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1. Introduction

Before clarifying the objectives of this paper, it is necessary to introduce the basic
concepts. Hence, we first identify several definitions and properties needed to understand
this paper. Let n, q ∈ R with q 6= 1. The quantum number or q-number discovered by
Jackson is

[n]q =
1− qn

1− q
,

noting that limq→1[n]q = n. In particular, for k ∈ Z, where [k]q is called the q-integer [1–3].
Many mathematicians have researched the use of q-numbers in multiple fields such as

q-discrete distributions, q-differential equations, q-series, and q-calculus [4–6].
The equation [

m
r

]
q
=

[m]q!
[m− r]q![r]q!

,

defines the q-Gaussian binomial coefficients, where m and r are non-negative integers [3,5].
For r = 0, the coefficient value is 1 since the numerator and denominator are both empty
products. Therefore, [n]q! = [n]q[n− 1]q · · · [2]q[1]q and [0]q! = 1.

Consider an arbitrary function f (x). Its q-differential is

dq f (x) = f (qx)− f (x),

and its h-differential is
dh f (x) = f (x + h)− f (x).

In particular, we note dqx = (q− 1)x and dhx = h. An difference between the quantum
differentials and the ordinary ones is the lack of symmetry in the differential of the product
of two functions. Since

dq( f (x)g(x)) = f (qx)g(qx)− f (x)g(x)

= f (qx)g(qx)− f (qx)g(x) + f (qx)g(x)− f (x)g(x),
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we have
dq( f (x)g(x)) = f (qx)dqg(x) + g(x)dq f (x),

and similarly,
dh( f (x)g(x)) = f (x + h)dhg(x) + g(x)dh f (x).

The following two quantum derivatives:

Dq f (x) =
dq f (x)

dqx
=

f (qx)− f (x)
(q− 1)x

,

Dh f (x) =
dh f (x)

dhx
=

f (x + h)− f (x)
h

,

are called the q-derivative and h-derivative, respectively, of the function f (x). We note
limq→1 Dq f (x) = limh→0 Dh f (x) = d f (x)

dx if f (x) is differentiable [3].

In ref. [7], a two-parameter time scale Tq,h was introduced as follows:

Tq,h := {qnx + [n]qh | x ∈ R, n ∈ Z, h, q ∈ R+, q 6= 1} ∪ { h
1− q

}.

Definition 1 ([7,8]). Let f : Tq,h → R be any function. Thus, the delta (q, h)-derivative of f
Dq,h( f ) is defined by

Dq,h f (x) :=
f (qx + h)− f (x)
(q− 1)x + h

.

From the above definition, we identify several properties as follows:

(i) Dq,h f (x) = 0 if f (x) is constant.
(ii) Dq,h f (x) = Dq,hg(x) for all x ∈ R if f (x) = g(x) + c with some constant c.
(iii) Dq,h f (x) = c1 if f (x) = c1x + c2, where c1 and c2 are constant.

In Definition 1, we can see Dq,h( f ), the delta (q, h)-derivative of f is reduced to Dq( f ),
the q-derivative of f for h = 0 reduces to Dh( f ), and the h-derivative of f for q → 1.
In addition, we can derive the product and quotient rules for the delta (q, h)-derivative.

The q-analogue of binomial (x− a)n is

(x− a)n
q =

{
1 if n = 0,
(x− a)(x− qa) · · · (x− qn−1a) if n ≥ 1.

For any positive integer n, we note that (x − a)m+n
q = (x − a)m

q (x − qma)n
q and

(x− a)−n
q = 1

(x−q−na)n
q

. For n ≥ 1, the h-analogue of binomial (x− a)n is

(x− a)n
h = (x− a)(x− a− h) · · · (x− a− (n− 1)h),

and (x− a)0
h = 1. Similar to the q-version, we note (x− a)m+n

h = (x− a)n
h(x− a− nh)m

h
and (x− a)−n

q = 1
(x−a+nh)n

q
[3].

Definition 2 ([8,9]). The generalized quantum binomial (x− x0)
n
q,h is defined by

(x− x0)
n
q,h :=

{
1, if n = 0,

∏n
i=1
(
x− (qi−1x0 + [i− 1]qh)

)
, if n > 0,

where x0 ∈ R.
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The generalized quantum binomial reduces to the q-analogue of binomial (x− x0)
n
q as

h → 0 and to the h-analogue of binomial (x− x0)
n
h as q → 1. Furthermore, we note that

lim(q,h)→(1,0)(x− x0)
n
q,h = (x− x0)

n.

