
Citation: Shin, D.-J.; Kim, J.-J.

Cache-Based Matrix Technology for

Efficient Write and Recovery in

Erasure Coding Distributed File

Systems. Symmetry 2023, 15, 872.

https://doi.org/10.3390/

sym15040872

Academic Editor: Alexander

Zaslavski

Received: 28 February 2023

Revised: 29 March 2023

Accepted: 4 April 2023

Published: 6 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Cache-Based Matrix Technology for Efficient Write and
Recovery in Erasure Coding Distributed File Systems
Dong-Jin Shin 1 and Jeong-Joon Kim 2,*

1 Department of Computer Engineering, Anyang University, Anyang-si 14028, Republic of Korea;
djshin@gs.anyang.ac.kr

2 Department of Software, Anyang University, Anyang-si 14028, Republic of Korea
* Correspondence: jjkim@anyang.ac.kr

Abstract: With the development of various information and communication technologies, the amount
of big data has increased, and distributed file systems have emerged to store them stably. The
replication technique divides the original data into blocks and writes them on multiple servers for
redundancy and fault tolerance. However, there is a symmetrical space efficiency problem that arises
from the need to store blocks larger than the original data. When storing data, the Erasure Coding
(EC) technique generates parity blocks through encoding calculations and writes them separately on
each server for fault tolerance and data recovery purposes. Even if a specific server fails, original data
can still be recovered through decoding calculations using the parity blocks stored on the remaining
servers. However, matrices generated during encoding and decoding are redundantly generated
during data writing and recovery, which leads to unnecessary overhead in distributed file systems.
This paper proposes a cache-based matrix technique that uploads the matrices generated during
encoding and decoding to cache memory and reuses them, rather than generating new matrices
each time encoding or decoding occurs. The design of the cache memory applies the Weighting Size
and Cost Replacement Policy (WSCRP) algorithm to efficiently upload and reuse matrices to cache
memory using parameters known as weights and costs. Furthermore, the cache memory table can
be managed efficiently because the weight–cost model sorts and updates matrices using specific
parameters, which reduces replacement cost. The experiment utilized the Hadoop Distributed File
System (HDFS) as the distributed file system, and the EC volume was composed of Reed–Solomon
code with parameters (6, 3). As a result of the experiment, it was possible to reduce the write, read,
and recovery times associated with encoding and decoding. In particular, for up to three node
failures, systems using WSCRP were able to reduce recovery time by about 30 s compared to regular
HDFS systems.

Keywords: erasure coding; replication; matrix; distributed file system; encoding; decoding

1. Introduction

With the advancement of IT technology, various services utilizing big data, artificial
intelligence, and the Internet of Things (IoT) have emerged in recent times [1]. In particular,
big data, which refers to large and complex data sets, is being generated in various forms,
from structured to unstructured data. Traditionally, relational databases have been used to
store data. As a file system, Redundant Array of Inexpensive Disks (RAID) has often been
used as a method to increase data stability by combining hard disks in an array. However,
with the emergence of big data, distributed file systems have become popular as a more
convenient and safe way to store data in case of server failure [2].

Distributed file systems typically distribute and store data using replication and EC
techniques. In the data storage mode of the replication technique, the original data are
divided into blocks, replicated, and distributed across multiple servers. When a command
to read data is executed from the master server, the blocks distributed and stored across

Symmetry 2023, 15, 872. https://doi.org/10.3390/sym15040872 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15040872
https://doi.org/10.3390/sym15040872
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-9957-0489
https://orcid.org/0000-0002-0125-1907
https://doi.org/10.3390/sym15040872
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15040872?type=check_update&version=1

Symmetry 2023, 15, 872 2 of 19

the slave servers are combined into a single unit of data. In addition, even if a server fails
and becomes unresponsive, the data stored on other servers can be used to recover the
lost data [3]. However, due to the cost of distributing and storing data on each server,
EC techniques have emerged as an alternative solution to increase the space efficiency of
distributed storage systems. Unlike the replication technique, the EC technique uses a
unique algorithm to encode the original data and create a parity block. The data block
and the parity block are then distributed and stored on each server. Although the EC
technique improves symmetrical space efficiency compared to the replication technique,
there is an overhead when writing or reading data due to the involvement of many servers
and disks [4]. Regarding the overhead, there have been studies on client overhead to
solve disk Input/Output (I/O) problems as well as studies on solving the problem of data
bottlenecks in terms of network traffic [5,6]. To address the issue of client overhead, this
paper proposes a method to maximize the efficiency of the matrix by uploading the matrix
generated during encoding and decoding through the EC algorithm to the cache memory,
allowing for faster access.

The methodology of cache-based matrix technology applies the WSCRP algorithm
for encoding and decoding [7]. The WSCRP algorithm operates based on the Weighting
Replacement Policy (WRP) algorithm, which proposes a page replacement policy to be used
in cache memory by introducing a new parameter called weights [8]. The WSCRP algorithm
proposes a page replacement policy that extends the weights of the WRP algorithm by
adding a new parameter called cost. The experiment applied a distributed file system,
HDFS, which supports the EC algorithm. The EC algorithm selected for the experiment
was Reed–Solomon (RS), and a (6, 3) volume was used, consisting of six data blocks and
three parity blocks. The experimental evaluation targeted systems without cache memory,
systems with Least Recently Used (LRU) and Least Frequently Used (LFU) basic cache
memory algorithms, and systems with WRP and WSCRP algorithms, comparing a total of
five writing times, reading times, and recovery times.

This paper begins with an introduction in Section 1 and examines the basic theory
of distributed file systems in Section 2. Section 3 provides a summary of the improved
methodologies in EC-based distributed file systems, along with related studies. Section 4
introduces the proposed cache-based matrix technology. In Section 5, the paper compares
systems that applied the methodology to the distributed file system. Finally, Section 6
presents our conclusion.

2. Background

HDFS is a representative distributed file system, provided in an open-source format
through the Apache Project, and many companies use it to build services. In a replication
method of distributed file systems, such as HDFS, the write mode divides the original data
into blocks, and the divided blocks are replicated and stored in each server. For instance, in
replication techniques with 3x Factor elements, storing 300 GB (Gigabyte) of data requires
900 GB of storage space. Although data stability is increased in preparation for server
failure, there is a disadvantage in that more physical capacity is required for symmetrical
space efficiency. Figure 1 shows how data are written when nine nodes (servers) are
configured through replication techniques.

When the storage command is given to the original data from the name node, the data
are divided into blocks, and each block is replicated and written to the data node.

