 0.1255145 0.9652

(100, 90) 1 0.1014458 0.9545 0.0999415 0.9618 0.0975963 0.9550 0.0913635 0.9643
2 0.1198762 0.9556 0.1154635 0.9526 0.1101475 0.9491 0.1036784 0.9586
3 0.1247557 0.9469 0.1212478 0.9512 0.1197658 0.9516 0.1099011 0.9544

(150, 100) 1 0.0884573 0.9426 0.0856354 0.9478 0.0814536 0.9623 0.7896544 0.9645
2 0.9532456 0.9435 0.0935478 0.9416 0.0896545 0.9516 0.0843657 0.9651
3 0.1035476 0.9545 0.0978546 0.9608 0.0943657 0.9551 0.0893219 0.9640

Table 11. ALs and CPs of 95% ACIs for Cpy when (λ, ρ) = (35, 4.19) and true value of Cpy = 0.864893.

(n, m) SC. MLE boot-p boot-t Bayesian

ALs CPs ALs CPs ALs CPs ALs CPs

(30, 15) 1 0.3325145 0.9152 0.3245877 0.9227 0.3145839 0.9417 0.2936547 0.9454
2 0.3465412 0.9173 0.3362481 0.9348 0.3247852 0.9428 0.3121457 0.9485
3 0.3554786 0.9091 0.3445627 0.9299 0.3365248 0.9399 0.3278932 0.9416

(30, 20) 1 0.2832564 0.9234 0.2698573 0.9410 0.2563587 0.9415 0.2365479 0.9499
2 0.2963582 0.9195 0.2798658 0.9361 0.2654713 0.9354 0.2436910 0.9517
3 0.3165479 0.9186 0.2968475 0.9344 0.2802140 0.9453 0.2632107 0.9488

(50, 30) 1 0.2563910 0.9239 0.2465827 0.9295 0.2396847 0.9505 0.2114578 0.9622
2 0.2651478 0.9277 0.2536921 0.9416 0.2436988 0.9494 0.2269941 0.9635
3 0.2754687 0.937 0.2639472 0.9387 0.2563920 0.9284 0.2415873 0.9551

(50, 40) 1 0.2136954 0.9344 0.2014751 0.9248 0.1936574 0.9375 0.1769542 0.9542
2 0.2236954 0.9415 0.2200361 0.9199 0.2100478 0.9416 0.1936478 0.9573
3 0.2463951 0.9396 0.2365472 0.9344 0.2245837 0.9287 0.2103645 0.9476

(80, 55) 1 0.1765894 0.9419 0.1632982 0.9365 0.1593824 0.9347 0.1363524 0.9645
2 0.1836547 0.9378 0.1745893 0.9253 0.1669475 0.9395 0.1456482 0.9584
3 0.1936574 0.9431 0.1833221 0.9297 0.1745632 0.927 0.1573624 0.962

(80, 70) 1 0.1236542 0.9422 0.1165428 0.9418 0.1036478 0.9517 0.0996341 0.955
2 0.1363954 0.9393 0.1236932 0.9395 0.1165872 0.9438 0.1100021 0.9540
3 0.1436958 0.9296 0.1365241 0.9404 0.1234587 0.9380 0.1199687 0.9644

(100, 80) 1 0.1036547 0.9415 0.0968742 0.9436 0.0854793 0.9544 0.0736958 0.9625
2 0.1136548 0.9307 0.1023457 0.9371 0.0936528 0.9415 0.0836542 0.9583
3 0.1236544 0.9351 0.1125478 0.9394 0.1036954 0.9427 0.0965847 0.9514

(100, 90) 1 0.0836547 0.9524 0.0745869 0.9495 0.0632478 0.9535 0.0556842 0.9645
2 0.0936547 0.9485 0.0832542 0.9516 0.0785693 0.9554 0.0693587 0.9546
3 0.1023654 0.9476 0.0936475 0.9521 0.0854722 0.9482 0.0736458 0.9487

(150, 100) 1 0.0723654 0.9405 0.0665478 0.9384 0.0593654 0.9437 0.0499974 0.9645
2 0.0813655 0.9308 0.0723694 0.9496 0.0652475 0.9389 0.0543692 0.9624
3 0.0935416 0.9361 0.0846589 0.9517 0.0776549 0.9545 0.0625847 0.9582

7. Data Analysis

In this section, to illustrate the inferential procedures discussed in the previous sections,
two sets of real data are analysed. The first set represents the initial failure times (in months)
for 20 electric vans used for internal transportation and delivery at a large manufacturing
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facility and details are presented in Zimmer et al. [44] and recently used by Saha et al. [22].
The second data group represents the failure intervals (in hours) of the air conditioning
system of a 13 Boeing 720 aircraft taken from Proschan [45]. The two sets of data are as
follows.

• Data Set I: 0.9, 1.5, 2.3, 3.2, 3.9, 5.0, 6.2, 7.5, 8.3, 10.4, 11.1, 12.6, 15.0, 16.3, 19.3, 22.6, 24.8,
31.1, 38.1, 53.0.