A q-analogue of the classical exponential function (q-exponential function) is

eq(x) =
∞

∑
n=0

xn

[n]q!
.

We can find another q-analogue of the classical exponential function Eq(x) = eq−1(x).
Its two q-analogues have similar behavior such as Dqeq(x) = eq(x) and DqEq(x) = Eq(qx).

The h-analogue of the classical exponential function (h-exponential function) is

eh(x) = (1 + h)
x
h .

In particular, e1(x) = 2x. As h→ 0, the base (1 + h)
1
h approaches e, as expected [3].

Definition 3 ([8]). The generalized quantum exponential function expq,h(αx) is defined as

expq,h(αx) :=
∞

∑
i=0

αi(x− 0)i
q,h

[i]q!
,

where α is an arbitrary non-zero constant.

Clearly, we note that expq,h(0) = 1. As h → 0 with α = 1, the generalized quantum
exponential function expq,h(αx) becomes the so-called q-exponential function eq(x) [3,5].
Likewise, as q→ 1 with α = 1, the generalized quantum exponential function expq,h(αx)

reduces to the so-called h-exponential function e1,h(x) = (1 + h)
x
h [3].

Based on the above concept, many mathematicians have studied q-special functions,
q-differential equations, q-calculus, and so on (see [6,10–15]). For example, Duran, Acik-
goz, and Araci [16] considered different types of trigonometric functions and hyperbolic
functions related to quantum numbers and looked for properties related to them. Mathe-
maticians have also proven various theorems related to basic concepts based on h-numbers.
Benaoum [9] obtained Newton’s binomial formula relating to (q, h), while Cermak and
Nechvatal [7] derived a (q, h) version of the fractional calculus. In 2011, Rahmat [17]
studied the (q, h)-Laplace transform, while in 2019, Silindir and Yantir [8] studied the gen-
eralization of quantum Taylor formula and quantum binomial. Their results motivated the
current research presented in this paper. Defining and characterizing degenerate tangent
polynomials, mathematicians are now curious about their definition and properties when
combined with quantum numbers. Roo and Kang [18] studied some properties for q-special
polynomials and observed approximate roots of q-Euler and q-Genocchi polynomials.

The main purpose of this paper is to construct degenerate q-tangent polynomials.
Based on the constructed polynomials, we formulate differential equations and investigate
their properties. This paper discusses the properties of series combined with quantum
numbers and their generalization.

The results present here may be useful to researchers studying quantum physics,
non-linear physics, and non-linear differential equations.
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Definition 4 ([13,19]). The q-tangent numbers and polynomials are defined as

∞

∑
n=0

Tn,q
tn

[n]q!
=

2
eq(2t) + 1

,
∞

∑
n=0

Tn,q(x)
tn

[n]q!
=

2
eq(2t) + 1

eq(tx).

For q→ 1, we note that q-tangent numbers and polynomials become tangent numbers
and polynomials, respectively.

Definition 5 ([20]). The degenerate tangent numbers and polynomials are defined as

∞

∑
n=0

Tn,λ
tn

n!
=

2

(1 + λt)
2
λ + 1

,
∞

∑
n=0

Tn,λ(x)
tn

n!
=

2

(1 + λt)
2
λ + 1

(1 + λt)
x
λ .

As h→ 0 in Definition 5, we note that degenerate tangent numbers and polynomials
become tangent numbers and polynomials, respectively.

In this paper, we define degenerate q-tangent numbers and polynomials, findings sev-
eral properties of these polynomials by using q-numbers, and (q, h)-derivatives. In addition,
we construct several higher-order differential equations whose solutions are degenerate
q-tangent polynomials.

2. Differential Equations for Degenerate q-Tangent Polynomials

In this section, we define degenerate q-tangent numbers and polynomials using de-
generate q-exponential functions. Using the (q, h)-derivative, we obtain several differential
equations related to degenerate q-tangent polynomials. Furthermore, we find relations
among q-tangent polynomials, degenerate tangent polynomials, and degenerate q-tangent
polynomials.

Here, we introduce the degenerate quantum exponential function.

eq,h(x : t) :=
∞

∑
n=0

(x)n
q,h

tn

n!
=

∞

∑
n=0

(x− 0)n
q,h

tn

n!