Distributed file systems that use EC instead of replication techniques are widely used
to address symmetrical space efficiency aspects [9]. EC is a method of encoding and storing
data using a unique algorithm. Representative algorithms exist in various forms, including
XOR, RS, Liberation, and Weaver Code [10–13]. When data are written to the EC-based
distributed file system, the original data are divided into data blocks and parity blocks
through encoding. When data are read or recovered, data loss can be prevented in case
of server failure through decoding. If the data are encoded using the RS (6, 3) volume,
the original data are divided into six data blocks and encoded using the RS algorithm to

Symmetry 2023, 15, 872 3 of 19

generate three parity blocks, which are then written to the storage. A total of nine servers
are required to write the data, as indicated by the notation RS (6, 3). For instance, if you
store 300 GB of data, only 300 GB of data blocks and 150 GB of parity blocks generated
through encoding are needed, resulting in a total of 450 GB. This is more symmetrical and
space-efficient than the replication technique. Figure 2 shows how blocks are distributed
and written after encoding when the original data storage mode is initiated on the RS
(6, 3) volume.

Symmetry 2023, 15, x FOR PEER REVIEW 3 of 21

Figure 1. Distributed file system structure based on replication techniques.

When the storage command is given to the original data from the name node, the
data are divided into blocks, and each block is replicated and written to the data node.

Distributed file systems that use EC instead of replication techniques are widely used
to address symmetrical space efficiency aspects [9]. EC is a method of encoding and stor-
ing data using a unique algorithm. Representative algorithms exist in various forms, in-
cluding XOR, RS, Liberation, and Weaver Code [10–13]. When data are written to the EC-
based distributed file system, the original data are divided into data blocks and parity
blocks through encoding. When data are read or recovered, data loss can be prevented in
case of server failure through decoding. If the data are encoded using the RS (6, 3) volume,
the original data are divided into six data blocks and encoded using the RS algorithm to
generate three parity blocks, which are then written to the storage. A total of nine servers
are required to write the data, as indicated by the notation RS (6, 3). For instance, if you
store 300 GB of data, only 300 GB of data blocks and 150 GB of parity blocks generated
through encoding are needed, resulting in a total of 450 GB. This is more symmetrical and
space-efficient than the replication technique. Figure 2 shows how blocks are distributed
and written after encoding when the original data storage mode is initiated on the RS (6,
3) volume.

Figure 2. Distributed file system structure based on erasure coding techniques.

To summarize, the replication technique divides the original data into blocks and
replicates and writes them. In contrast, the EC technique divides the original data into
data blocks and generates parity blocks through encoding, and then distributes and writes
them. In the case of RS (6, 3) volume, the original data are divided into six data blocks and
written, and three parity blocks are generated through encoding and written. The replica-
tion technique requires more physical capacity as it stores multiple copies of data, while
the EC technique offers a more symmetrical, space-efficient solution.

In a distributed file system, symmetrical space efficiency is calculated based on the
number of failed servers and the number of servers that can participate in the recovery
process. Table 1 shows the notation for the calculation of Equation (1), and Table 2 shows

Figure 1. Distributed file system structure based on replication techniques.

Symmetry 2023, 15, x FOR PEER REVIEW 3 of 21

Figure 1. Distributed file system structure based on replication techniques.

When the storage command is given to the original data from the name node, the
data are divided into blocks, and each block is replicated and written to the data node.

Distributed file systems that use EC instead of replication techniques are widely used
to address symmetrical space efficiency aspects [9]. EC is a method of encoding and stor-
ing data using a unique algorithm. Representative algorithms exist in various forms, in-
cluding XOR, RS, Liberation, and Weaver Code [10–13]. When data are written to the EC-
based distributed file system, the original data are divided into data blocks and parity
blocks through encoding. When data are read or recovered, data loss can be prevented in
case of server failure through decoding. If the data are encoded using the RS (6, 3) volume,
the original data are divided into six data blocks and encoded using the RS algorithm to
generate three parity blocks, which are then written to the storage. A total of nine servers
are required to write the data, as indicated by the notation RS (6, 3). For instance, if you
store 300 GB of data, only 300 GB of data blocks and 150 GB of parity blocks generated
through encoding are needed, resulting in a total of 450 GB. This is more symmetrical and
space-efficient than the replication technique. Figure 2 shows how blocks are distributed
and written after encoding when the original data storage mode is initiated on the RS (6,
3) volume.

Figure 2. Distributed file system structure based on erasure coding techniques.

To summarize, the replication technique divides the original data into blocks and
replicates and writes them. In contrast, the EC technique divides the original data into
data blocks and generates parity blocks through encoding, and then distributes and writes
them. In the case of RS (6, 3) volume, the original data are divided into six data blocks and
written, and three parity blocks are generated through encoding and written. The replica-
tion technique requires more physical capacity as it stores multiple copies of data, while
the EC technique offers a more symmetrical, space-efficient solution.

In a distributed file system, symmetrical space efficiency is calculated based on the
number of failed servers and the number of servers that can participate in the recovery
process. Table 1 shows the notation for the calculation of Equation (1), and Table 2 shows

Figure 2. Distributed file system structure based on erasure coding techniques.

To summarize, the replication technique divides the original data into blocks and
replicates and writes them. In contrast, the EC technique divides the original data into
data blocks and generates parity blocks through encoding, and then distributes and writes
them. In the case of RS (6, 3) volume, the original data are divided into six data blocks
and written, and three parity blocks are generated through encoding and written. The
replication technique requires more physical capacity as it stores multiple copies of data,
while the EC technique offers a more symmetrical, space-efficient solution.

In a distributed file system, symmetrical space efficiency is calculated based on the
number of failed servers and the number of servers that can participate in the recovery
process. Table 1 shows the notation for the calculation of Equation (1), and Table 2 shows
the comparison of symmetrical space efficiency of the distributed file systems shown in
Figures 1 and 2, according to the calculations in Equation (1).

Table 1. Notation and symbols of Equation (1) and description.

Notation and Symbol Definition

K The number of data blocks
M The number of blocks required for recovery

Symmetry 2023, 15, 872 4 of 19

Space E f f iciency =
K

K + M
(1)

Table 2. Comparison of replication techniques and EC techniques.

Techniques Fault Tolerance Symmetrical Space Efficiency

Nine-way replication 8 33%
EC RS (6, 3) 3 67%

In the replication technique, K represents the number of original data blocks, while M
represents the number of replicated blocks. In the EC technique, K represents the number
of original data blocks, and M represents the number of parity blocks generated through
encoding [14]. Since the replication technique consists of nine servers that copy blocks and
write them to each server, even if only one server is available due to the failure of eight
servers, data can be recovered if all the blocks necessary for recovery exist. However, the
symmetrical space efficiency of the replication technique is low at 9/(9 + 18) = 33%. The
EC-based RS (6, 3) volume uses the same nine servers as the replication technique, but
three servers write parity blocks. If more than four servers fail beyond the number of parity
blocks that can participate in the calculation, recovery cannot be performed. The replication
technique recovers by combining divided blocks, while the EC technique is a recovery
method that reconstructs data by calculating a specific algorithm. When comparing the
symmetrical space efficiency, the EC technique is much better, with a difference of almost
two times, 6/(6 + 3) = 67%. Figure 3 shows the encoding process in the EC-based distributed
file system.