• Data Set II: 1, 4, 11, 16, 18, 18, 18, 24, 31, 39, 46, 51, 54, 63, 68, 77, 80, 82, 97, 106, 111,
141, 142, 163, 191, 206, 216.

By evaluating the quality of fit of the two datasets, we first determined whether
the analysed datasets genuinely originate from PD or not. The Kolmogorov-Smirnov (K-
S) statistic and associated p-values are the foundation of this method. The K-S statistic
measures the separation between two samples’ empirical distribution functions or between
their empirical distribution functions and the CDF of reference distribution. As a result,
the K-S statistic is solely used to evaluate fit quality and not as a selection criterion. It is
0.067503 for the first group with a p-value of 0.9999, and 0.11513 for the second group with
a p-value of 0.8666. The fact that the p-values are so high means that we cannot rule out
the possibility that the data came from a Pareto model, and as a result, this probability
model fits the real datasets well. Figures 3 and 4 display empirical, Q-Q, and P-P charts,
which demonstrate how well PD fits the data. Here, we have fixed hypothetical LSL and
hypothetical USL are (L, U) = (0.911, 31) for data Set I and (2, 215) for data set II with
desirable yield P0 = 0.95.

According to the data set I, we can generate the PT2C sample of size m = 9 taken from
a sample of size n = 20 with censoring scheme R = (6, 2, 1, 2, 0∗5) using the algorithm
described in Balakrishnan and Sandhu [16]. A PT2C sample generated from the data set I
is given as follows

0.9 1.5 3.2 3.9 5.0 6.2 22.6 24.8 31.1

Similarly, based on the data Set II, we can generate the PT2C sample of size m = 15
taken from a sample of size n = 27 with censoring scheme R = (4, 3, 1, 2, 0∗4, 1, 0∗2, 1, 0∗3).
The PT2C sample is

1 4 11 16 18 18 18 31 39 51 54 68 82 141 216

For the previous data sets considered, based on a PT2C, we have computed the point
estimates of the index Cpy using ML, boot-p, boot-t and Bayes methods, the results are
reported in Table 12. Further, we determined the 95% ACIs based on ML and bootstrap
methods as well as 95% HPD credible interval using MCMC samples and the results are
listed in Table 13. In the Bayes framework, we assume that the non-informative priors for
λ and ρ, that is, when ai = 0.0001 and bi = 0.0001, i = 1, 2. In addition, 12000 MCMC
samples were generated, and the first 2000 samples were generated as ‘burn-in’. Figures 5
and 6 display the trace plots of Cpy computed by MCMC approach for data Sets I and II.

Table 12. Different point estimates of Cpy.

bootstrap Bayes

Data Set (n, m) MLE boot-p boot-t MCMC

I (20, 9) 0.894131 0.882481 0.875541 0.852453
I I (27, 15) 0.778609 0.769877 0.762213 0.711487
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Figure 3. Empirical , Q-Q and P-P plots of PD for data set I.

Figure 4. Empirical , Q-Q and P-P plots of PD for data set II.
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Figure 5. Trace plot of Cpy obtained from MCMC for Set I.

Figure 6. Trace plot of Cpy obtained from MCMC for Set II.
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Table 13. 95% ACIs and 95% HPD credible intervals of Cpy.

MLE boot-p

Data Set L U Length L U Length

I 0.856558 0.931704 0.0751454 0.849621 0.920542 0.070921
I I 0.753653 0.803564 0.0499106 0.642583 0.791245 0.044663

boot-t MCMC

Data set L U Length L U Length

I 0.837743 0.911722 0.073979 0.763623 0.923541 0.159918
I I 0.738458 0.781534 0.043076 0.642475 0.763876 0.121401

8. Conclusions

In this manuscript, we have considered four different estimation techniques, namely
maximum likelihood, bootstrap bounds, and Bayes to obtain the Cpy index estimation and
illustrate the proposed methods using two practical examples. MLEs are derived using
NR’s iterative numerical technique. Meanwhile, the asymptotic confidence intervals are
generated based on the observed and predicted Fisher information matrices. In order
to address the problem of small sample size, two bootstrap confidence intervals were
generated. The Bayesian estimate within the squared error loss function is also taken into
account and the estimates are derived through a significant sampling procedure using the
Metropolis – Hasting algorithm. Moreover, credible periods with a higher corresponding
background intensity are generated. Since it is not possible to compare these methods
theoretically, we performed a large-scale simulation study to compare these methods with
different sample sizes (n, m), different control schemes (1, 2, 3) and different values of (λ, ρ).
In the simulation section, squared error values are averaged to evaluate point estimation
performance while mean lengths and coverage rates are taken into account for interval
estimation. Results for MSE estimates are reported in Tables 2–6, while results for ALs
and CPs for estimates are presented in Tables 7–11. Finally, we feel that the contents of
the manuscript may be useful to researchers and practitioners in various fields of industry
where lifetime distributions are widely used.

In future research, we will discuss lifetime performance index assessment with numer-
ical analysis based on the second type of adaptive stepwise control.
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