Setting x = 2, we have

eq,h(2 : t) =
∞

∑
n=0

(2)n
q,h

tn

n!
,

where (2)n
q,h = (2− 0)n

q,h = 2(2− h) · · · (2− [n− 1]qh).
From the property of eq,h(x : t), we note the relation

eq,h(qx : t) =
∞

∑
n=0

qx(qx− h)(qx− [2]qh)(qx− [3]qh) · · · (qx− [n− 1]qh)
tn

[n]q!

= eq,q−1h(x : qt).
(1)

Definition 6. Let |q| < 1 and h be a non-negative integer. Then, we can define the degenerate
q-tangent polynomial Tn,q(x : h) as

∞

∑
n=0

Tn,q(x : h)
tn

[n]q!
=

2
eq,h(2 : t) + 1

eq,h(x : t).

For x = 0 in Definition 6, we note that

∞

∑
n=0

Tn,q(0 : h)
tn

[n]q!
:=

∞

∑
n=0

Tn,q(h)
tn

[n]q!
=

2
eq,h(2 : t) + 1

,



Symmetry 2023, 15, 874 5 of 14

where Tn,q(h) are called degenerate q-tangent numbers. From Definition 6, we can see
certain relations between the tangent, degenerate tangent, and (p, q)-tangent polynomials.
Setting h→ 0 in Definition 6, we can derive the q-tangent numbers Tn,q and polynomials
Tn,q(x) as follows:

∞

∑
n=0

Tn,q
tn

[n]q!
=

2
eq(2t) + 1

,
∞

∑
n=0

Tn,q(x)
tn

[n]q!
=

2
eq(2t) + 1

eq(tx).

As h→ 0 and q→ 1 in Definition 6, we obtain the tangent numbers Tn and polynomi-
als Tn(x)

∞

∑
n=0

Tn
tn

n!
=

2
e2t + 1

,
∞

∑
n=0

Tn(x)
tn

n!
=

2
e2t + 1

etx.

When q → 1 in Definition 6, we can recover the degenerate tangent numbers Tn(h)
and polynomials Tn(x : h) as follows:

∞

∑
n=0

Tn(h)
tn

n!
=

2

(1 + ht)
2
h + 1

,
∞

∑
n=0

Tn(x : h)
tn

n!
=

2

(1 + ht)
2
h + 1

(1 + ht)
x
h ,

where Tn(h) = Tn(0 : h).
Here is a list of some degenerate q-tangent numbers:

T0,q(h) = 1,

T1,q(h) = 0,

T2,q(h) = −1 + h,

T3,q(h) = −(−1 + h + q)(−2 + h + (−1 + h)q),

T4,q(h) = −3 + h3(1 + q)(1 + q + q2) + q(3 + q(4 + 2q− q3))

+ h(6 + q + q2(−5 + q(−6 + (−3 + q)q)))

+ h2(−4 + q(−5 + q(−2 + q + 2q2))),

· · · .

Several degenerate q-tangent polynomials are as follows:

T0,q(x : h) = 1,

T1,q(x : h) = −1 + x,

T2,q(x : h) = −1 + h + q− (1 + h + q)x + x2,

T3,q(x : h) = −(1 + q)(1 + h2 + 2h(−1 + q) + (−3 + q)q)

+ (−1 + q3 + h2(1 + q) + 2h(1 + q + q2))x

− (1 + q + q2 + h(2 + q))x2 + x3,

· · · .

Figure 1 shows the structure of the approximate roots of degenerate q-tangent poly-
nomials. Here, we impose the conditions 0 ≤ n ≤ 50 and q = 0.1. Figure 1a,b show the
structure of the approximate roots for h = 40 and h = 0, respectively. The approximate
structure of degenerate q-tangent polynomials when h is −40 is shown in Figure 1c.
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(a) h = 10 (b) h = 1 (c) h = 0

Figure 1. Approximate roots viewed under the following conditions: (a) q = 0.1; h = 40 (b) q = 0.1;
and h = 0 (c) q = 0.1; h = −40.

Theorem 1. For |q| < 1 and h ∈ N, we have

D(1)
q,h,xTn,q(x : h) = [n]qTn−1,q(x : h).

Proof. From generating the function of the degenerate q-tangent polynomials Tn,q(x : h),
we obtain

∞

∑
n=0

Tn,q(x : h)
tn

[n]q!
=

∞

∑
n=0

Tn,q(h)
tn

[n]q!

∞

∑
n=0

(
x
)n

q,h
tn

[n]q!

=
∞

∑
n=0

(
n

∑
k=0

[n]q!
[n− k]q![k]q!