Symmetry 2023, 15, x FOR PEER REVIEW 4 of 21

the comparison of symmetrical space efficiency of the distributed file systems shown in
Figures 1 and 2, according to the calculations in Equation (1).

Table 1. Notation and symbols of Equation (1) and description.

Notation and Symbol Definition 𝐾 The number of data blocks 𝑀 The number of blocks required for recovery
 𝑆𝑝𝑎𝑐𝑒 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = (1)

Table 2. Comparison of replication techniques and EC techniques.

Techniques Fault Tolerance Symmetrical Space Efficiency
Nine-way replication 8 33%
EC RS (6, 3) 3 67%

In the replication technique, K represents the number of original data blocks, while
M represents the number of replicated blocks. In the EC technique, K represents the num-
ber of original data blocks, and M represents the number of parity blocks generated
through encoding [14]. Since the replication technique consists of nine servers that copy
blocks and write them to each server, even if only one server is available due to the failure
of eight servers, data can be recovered if all the blocks necessary for recovery exist. How-
ever, the symmetrical space efficiency of the replication technique is low at 9/(9 + 18) =
33%. The EC-based RS (6, 3) volume uses the same nine servers as the replication tech-
nique, but three servers write parity blocks. If more than four servers fail beyond the num-
ber of parity blocks that can participate in the calculation, recovery cannot be performed.
The replication technique recovers by combining divided blocks, while the EC technique
is a recovery method that reconstructs data by calculating a specific algorithm. When com-
paring the symmetrical space efficiency, the EC technique is much better, with a difference
of almost two times, 6/(6 + 3) = 67%. Figure 3 shows the encoding process in the EC-based
distributed file system.

Figure 3. EC-based distributed file system encoding process.

When encoding is performed on the RS (6, 3) volume, the original data are divided
into six data blocks. The six divided data blocks generate three parity blocks through an
encoding process. The encoding process is expressed in Equation (2), and the related no-
tation is shown in Table 3.

Figure 3. EC-based distributed file system encoding process.

When encoding is performed on the RS (6, 3) volume, the original data are divided
into six data blocks. The six divided data blocks generate three parity blocks through
an encoding process. The encoding process is expressed in Equation (2), and the related
notation is shown in Table 3.

PBi = ∑k
j=1 GMi,jDBi,j (j ≤ 6) (2)

Table 3. Notation and symbols of Equation (2) and description.

Notation and Symbol Definition

PBi The parity blocks (i = rows)
GMi,j The generator matrix (i = rows, j = columns)
DBi,j The data blocks (i = rows, j = columns)

It is assumed that each piece of data of the six data blocks is composed of six items in
a sequence. The generator matrix with three rows and six columns is created in a structure

Symmetry 2023, 15, 872 5 of 19

consistent with the RS (6, 3) volume used, and a parity block is generated by summing the
values of each data block and the values of the corresponding rows and columns of the
generator matrix. The generator matrix is composed of a partial matrix with zero and a
generator matrix with three rows and six columns, which is determined using the Cauchy
matrix, depending on the volume of RS (6, 3) [15]. Figure 4 shows the decoding process of
the EC-based distributed file system.

Symmetry 2023, 15, x FOR PEER REVIEW 5 of 21

Table 3. Notation and symbols of Equation (2) and description.

Notation and Symbol Definition 𝑃𝐵 The parity blocks (i = rows) 𝐺𝑀 , The generator matrix (i = rows, j = columns) 𝐷𝐵 , The data blocks (i = rows, j = columns)
 𝑃𝐵 = ∑ 𝐺𝑀 , 𝐷𝐵 , (𝑗 6) (2)

It is assumed that each piece of data of the six data blocks is composed of six items in
a sequence. The generator matrix with three rows and six columns is created in a structure
consistent with the RS (6, 3) volume used, and a parity block is generated by summing the
values of each data block and the values of the corresponding rows and columns of the
generator matrix. The generator matrix is composed of a partial matrix with zero and a
generator matrix with three rows and six columns, which is determined using the Cauchy
matrix, depending on the volume of RS (6, 3) [15]. Figure 4 shows the decoding process of
the EC-based distributed file system.

Figure 4. EC-based distributed file system decoding process.

Errors have occurred in Data Block 3, Data Block 4, and Data Block 5, which need to
be decoded. To do this, the corresponding row of the Cauchy matrix part used by Data
Block 3, Data Block 4, and Data Block 5 must be deleted from the encoding matrix (Step
1). This generates an inverse matrix of the deleted encoding matrix, which is then multi-
plied on the left and right sides. The inverse matrix of the left side and the encoding matrix
from which the error removed matrix are removed and are multiplied using the canceling
out method (Step 2). Eventually, only the data composed of data blocks can be left, ena-
bling the recovery of data blocks (Step 3). In other words, decoding involves calculating
the inverse matrix through the encoding process of recovering the original data by using

Figure 4. EC-based distributed file system decoding process.

Errors have occurred in Data Block 3, Data Block 4, and Data Block 5, which need to
be decoded. To do this, the corresponding row of the Cauchy matrix part used by Data
Block 3, Data Block 4, and Data Block 5 must be deleted from the encoding matrix (Step 1).
This generates an inverse matrix of the deleted encoding matrix, which is then multiplied
on the left and right sides. The inverse matrix of the left side and the encoding matrix from
which the error removed matrix are removed and are multiplied using the canceling out
method (Step 2). Eventually, only the data composed of data blocks can be left, enabling
the recovery of data blocks (Step 3). In other words, decoding involves calculating the
inverse matrix through the encoding process of recovering the original data by using the
previously written parity block. If expressed as a formula, the decoding process is shown
in Equations (3)–(5), and the related notation is shown Table 4.

(EMi,j − ERi,j)DBi,j = PBi, IMi,j = (EMi,j − ERi,j)
−1 (3)

IMi,j(EMi,j − ERi,j)DBi,j = PBi IMi,j (4)

DBi,j = PBi IMi,j (5)

During the decoding process, (EMi,j − ERi,j) is obtained by removing the row corre-
sponding to the error from the encoding matrix using Equation (3), and then the inverse
matrix of (EMi,j − ERi,j), IMi,j, is calculated. Next, IMi,j is multiplied by both the left and

Symmetry 2023, 15, 872 6 of 19

right sides of the original encoding matrix using Equation (4). Finally, multiplying IMi,j
and (EMi,j − ERi,j) using Equation (5) results in only DBi,j, the data block that needs to be
restored, remaining. This step uses the canceling out method to remove any unnecessary
elements. Through this process, the decoding matrix is created by deleting the erroneous
row from the encoding matrix, finding its inverse, and performing matrix multiplication.