(
x
)n−k

q,h Tk,q(h)

)
tn

[n]q!
.

From this equation, we can establish the relation between the degenerate q-tangent
polynomials and degenerate q-tangent numbers as follows:

Tn,q(x : h) =
n

∑
k=0

[
n
k

]
q

(
x
)n−k

q,h Tk,q(h). (2)

Using the (q, h)-derivative in Equation (2), we can derive the following equation:

D(1)
q,h,xTn,q(x : h) =

n

∑
k=0

[
n
k

]
q
[n− k]q

(
x
)n−k−1

q,h Tk,q(h)

= [n]qTn−1,q(x : h).

This completes the proof.

Corollary 1. Let k be a non-negative integer. From Theorem 1, the following holds:

Tn−k,q(x : h) =
[n− k]q!
[n]q!

D(k)
q,h,xTn,q(x : h).

Corollary 2. (i) Letting q→ 1 in Theorem 1, we have

D(1)
h,x Tn(x : h) = nTn−1(x : h), Tn−k(x : h) =

(n− k)!
n!

D(k)
h,x Tn(x : h),

where Dh is the h-derivative and Tn,h(x) are the degenerate tangent polynomials.
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(ii) Letting h→ 0 in Theorem 1, we have

D(1)
q,x Tn,q(x) = [n]qTn−1,q(x), Tn−k,q(x) =

[n− k]q!
[n]q!

D(k)
q,x Tn,q(x),

where Dq is the q-derivative and Tn,q(x) are q-tangent polynomials.

Theorem 2. The solutions following differential equation(
2
)n

q,h

[n]q!
D(n)

q,h,xTn,q(x : h) +

(
2
)n−1

q,h

[n− 1]q!
D(n−1)

q,h,x Tn,q(x : h) +

(
2
)n−2

q,h

[n− 2]q!
D(n−2)

q,h,x Tn,q(x : h)

+ · · ·+

(
2
)2

q,h

[2]q!
D(2)

q,h,xTn,q(x : h) + 2D(1)
q,h,xTn,q(x : h) + 2Tn,q(x : h)− 2

(
x
)n

q,h = 0,

are degenerate q-tangent polynomials.

Proof. Suppose that eq,h(2 : t) 6= −1 in the generating function of the degenerate q-tangent
polynomials. Then, we have

∞

∑
n=0

Tn,q(x : h)
tn

[n]q!

(
eq,h(2 : t) + 1

)
= 2eq,h(x : t). (3)

The left-hand side of Equation (3) transforms to

∞

∑
n=0

Tn,q(x : h)
tn

[n]q!

(
eq,h(2 : t) + 1

)
=

∞

∑
n=0

(
n

∑
k=0

[
n
k

]
q

(
2
)k

q,hTn−k,q(x : h) + Tn,q(x : h)

)
tn

[n]q!

while the right-hand side becomes

2eq,h(x : t) = 2
∞

∑
n=0

(
x
)n

q,h
tn

[n]q!

Hence, we derive

n

∑
k=0

[
n
k

]
q

(
2
)k

q,hTn−k,q(x : h) + Tn,q(x : h) = 2
(
x
)n

q,h. (4)

Considering Corollary 1 in Equation (4), we obtain

n

∑
k=0

(
2
)k

q,h

[k]q!
D(k)

q,h,xTn,q(x : h) + Tn,q(x : h)− 2
(
x
)n

q,h = 0.

Therefore, we obtain the desired result.

Corollary 3. Letting q→ 1 in Theorem 2, we have(
2
)n

1,h

n!
D(n)

h,x Tn(x : h) +

(
2
)n−1

1,h

(n− 1)!
D(n−1)

h,x Tn(x : h) +

(
2
)n−2

1,h

(n− 1)!
D(n−2)

h,x Tn(x : h)

+ · · ·+
(
2
)2

1,h

2!
D(2)

h,x Tn(x : h) + 2D(1)
h,x Tn(x : h) + 2Tn(x : h)− 2

(
x
)n

1,h = 0,
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where Dh is the h-derivative and Tn(x : h) are degenerate tangent polynomials.

Corollary 4. Letting h→ 0 in Theorem 2, the following holds:

2
[n]q!

D(n)
q,x Tn,q(x) +

2
[n− 1]q!

D(n−1)
q,x Tn,q(x) +

2
[n− 2]q!