Table 4. Notation and symbols of Equations (3)–(5) and description.

Notation and Symbol Definition

EMi,j The encoding matrix (i = rows, j = columns)
ERi,j The error is removed matrix (i = rows, j = columns)
IMi,j The inverse matrix of encoding matrix (i = rows, j = columns)

3. Related Works and Contributions

There exists a study that analyzes the problems occurring in the EC-based distributed
file system, along with the cost analysis. Furthermore, there also exists an overview study
that summarizes methodologies for improving the EC-based distributed file system [5,6].
In [5], the author divided the encoding/decoding process of the EC-based distributed
file system into five steps—namely, client overhead, master process, parity calculation,
data distribution, and slave process—and analyzed the cost of each step with increasing
network speeds from 1 G to 100 G. The analysis revealed that the client overhead and data
distribution processes were the costliest at 100 G network speeds. In [7], the author describes
the overall flow of the study conducted on the EC distributed file system. Additionally,
the EC algorithm is broken into four stages, providing a detailed introduction to the
algorithm’s characteristics and processes. Based on the aforementioned studies, this paper
classified two methods for improving EC-based distributed file systems and organized
related studies by directly investigating them. Section 3.1 includes studies that redesign
EC-related algorithms or apply various recovery methods, whereas Section 3.2 focuses on
studies that aim to reduce the bandwidth and traffic generated by encoding and decoding
in terms of networks.

3.1. A Study of Erasure Coding Distributed File System Algorithm

In [16], the author proposes a new algorithm used in EC called Local Reconstruction
Code (LRC), which reduces storage overhead by reducing the I/O bandwidth required
for writing/reading compared to the previously used EC algorithm. In [17], the author
applies the piggybacking methodology to the RS algorithm and proposes a new algorithm
that reduces disk usage by approximately 30%. In [18], the author proposes an algorithm
that presents an optimal recovery scenario for single-node failures using the Hadamard
matrix. In [19], the author performed more optimization than the existing RS algorithm by
redesigning the linear algebra used in RS. In [20], the author proposed Zebra, which uses
various parameter values to encode the data hierarchically. Zebra automatically determines
the number of layers based on data characteristics and operates dynamically, reducing
storage and decoding overhead. In [21], the authors analyze the problems that arise when
performing parallel recovery in EC and present three solutions: the disk contention avoid-
ance method, the chunk allocation method, and the asynchronous recovery method. In [22],
the author proposed clay code, a new algorithm for improving recovery bandwidth and
disk I/O, to improve low storage overhead. In [23], the author proposed Founsure, a library
that can solve the encoding and decoding costs arising from existing EC algorithms and
increase the recovery bandwidth of data. In [24], the author presented a methodology that
would improve the basic XOR operations of the EC algorithm to operate more efficiently,
comparing it to the Intel-developed Jerasure Library. In [25], the author proposes a method-
ology in which system clients share files to increase the block access rate of distributed
file systems. The smaller the client’s cache size, the lower the performance improvement.
However, as the client’s cache size increases, the hit rate also increases, resulting in better

Symmetry 2023, 15, 872 7 of 19

performance. In [26], the author combines low-latency persistent memory modules with
distributed file systems. The cache between the client and the distributed file system
maximizes file consistency and minimizes I/O overhead. In [27], the author proposes
EC-Cache to address in-memory object caching dependencies arising from distributed
file systems and to mitigate load balancing and I/O performance issues. The proposed
system uses the same amount of memory but improves writing and reading times and
enhances network load balancing and I/O performance. In [28], the author conducted a
study by implementing a distributed layer cache system using the cache memory method
on HDFS, a distributed file system. Files loaded from HDFS were cached in shared memory
with direct access to the client library to improve file read and response times. In [29],
the author proposes a full replica solution, a new cache policy, instead of a cache method
consisting of fragments in an EC-based distributed file system. As a result of the simulation
experiment, the cache hit rate increased, and the response time improved compared to the
existing model.

3.2. A Study of Erasure Coding Distributed File System Network Traffic

In [30], the author proposed a delay recovery methodology that would allow the node
to skip the failed node and perform the ensuing recovery operations to increase the overall
recovery bandwidth. In [31], the author proposed a distributed reconstruction technique
where data are not recovered by combining them in one node during decoding. Instead,
partial parallel recovery can be performed in multiple nodes. In [32], the author proposed a
T-Update methodology that transforms the structure of a complete node system into a tree
structure to shorten the encoding update time that occurs during data updates. In [33], the
author proposed a methodology for pipelining the node recovery process, which transfers
the required blocks sequentially from the first node to the last node. In [34], the author
proposed a XORInc framework, which encodes and decodes network flows in XOR form to
effectively reduce network traffic and eliminate network bottlenecks. In [35], the author
proposed an AggreTree method that allows for temporary aggregation and the partial
decoding of blocks sent from servers and switches to effectively reduce traffic and eliminate
bottlenecks in a network topology consisting of servers and switches. In [36], the author
proposed NetEC, which improves the overall recovery performance by developing an
Application-Specific Integrated Circuit (ASIC) switch that can apply the EC algorithm and
aggregate the blocks received from the switch. In [37], the author proposed a methodology
called File Aware Graph Recovery that enables recovery from a file perspective by mapping
the information obtained during recovery, including file, block location, stripe shape, and
access frequency. In [38], the author analyzes the costs associated with recovering data
when multiple nodes fail and proposes an optimization methodology that uses a tree
structure to minimize the costs incurred during recovery of both encoded blocks and
original files.

3.3. Contribution

EC-based distributed file systems have been studied in two significant categories:
improving algorithms and controlling network traffic. This paper proposes a cache-based
matrix technique that can reduce client overhead introduced in [5]. Client overhead is
the process of reducing the overhead that occurs during encoding and decoding. While
some studies have focused on improving EC algorithms or suggesting new recovery
methodologies, there are no studies that utilize the matrix used for encoding and decoding.
Therefore, this paper analyzes the problem of matrices arising from encoding and decoding
and proposes a methodology to upload the matrix to cache memory for quicker access,
reducing unnecessary overhead, and increasing write, read, and recovery performance.