D(n−2)
q,x Tn,q(x) + · · ·

+
2

[2]q!
D(2)

q,x Tn,q(x) + 2D(1)
q,x Tn,q(x) + 2Tn,q(x)− 2xn = 0,

where Dq is the q-derivative and Tn,q(x) are q-tangent polynomials.

Theorem 3. The degenerate q-tangent polynomials are solutions of the following differential
equation:

Tn,q(2 : h) + Tn,q(h)
[n]q!

D(n)
q,h,xTn,q(x : h) +

Tn−1,q(2 : h) + Tn−1,q(h)
[n− 1]q!

D(n−1)
q,h,x Tn,q(x : h) + · · ·

+
T2,q(2 : h) + T2,q(h)

[2]q!
D(2)

q,h,xTn,q(x : h) + (T1,q(2 : h) + T1,q(h))D(1)
q,h,xTn,q(x : h)

+
(
T0,q(2 : h) + T0,q(h)− 2

)
Tn,q(x : h) = 0.

Proof. From Definition 6, we have

∞

∑
n=0

Tn,q(x : h)
tn

[n]q!
=

2
eq,h(2 : t) + 1

eq,h(x : t)

=
1
2

(
2

eq,h(2 : t) + 1
eq,h(2 : t) +

2
eq,h(2 : t) + 1

)
2

eq,h(2 : t) + 1
eq,h(x : t).

Using the generating function of degenerate q-tangent polynomials, we find the
relation

2
∞

∑
n=0

Tn,q(x : h)
tn

[n]q!
=

∞

∑
n=0

(
n

∑
k=0

[
n
k

]
q

(
Tk,q(2 : h) + Tk,q(h)

)
Tn−k,q(x : h)

)
tn

[n]q!
.

Comparing the coefficients of both sides above, we find that

n

∑
k=0

[
n
k

]
q

(
Tk,q(2 : h) + Tk,q(h)

)
Tn−k,q(x : h)− 2Tn,q(x : h) = 0. (5)

Replacing Tn−k,q(x : h) with D(k)
q,h,xTn,q(x : h) in Equation (5), we derive

n

∑
k=0

(
Tk,q(2 : h) + Tk,q(h)

)
[k]q!

D(k)
q,h,xTn,q(x : h)− 2Tn,q(x : h) = 0.

The above equation allows us to complete the proof.

Corollary 5. Setting h→ 0 in Theorem 3, the following holds:

Tn,q(2) + Tn,q

[n]q!
D(n)

q,x Tn,q(x) +
Tn−1,q(2) + Tn−1,q

[n− 1]q!
D(n−1)

q,x Tn,q(x) + · · ·

+
T2,q(2) + T2,q

[2]q!
D(2)

q,x Tn,q(x) + (T1,q(2) + T1,q)D(1)
q,x Tn,q(x)

+
(
T0,q,(2) + T0,q − 2

)
Tn,q(x) = 0,
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where Dq is the q-derivative and Tn,q(x) are q-tangent polynomials.

Corollary 6. Putting q→ 1 in Theorem 3, the following holds

Tn(2 : h) + Tn(h)
n!

D(n)
h,x Tn(x : h) +

Tn−1(2 : h) + Tn−1(h)
(n− 1)!

D(n−1)
h,x Tn(x : h) + · · ·

+
T2(2 : h) + T2(h)

2!
D(2)

h,x Tn(x : h) + (T1(2 : h) + T1(h))D(1)
h,x Tn(x : h)

+ (T0(2 : h) + T0(h)− 2)Tn(x : h) = 0,

where Dh is the h-derivative and Tn(x : h) are degenerate tangent polynomials.

Theorem 4. The degenerate q-tangent polynomials are solutions of the following higher-order
differential equation

qn(Tn,q(2 : q−1h) + Tn,q(q−1h)
)

[n]q !
D(n)

q,h,xTn,q(qx : h) +
qn−1(Tn−1,q(2 : q−1h) + Tn−1,q(q−1h)

)
[n− 1]q !

D(n−1)
q,h,x Tn,q(qx : h)

+ · · ·+
q2(T2,q(2 : q−1h) + T2,q(q−1h)

)
[2]q !

D(2)
q,h,xTn,q(qx : h) + q(T1,q(2 : q−1h) + T1,q(q−1h))D(1)

q,h,xTn,q(qx : h)

+
(

T0,q(2 : q−1h) + T0,q(q−1h)− 2
)

Tn,q(qx : h) = 0.