Symmetry 2023, 15, 872 8 of 19

4. Problem Analysis and Methodology Proposal

This section analyzes the problems that arise from the matrix used in encoding and
decoding in EC-based distributed file systems. To solve these problems, the paper proposes
a cache-based matrix technology.

4.1. Matrix Analysis for Encoding and Decoding

In an EC-based distributed file system, data are encoded and written into data blocks
and parity blocks based on the EC volume used during the encoding process. Data can be
read through decoding when no server failure occurs. In addition, in the event of a failure of
the server, an inverse calculation can be performed by the EC algorithm to recover the data.
When encoding and decoding instructions are executed, matrices are generated according
to the set volume, which are used to store and recover data. In particular, the matrix
required for the decoding process varies depending on several EC properties, including the
EC algorithm used, the EC volume size, the location of the failed server, and the number
of failed servers. Figure 5 shows an example of a single server failure in a distributed file
system configured with RS (6, 3) volumes.

Symmetry 2023, 15, x FOR PEER REVIEW 8 of 21

3.3. Contribution
EC-based distributed file systems have been studied in two significant categories:

improving algorithms and controlling network traffic. This paper proposes a cache-based
matrix technique that can reduce client overhead introduced in [5]. Client overhead is the
process of reducing the overhead that occurs during encoding and decoding. While some
studies have focused on improving EC algorithms or suggesting new recovery methodol-
ogies, there are no studies that utilize the matrix used for encoding and decoding. There-
fore, this paper analyzes the problem of matrices arising from encoding and decoding and
proposes a methodology to upload the matrix to cache memory for quicker access, reduc-
ing unnecessary overhead, and increasing write, read, and recovery performance.

4. Problem Analysis and Methodology Proposal
This section analyzes the problems that arise from the matrix used in encoding and

decoding in EC-based distributed file systems. To solve these problems, the paper pro-
poses a cache-based matrix technology.

4.1. Matrix Analysis for Encoding and Decoding
In an EC-based distributed file system, data are encoded and written into data blocks

and parity blocks based on the EC volume used during the encoding process. Data can be
read through decoding when no server failure occurs. In addition, in the event of a failure
of the server, an inverse calculation can be performed by the EC algorithm to recover the
data. When encoding and decoding instructions are executed, matrices are generated ac-
cording to the set volume, which are used to store and recover data. In particular, the
matrix required for the decoding process varies depending on several EC properties, in-
cluding the EC algorithm used, the EC volume size, the location of the failed server, and
the number of failed servers. Figure 5 shows an example of a single server failure in a
distributed file system configured with RS (6, 3) volumes.

Figure 5. Per-server failure on RS (6, 3) volumes.

Figure 5 shows a scenario where a single failure occurs among a total of nine servers,
including servers that own Data Block 1 through Parity Block 3. When a decoding process
is initiated for each server failure, a total of nine decoding matrices are generated, since a
single failure occurs on nine servers. By calculating the number of cases when multiple
failures occur, a total of 36 cases can be produced. The number of matrixes generated is
equal to the number of failures allowed, which is the number of servers holding parity
blocks, within the total number of servers. This can be expressed by Equation (6), which
calculates the number of cases, and the related notation is shown in Table 5 [39].

Table 5. Notation and symbols of Equation (6) and description.

Notation and Symbol Definition 𝑛 The number of data node servers 𝑟 The number of server fault 𝐶 The combination calculates

Figure 5. Per-server failure on RS (6, 3) volumes.

Figure 5 shows a scenario where a single failure occurs among a total of nine servers,
including servers that own Data Block 1 through Parity Block 3. When a decoding process
is initiated for each server failure, a total of nine decoding matrices are generated, since a
single failure occurs on nine servers. By calculating the number of cases when multiple
failures occur, a total of 36 cases can be produced. The number of matrixes generated is
equal to the number of failures allowed, which is the number of servers holding parity
blocks, within the total number of servers. This can be expressed by Equation (6), which
calculates the number of cases, and the related notation is shown in Table 5 [39].

Number o f Decoding Matrix(nCr) =
(n)× (n− 1)× (n− 2) · · · (n− r + 1)

r× (r− 1)× (r− 2) · · · 3× 2× 1
=

n!
(n− r)!× r!

(6)

Table 5. Notation and symbols of Equation (6) and description.

Notation and Symbol Definition

n The number of data node servers
r The number of server fault
C The combination calculates

For instance, if we calculate the triple failure of the RS (6, 3) volume, the result would
be 84, which is equivalent to 9C3. In an EC distributed file system that is configured with RS
(6, 3) volumes, up to three server failures can be tolerated, and a maximum of 84 decoding
matrices can be generated. The calculation of the number of cases from a single failure
to multiple failures in various forms of EC volume is expressed in Table 6 by utilizing
Equation (6).

Symmetry 2023, 15, 872 9 of 19

Table 6. Number of decoding matrices based on the number of server failures.

Volume Single Failure Double Failure Triple Failure Quadruple Failure

RS (3, 2) 5 10 - -
RS (6, 3) 9 36 84 -
RS (10, 4) 14 91 364 1001

Table 6 shows the maximum number of matrices that can be generated according
to the number of server failures in the EC volume. When configured with RS (10, 4), a
maximum of 1001 decoding matrices are generated from quadruple failure. However,
generating all these matrices can result in unnecessary overhead. To address this issue,
matrices that have the same structure as those used in previous encoding and decoding
processes can be reused without having to create new ones. If these matrices are uploaded
to cache memory, they can be accessed more quickly during encoding and decoding, which
can help minimize unnecessary overhead.

4.2. Methodology of Cache-Based Matrix Technology

In order to upload a matrix to the cache memory and utilize it, the design of the
cache memory is crucial. To implement the techniques proposed in this paper, the cache
memory technique utilized is the WSCRP algorithm. The author has analyzed the problems
associated with the replacement algorithm that is typically used in cache memory and
proposed a new high-performance cache replacement algorithm called WSCRP, which
is based on the WRP. WRP is an improved algorithm that builds on both LRU and LFU
algorithms. The access time, which is an important performance indicator for cache memory,
is faster than that of the main memory. To address this issue and efficiently improve cache
memory access time, an adaptive replacement policy has been proposed. The adaptive
replacement policy operates based on the LRU and LFU algorithms but assigns weights
to each page based on specific parameters. These weights rank the pages based on their
recentness, frequency, and reference rates. Additionally, since there is a reference rates
parameter, a scheduling scheme in which a page with a low reference ratio is given higher
priority is supported. In other words, the WRP algorithm prioritizes objects to be uploaded
to the cache memory through weights and replaces low-ranking pages with new pages.
Equation (7) shows the WRP algorithm, and the related notation is shown Table 7.

Wi =
Li

Fi × ∆Ti
(7)

Table 7. Notation and symbols of Equation (7) and description.

Notation and Symbol Definition

Wi The object i’s weight value
Li The time of object i’s last data access
Fi The object i’s frequency

∆Ti

(
Tci − Tpi

) The average value of two data access times (Tci is the last accessed
time of object i, and Tpi is the penultimate accessed time)

If block j is in the buffer, a hit occurs in the cache memory, and the policy operates as
follows if it is referenced:

1. Li will be changed to Li + 1 for every i 6= j.
2. For i = j, first we put ∆Ti = Li, Fj = Fj + 1 and then Lj = 0.

However, if the referenced block j is not in the buffer, a miss occurs, and the algorithm
selects a block whose value of the weight function in the buffer is the highest among other
values. When selecting, it searches for the object with the highest weight from the top to
the bottom of the buffer, and if the weights of the objects are the same, the object that has
been in the buffer for the longest time is selected for replacement. As a result, the weight
values of the blocks in the buffer are updated on every access to the cache.

Symmetry 2023, 15, 872 10 of 19

The WSCRP algorithm incorporates cost parameters into the adaptive replacement pol-
icy used in the WRP algorithm. Unlike the existing WRP algorithms, the WSCRP algorithm
considers the size of the objects being replaced with cache memory when computing their
weights. This prevents performance degradation that could occur based on the size of the
objects being replaced. The weights of objects are calculated by adding cost parameters to
the existing adaptive replacement policy. The WSCRP algorithm is shown in Equation (8),
and the related notation is shown in Table 8.

WCi =
Li

Fi × ∆Ti
× Si

CSVi
, (CSVi = CiSi Hi ÷∑n

i=1 CiSiRi) (8)

Table 8. Notation and symbols of Equation (8) and description.

Notation and Symbol Definition

WCi The object i’s weight–cost value
Si The object i’s size

CSVi The object i’s cost-saving values
Ci The object i’s network traffic consumption
Hi How many valid copies of object i found in the cache
Ri The total number of times data were requested

In the WSCRP algorithm, the Si parameter represents the object’s size, while the CSVi
parameter is a cost value added to the adaptive replacement policy. The primary goal
of the WSCRP algorithm is to save resources between the cache and the main memory.
The cost value determines when an object is removed from the cache. As the cost value
determines when an object is removed from the cache. As the cost value approaches that of
all objects, the overall consumption can be calculated, and the cost of consuming a single
object can be determined. If the replacement cost of any one object is higher, caching it
can result in cost savings. In the case of an object, if the value CSVi is significant, it should
be stored in the cache because it is more costly to perform a replacement and recache the
cache. Therefore, this paper improves cache performance by adding the CSVi parameter
to the existing Equation (7) to determine which object should be removed from the cache
when the cache is full. The Si parameter takes up more cache space for extensive data,
which may cause cache garbage to occur. This can result in unnecessary areas being freed
up among the memory areas dynamically allocated by the program, thereby reducing the
hit rate and increasing average access time. Therefore, it is best to prioritize caching small
data. In addition, the CSVi parameter can save the replacement cost of an object because it
replaces the data with a more significant weight value if the cost of replacing one piece of
data is higher than another.

The cache memory table structure is sorted in ascending order according to the WC
value calculated in Equation (8). If an object existing in the cache memory is searched and
hit, the WC value is recalculated and rearranged in ascending order. In other words, objects
with low values move up because they are likely to be referenced, and objects with high
values move down because they are less likely to be referenced again. Therefore, if the WC
value is more significant than that of other objects, this object is considered unimportant,
and it is removed first when the cache memory is full. If an object with the same WC value
exists, the Fi parameter, which indicates the object’s reference rates, is used as the second
attribute to determine the object to be removed from the cache.

Cache-based matrix technology operates based on the WSCRP algorithm and aims to
maximize the hit rate to effectively use the matrix uploaded to the cache memory. When
a request for a matrix is received, the system first checks the cache memory to see if the
matrix exists for storing and recovering data. If a matrix is present in the cache memory for
encoding and decoding, it is returned to the name node where the command was executed
without generating a new matrix. However, if a matrix does not exist in the cache memory,
the system considers it as a new instruction method, searches for currently available data
nodes, creates a new matrix, returns it to the name node, and adds it to the cache memory.

Symmetry 2023, 15, 872 11 of 19

The WC value of the uploaded matrix is then calculated using the weight–cost model, and
the WC value of the cache memory table structure is updated in ascending order. If there is
insufficient space to store the matrix, the cache memory table alignment structure removes
a matrix according to the update method until enough space is available to store the new
data. The following Algorithm 1 shows the cache-based matrix technique.

Algorithm 1: Cache-based matrix technology.

1. Parameter SCM: Calculates the size of the cache memory available
2. Parameter SRM: Calculates the size of the requested matrix
3. Parameter WC: Weight–cost values of matrix uploaded to cache memory
4. If the requested matrix exists in the cache
5. Find the matrix in the cache memory table
6. Update cache memory table
7. Else
8. Check the live data nodes
9. Available data nodes list transfer to name node

10. Create matrix
11. Add matrix to cache
12. While SCM < SRM
13. If there is only one maximum WC
14. Remove the maximum WC in the cache memory table
15. Else
16. Use frequency value to calculate and remove WC
17. Update cache memory table

The algorithm for cache-based matrix technology first calculates the reference value
WC through the weight–cost model when uploading to cache memory. It then calculates the
free space of the cache memory, marks it as the size of cache memory (SCM), calculates the
size of the matrix to be uploaded, and marks it as the size of the request matrix (SRM). If the
name node performs encoding for data writing and decoding for reading and recovery, it
checks whether the requested matrix exists in the cache memory. If it is present, the relevant
matrix is found in the cache memory table, and encoding and decoding are performed
through the matrix. The cache memory table is then updated by sorting the WC values of
the used matrix in ascending order (Steps 3–5). If no matrix is found in the cache memory,
a matrix must be generated. This is achieved by sending a list of available data nodes to the
name node, which generates the matrix, uploads it to the cache, and performs encoding and
decoding (Steps 6–10). If there is insufficient space in the cache memory to store the matrix,
the algorithm removes the matrix with the maximum WC value through SCM and SRM. If
there are multiple WC values, the algorithm removes the WC value, using frequency value
as the second attribute (Steps 11–16).