Proof. Plugging Equation (1) into the generating function of the degenerate q-tangent
polynomials, we find

∞

∑
n=0

Tn,q(qx : h)
tn

[n]q!
=

2
eq,h(2 : t) + 1

eq,h(qx : t)

=
1
2

(
2

eq,q−1h(2 : qt) + 1
eq,q−1h(2 : qt) +

2
eq,q−1h(2 : qt) + 1

)

× 2
eq,h(2 : t) + 1

eq,h(qx : t).

Using Tn,q(x : h), we have the relation

2
∞

∑
n=0

Tn,q(qx : h)
tn

[n]q!

=
∞

∑
n=0

(
n

∑
k=0

[
n
k

]
q
qk
(

Tk,q(2 : q−1h) + Tk,q(q−1h)
)

Tn−k,q(qx : h)

)
tn

[n]q!
.

(6)

From the above Equation (6), we obtain

n

∑
k=0

[
n
k

]
q
qk
(

Tk,q(2 : q−1h) + Tk,q(q−1h)
)

Tn−k,q(qx : h)− 2Tn,q(qx : h) = 0. (7)

Substituting qx for x in Corollary 1, we note that

Tn−k,q(qx : h) =
[n− k]q!
[n]q!

D(k)
q,h,xTn,q(qx : h). (8)

Applying Equations (8) and (7), we obtain

n

∑
k=0

qk
(

Tk,q(2 : q−1h) + Tk,q(q−1h)
)

[k]q!
D(k)

q,h,xTn,q(qx : h)− 2Tn,q(qx : h) = 0.

There, we derive the desired result at once.
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Corollary 7. Setting h→ 0 in Theorem 4, the following holds:

qn(Tn,q(2) + Tn,q
)

[n]q!
D(n)

q,x Tn,q(x) +
qn−1(Tn−1,q(2) + Tn−1,q

)
[n− 1]q!

D(n−1)
q,x Tn,q(x) + · · ·

+
q2(T2,q(2) + T2,q

)
[2]q!

D(2)
q,x Tn,q(x) + q(T1,q(2) + T1,q)D(1)

q,x Tn,q(x)

+
(
T0,q(2) + T0,q − 2

)
Tn,q(x) = 0,

where Dq is the q-derivative and Tn,q(x) are q-tangent polynomials.

3. Differential Equations with Coefficients of Euler, Bernoulli,
and Genocchi Polynomials

In this section, we look for differential equations whose coefficients are other numbers
and polynomials. Based on these differential equations, we can confirm several additional
properties of tangent polynomials.

Theorem 5. The degenerate q-tangent polynomials are solutions of the following higher-order
differential equation combined with the q-Euler numbers and polynomials

En,q + En,q(1)
[n]q!

D(n)
q,h,xTn,q(x : h) +

En−1,q + En−1,q(1)
[n− 1]q!

D(n−1)
q,h,x Tn,q(x : h)

+ · · ·+
E2,q + E2,q(1)

[2]q!
D(2)

q,h,xTn,q(x : h) + (E1,q + E1,q(1))D(1)
q,h,xTn,q(x : h)

+
(
E0,q + E0,q(1)− 2

)
Tn,q(x : h) = 0,

where En,q are q-Euler numbers and En,q(x) are q-Euler polynomials.

Proof. We note that the q-Euler numbers and polynomials are defined as

∞

∑
n=0
En,q

tn

[n]q!
=

2
eq(t) + 1

,
∞

∑
n=0
En,q(x)

tn

[n]q!
=

2
eq(t) + 1

eq(tx),

see [14].
Using the q-Euler polynomials in the generating function of the degenerate q-tangent

polynomials, we obtain

∞

∑
n=0

Tn,q(x : h)
tn

[n]q!

=
2

eq,h(2 : t) + 1
eq,h(x : t)

=
1
2

(
2

eq(t) + 1
eq(t) +

2
eq(t) + 1

)
2

eq,h(2 : t) + 1
eq,h(x : t)

=
1
2

∞

∑
n=0

(
n

∑
k=0

[
n
k

]
q

(
Ek,q + Ek,q(1)

)
Tn−k,q(x : h)

)
tn

[n]q!
.

(9)

Comparing the coefficients on both sides of Equation (9), we have

2Tn,q(x : h) =
n

∑
k=0

[
n
k

]
q

(
Ek,q + Ek,q(1)

)
Tn−k,q(x : h). (10)
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Using the relationship of the degenerate q-tangent polynomials to the k-times (q, h)-
derivative in (10), we obtain

n

∑
k=0

(
Ek,q + Ek,q(1)

)
[k]q!