4.3. Structure Design and CPU Performance of Cache-Based Matrix Technology

There are different architectural levels where caches can be located, but they are
typically placed close to the front end to reduce the time and cost of accessing the backend
service. Cache memory management methods can be classified into three types: centralized,
global, and distributed cache structures. In a centralized structure, only one node can
receive requests and access data. In a global structure, all nodes can access data using a
single cache space. In a distributed cache structure, each node can access data using its own
cache space. In this paper, the cache-based matrix technique employs a global structure
where all data nodes use the cache space managed by the name node. The data node queries
the name node for the matrix that encodes and decodes data, and the name node itself
queries the storage space for data and delivers the matrices to the requested data node. If a
distributed cache structure were used, each data node would manage its own matrix, which
would lead to inefficient management due to the large number of resources, which would
need to be managed by the name node. In addition, since the matrix is generated when

Symmetry 2023, 15, 872 12 of 19

the name node performs data writing, reading, and recovery operations, the probability of
cache misses would be high if each data node managed its own matrix. Therefore, a global
cache structure is advantageous because it allows the name node to generate and store the
matrix through responses from multiple data nodes, thereby reducing cache misses.

The encoding and decoding operations involved in erasure coding can be computa-
tionally intensive and require a significant amount of CPU resources. Therefore, a faster
CPU can generally perform these operations more quickly, which can improve the overall
performance of the distributed file system. Different models of CPUs have different archi-
tectures and features that can affect their performance in various ways. For example, some
CPU models may have more cores or higher clock speeds, which can help improve the
performance of encoding and decoding operations. Additionally, different CPU models
may have distinct instruction sets, which can affect the performance of specific algorithms
used in erasure coding. However, it is worth noting that other factors, such as memory
bandwidth, storage speed, and network bandwidth, can also impact erasure coding perfor-
mance. Therefore, while CPU performance is an essential factor to consider, it is not the
only one. Consequently, it is important to consider the specific model and characteristics
of the CPU when designing and optimizing erasure coding algorithms for distributed
file systems.

5. Experiments

This section introduces the experimental environment and results used in the eval-
uation. In this paper, we compare five systems: basic HDFS, the basic cache memory
method LRU, HDFS with LFU applied, and HDFS with WRP and WSCRP applied, using
the methodology described in Section 4.

5.1. Experimental Environment

The algorithm described in Section 4 was implemented using the Java programming
language and operated as a simulation environment. The simulation of the cache-based
matrix technology was conducted on a workstation running the Ubuntu 20.04.4 operating
system, with a XEON 4110 (8 core × 2) CPU, 128 GB of DDR4 memory, a 20 TB (Terabyte)
HDD Disk, and four RTX 2080 graphics cards. The version of Java Development Kit
(JDK) used for development was 11.0.9, and the distributed file system that the cache-
based matrix technology was applied to was HDFS. The version of Hadoop that includes
HDFS is 3.3.2. The EC policy supported by HDFS includes RS and XOR algorithms,
and it determines the number of data and parity blocks. The available EC policies were
RS-3-2-1024k, RS-6-3-1024k, RS-10-4-1024k, RS-LEGACY-6-3-1024k, and XOR-2-1-1024k. In
this paper, the RS algorithm was applied using RS-6-3-1024k. The data block was divided
into six servers, and the parity block was divided into three servers, requiring a total of
ten servers because a name node was also needed. The striping cell size is 1024k; this
determines the granularity of reading and writing the stripe, including buffer size and
encoding works. In an EC-based distributed file system, the size of a cell refers to the
unit used when blocks are calculated and stored through encoding. The block cells are
composed of 1024 kilobytes. A stripe is a single unit stored as a data block, encoded, and
stored when generating a parity block. For instance, if Data Blocks 1, 2, 3, 4, 5, and 6 are
encoded to generate Parity Blocks 1, 2, and 3, one stripe is composed of nine blocks.

The experimental method involved generating dummy data of 10 GB and writing
the data using encoding commands. To generate a particular size of data, the fallocate
command supported by Ubuntu was used, and the “−l” option was added to create a
dummy data file with a size of 10 GB using the “fallocate −l 10g dummy data” command,
which was then encoded and written. For decoding, file reading times were measured
when data nodes did not fail, and recovery time was measured by randomly failing data
nodes. In case of a random failure, the number of failed servers was not allowed to exceed
the number of servers that wrote the parity blocks described in Section 2. In other words,

Symmetry 2023, 15, 872 13 of 19

since there were a total of nine servers (six servers storing data blocks and three servers
storing parity blocks), only single, double, and triple failures had been set up.

The experimental metrics measured the time taken to encode (write) and decode (read
and recover) the data, and the hit rate of the cache memory followed Equation (9):

Hit Rate(%) =
Number o f cache hits

(Number o f cache hits + Number o f cache misses)
× 100 (9)

Five items were used for comparative analysis: basic HDFS RS (6, 3) without cache
memory technology, HDFS RS (6, 3) with basic cache memory structure LRU and LFU,
WRP HDFS RS (6, 3) based on WRP, and WSCRP HDFS RS (6, 3) proposed in this paper.

5.2. Experiments Result and Discussion

The experimental evaluation first shows the result of measuring the overhead of
the matrix.

In Figure 6, the time cost of uploading and downloading matrices generated during
encoding and decoding to the cache memory is shown. As the number of encoding and
decoding operations increases from 100 to 1000 times, the upload and download time of the
matrix gradually increases. This is due to the increase in the number of matrices generated
according to the number of encoding and decoding operations. However, the measurement
time remains at around 4 s for the BASIC HDFS RS (6, 3) system, which does not utilize
cache memory. Among the systems that utilize cache memory, the WSCRP HDFS RS (6, 3)
system shows the lowest time cost, with a maximum encoding time of 6.4 s and a maximum
decoding time of 28.4 s.

Symmetry 2023, 15, x FOR PEER REVIEW 14 of 21

Figure 6. Matrix overhead time cost according to the number of encodings and decodings.

Figure 7 shows the space cost of the matrices stored in the cache memory. As the
number of encodings and decodings increases, the matrices are cached, and the cache size
increases gradually. The BASIC HDFS RS (6, 3) system does not utilize cache memory,
and the initial measured size is maintained at approximately 14% during encoding and
approximately 20% during decoding. However, among the systems that use cache
memory, the WSCRP HDFS RS (6, 3) system can store more matrices as the number of
encodings and decodings increases. The matrix size evaluated in terms of matrix overhead
time and space cost is small at about 16 kilobytes. Although the time cost increases with
an increasing number of encodings and decodings, it does not significantly affect the 1
Gbps network speed used in the experiment. Additionally, the space cost is sufficient to
store the matrices, and systems utilizing cache memory can efficiently store the matrices
through a replacement policy. Therefore, the costs of writing, reading, and recovering
data are significantly affected, rather than the time and space cost of matrix overhead [40].

Figure 7. Matrix overhead space cost according to the number of encodings and decodings.