D(k)
q,h,xTn,q(x : h)− 2Tn,q(x : h) = 0.

The above equation completes the proof.

Corollary 8. Letting h→ 0 in Theorem 5, the following holds:

En,q + En,q(1)
[n]q!

D(n)
q,x Tn,q(x) +

En−1,q + En−1,q(1)
[n− 1]q!

D(n−1)
q,x Tn,q(x)

+ · · ·+
E2,q + E2,q(1)

[2]q!
D(2)

q,x Tn,q(x) + (E1,q + E1,q(1))D(1)
q,x Tn,q(x)

+
(
E0,q + E0,q(1)− 2

)
Tn,q(x) = 0,

where Dq is the q-derivative and Tn,q(x) are q-tangent polynomials.

Corollary 9. Letting q→ 1 in Theorem 5, the following holds:

En + En(1)
n!

D(n)
h,x Tn(x : h) +

En−1 + En−1(1)
(n− 1)!

D(n−1)
h,x Tn(x : h)

+ · · ·+ E2 + E2(1)
2!

D(2)
h,x Tn(x : h) + (E1 + E1(1))D(1)

h,x Tn(x : h)

+ (E0 + E0(1)− 2)Tn(x : h) = 0,

where Dh is the h-derivative and Tn(x : h) are degenerate tangent polynomials.

Theorem 6. The following higher-order differential equation combines the q-Bernoulli numbers
and polynomials:

Bn,q(1) + Bn,q

[n]q!
D(n)

q,h,xTn,q(x : h) +
Bn−1,q(1) + Bn−1,q

[n− 1]q!
D(n−1)

q,h,x Tn,q(x : h)

+ · · ·+
B2,q(1) + B2,q

[2]q!
D(2)

q,h,xTn,q(x : h) + (B1,q(1) + B1,q)D(1)
q,h,xTn,q(x : h)

+
(

B0,q(1) + B0,q
)
Tn,q(x : h)− [2]qTn−1,q(x : h) = 0.

The solution of the following higher-order differential equation are degenerate q-tangent polynomials,
where Bn,q is the q-Bernoulli numbers and Bn,q(x) are q-Bernoulli polynomials.

Proof. The q-Bernoulli numbers and polynomials are defined as

∞

∑
n=0

Bn,q
tn

[n]q!
=

t
eq(t)− 1

,
∞

∑
n=0

Bn,q(x)
tn

[n]q!
=

t
eq(t)− 1

eq(tx),

see [18].
Using the q-Bernoulli polynomials, the degenerate q-tangent polynomials exhibit the

following relation:
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∞

∑
n=0

Tn,q(x : h)
tn

[n]q!

=
2

eq,h(2 : t) + 1
eq,h(x : t)

=
1
t

(
t

eq(t)− 1
eq(t)−

t
eq(t) + 1

)
2

eq,h(2 : t) + 1
eq,h(x : t)

=
1
t

∞

∑
n=0

(
n

∑
k=0

[
n
k

]
q

(
Bk,q(1)− Bk,q

)
Tn−k,q(x : h)

)
tn

[n]q!
.

(11)

From Equation (11), we have

qTn−1,q(x : h) =
n

∑
k=0

[
n
k

]
q

(
Bk,q(1)− Bk,q

)
Tn−k,q(x : h)

=
n

∑
k=0

(
Bk,q(1)− Bk,q

)
[k]q!

D(k)
q,h,xTn,q(x : h).

Therefore, we derive

n

∑
k=0

(
Bk,q(1)− Bk,q

)
[k]q!

D(k)
q,h,xTn,q(x : h)− [n]qTn−1,q(x : h) = 0,

which is the required result.

Corollary 10. Setting h→ 0 in Theorem 6, the following holds:

Bn,q(1) + Bn,q

[n]q!
D(n)

q,x Tn,q(x) +
Bn−1,q(1) + Bn−1,q

[n− 1]q!
D(n−1)

q,x Tn,q(x)

+ · · ·+
B2,q(1) + B2,q

[2]q!
D(2)

q,x Tn,q(x) + (B1,q(1) + B1,q)D(1)
q,x Tn,q(x)

+
(

B0,q(1) + B0,q
)
Tn,q(x)− [2]qTn−1,q(x) = 0,

where Dq is the q-derivative and Tn,q(x) are q-tangent polynomials.

Corollary 11. Setting q→ 1 in Theorem 6, the following holds:

Bn(1) + Bn

n!
D(n)

h,x Tn(x : h) +
Bn−1(1) + Bn−1

(n− 1)!
D(n−1)

h,x Tn(x : h)

+ · · ·+ B2(1) + B2

2!
D(2)

h,x Tn(x : h) + (B1(1) + B1)D(1)
h,x Tn(x : h)

+ (B0(1) + B0)Tn(x : h)− 2Tn−1(x : h) = 0,

where Dh is the h-derivative and Tn(x : h) are degenerate tangent polynomials.

Theorem 7. The degenerate q-tangent polynomials are solutions of the following higher-order
differential equation combining q-Genocchi numbers and polynomials.

Gn,q + Gn,q(1)
[n]q!

D(n)
q,h,xTn,q(x : h) +

Gn−1,q + Gn−1,q(1)
[n− 1]q!

D(n−1)
q,h,x Tn,q(x : h)

+ · · ·+
G2,q + G2,q(1)

[2]q!
D(2)

q,h,xTn,q(x : h) + (G1,q + G1,q(1))D(1)
q,h,xTn,q(x : h)

+
(
G0,q + G0,q(1)

)
Tn,q(x : h)− 2[n]qTn−1,q(x : h) = 0,
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where Gn,q are q-Genocchi numbers and Gn,q(x) are q-Genocchi polynomials.

Proof. The q-Genocchi numbers and polynomials are defined as

∞

∑
n=0

Gn,q
tn

[n]q!
=

2t
eq(t) + 1

,
∞

∑
n=0

Gn,q(x)
tn

[n]q!
=

2t
eq(t) + 1

eq(tx).

The generating function of the degenerate q-tangent polynomials transforms to

∞

∑
n=0

Tn,q(x : h)
tn

[n]q!

=
2

eq,h(2 : t) + 1
eq,h(x : t)

=
1
2t

(
2t

eq(t) + 1
eq(t) +

2t
eq(t) + 1

)
2

eq,h(2 : t) + 1
eq,h(x : t)

=
1
2t

∞

∑
n=0

(
n

∑
k=0

[
n
k

]
q

(
Gk,q + Gk,q(1)

)
Tn−k,q(x : h)

)
tn

[n]q!
.

(12)

Using the q-Genocchi numbers and polynomials and the coefficients comparison method
in Equation (12), we find

2[n]qTn−1,q(x : h) =
n

∑
k=0

[
n
k

]
q

(
Gk,q + Gk,q(1)

)
Tn−k,q(x : h).

Hence, we obtain

n

∑
k=0

(
Gk,q + Gk,q(1)

)
[k]q!

D(k)
q,h,xTn,q(x : h)− 2[n]qTn−1,q(x : h) = 0,

which is the desired result.

Corollary 12. Setting h→ 0 in Theorem 7, the following holds:

Gn,q + Gn,q(1)
[n]q!

D(n)
q,x Tn,q(x) +

Gn−1,q + Gn−1,q(1)
[n− 1]q!

D(n−1)
q,x Tn,q(x)

+ · · ·+
G2,q + G2,q(1)

[2]q!
D(2)

q,x Tn,q(x) + (G1,q + G1,q(1))D(1)
q,x Tn,q(x)

+
(
G0,q + G0,q(1)

)
Tn,q(x)− 2[n]qTn−1,q(x) = 0,

where Dq is the q-derivative and Tn,q(x) are q-tangent polynomials.

Corollary 13. Setting q→ 1 in Theorem 7, the following holds:

Gn + Gn(1)
n!

D(n)
h,x Tn(x : h) +

Gn−1 + Gn−1(1)
(n− 1)!

D(n−1)
h,x Tn(x : h)

+ · · ·+ G2 + G2(1)
2!

D(2)
h,x Tn(x : h) + (G1 + G1(1))D(1)

h,x Tn(x : h)

+ (G0 + G0(1))Tn(x : h)− 2nTn−1(x : h) = 0,

where Dh is the h-derivative and Tn(x : h) are degenerate tangent polynomials.
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4. Conclusions

We constructed degenerate q-tangent polynomials and found several differential equa-
tions with these polynomials as solutions. We also found differential equations combining
Euler and Bernoulli polynomials. Polynomials for single-variable quantum numbers can
be extended to bivariate quantum numbers, and these polynomials include various prop-
erties and identities. The results from this paper have highlighted interesting topics for
constructing tangent polynomials with bivariate quantum numbers and properties.
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