Figure 8 shows the writing time of encoding the generated data from 100 to 1000
times. As the number of encoding increases, the number of generated encoding matrices
increases, so the overall writing time increases. Measurements from 100 to 1000 times
showed that BASIC HDFS RS (6, 3) took 23 s to 45.6 s, LRU HDFS RS (6, 3) took 21.3 s to
42.1 s, and LFU HDFS RS (6, 3) took 21.1 s to 41.2 s. WRP HDFS RS (6, 3) took 19.9 s to 39.2
s, and WSCRP HDFS RS (6, 3) took 19.8 s to 36.8 s. When comparing BASIC HDFS RS (6,
3) with WSCRP HDFS RS (6, 3) based on 1000 encoding times, the writing time can be
shortened by about 10 s. All the systems, except BASIC HDFS RS (6, 3), generate an en-
coding matrix, upload it to cache memory, and reuse the uploaded matrix for the next

Figure 6. Matrix overhead time cost according to the number of encodings and decodings.

Figure 7 shows the space cost of the matrices stored in the cache memory. As the
number of encodings and decodings increases, the matrices are cached, and the cache size
increases gradually. The BASIC HDFS RS (6, 3) system does not utilize cache memory,
and the initial measured size is maintained at approximately 14% during encoding and
approximately 20% during decoding. However, among the systems that use cache memory,
the WSCRP HDFS RS (6, 3) system can store more matrices as the number of encodings
and decodings increases. The matrix size evaluated in terms of matrix overhead time
and space cost is small at about 16 kilobytes. Although the time cost increases with an
increasing number of encodings and decodings, it does not significantly affect the 1 Gbps
network speed used in the experiment. Additionally, the space cost is sufficient to store the
matrices, and systems utilizing cache memory can efficiently store the matrices through
a replacement policy. Therefore, the costs of writing, reading, and recovering data are
significantly affected, rather than the time and space cost of matrix overhead [40].

Symmetry 2023, 15, 872 14 of 19

Symmetry 2023, 15, x FOR PEER REVIEW 14 of 21

Figure 6. Matrix overhead time cost according to the number of encodings and decodings.

Figure 7 shows the space cost of the matrices stored in the cache memory. As the
number of encodings and decodings increases, the matrices are cached, and the cache size
increases gradually. The BASIC HDFS RS (6, 3) system does not utilize cache memory,
and the initial measured size is maintained at approximately 14% during encoding and
approximately 20% during decoding. However, among the systems that use cache
memory, the WSCRP HDFS RS (6, 3) system can store more matrices as the number of
encodings and decodings increases. The matrix size evaluated in terms of matrix overhead
time and space cost is small at about 16 kilobytes. Although the time cost increases with
an increasing number of encodings and decodings, it does not significantly affect the 1
Gbps network speed used in the experiment. Additionally, the space cost is sufficient to
store the matrices, and systems utilizing cache memory can efficiently store the matrices
through a replacement policy. Therefore, the costs of writing, reading, and recovering
data are significantly affected, rather than the time and space cost of matrix overhead [40].

Figure 7. Matrix overhead space cost according to the number of encodings and decodings.

Figure 8 shows the writing time of encoding the generated data from 100 to 1000
times. As the number of encoding increases, the number of generated encoding matrices
increases, so the overall writing time increases. Measurements from 100 to 1000 times
showed that BASIC HDFS RS (6, 3) took 23 s to 45.6 s, LRU HDFS RS (6, 3) took 21.3 s to
42.1 s, and LFU HDFS RS (6, 3) took 21.1 s to 41.2 s. WRP HDFS RS (6, 3) took 19.9 s to 39.2
s, and WSCRP HDFS RS (6, 3) took 19.8 s to 36.8 s. When comparing BASIC HDFS RS (6,
3) with WSCRP HDFS RS (6, 3) based on 1000 encoding times, the writing time can be
shortened by about 10 s. All the systems, except BASIC HDFS RS (6, 3), generate an en-
coding matrix, upload it to cache memory, and reuse the uploaded matrix for the next

Figure 7. Matrix overhead space cost according to the number of encodings and decodings.

Figure 8 shows the writing time of encoding the generated data from 100 to 1000 times.
As the number of encoding increases, the number of generated encoding matrices increases,
so the overall writing time increases. Measurements from 100 to 1000 times showed that
BASIC HDFS RS (6, 3) took 23 s to 45.6 s, LRU HDFS RS (6, 3) took 21.3 s to 42.1 s, and LFU
HDFS RS (6, 3) took 21.1 s to 41.2 s. WRP HDFS RS (6, 3) took 19.9 s to 39.2 s, and WSCRP
HDFS RS (6, 3) took 19.8 s to 36.8 s. When comparing BASIC HDFS RS (6, 3) with WSCRP
HDFS RS (6, 3) based on 1000 encoding times, the writing time can be shortened by about
10 s. All the systems, except BASIC HDFS RS (6, 3), generate an encoding matrix, upload it
to cache memory, and reuse the uploaded matrix for the next encoding, resulting in a small
reduction in the overall writing time. In particular, WSCRP HDFS RS (6, 3) considering
weights and parameters can save the most in writing time compared to LRU HDFS RS (6, 3)
and LFU HDFS RS (6, 3) applying basic memory cache structures.

Symmetry 2023, 15, x FOR PEER REVIEW 15 of 21

encoding, resulting in a small reduction in the overall writing time. In particular, WSCRP
HDFS RS (6, 3) considering weights and parameters can save the most in writing time
compared to LRU HDFS RS (6, 3) and LFU HDFS RS (6, 3) applying basic memory cache
structures.

Figure 8. Writing time according to the number of encodings.

Figure 9 shows the reading time of decoding the encoded data from 100 to 1000 times.
As the number of decodings increases, the number of generated decoding matrices in-
creases, so the overall reading time increases. Measurements from 100 to 1000 times
showed that BASIC HDFS RS (6, 3) took 285 s to 313.8 s, LRU HDFS RS (6, 3) took 282.8 s
to 305.9 s, and LFU HDFS RS (6, 3) took 283.2 s to 304.2 s. WRP HDFS RS (6, 3) took 278.9
s to 295.8 s, and WSCRP HDFS RS (6, 3) took 270.5 s to 290.1 s. When comparing BASIC
HDFS RS (6, 3) with WSCRP HDFS RS (6, 3) based on 1000 decoding times, the reading
time can be shortened by about 23 s. All the systems, except BASIC HDFS RS (6, 3), gen-
erate a decoding matrix, upload it to cache memory, and reuse the uploaded matrix for
the next decoding, resulting in a small reduction in overall reading time. In particular,
WSCRP HDFS RS (6, 3) considering weights and parameters can save the most in reading
time compared to LRU HDFS RS (6, 3) and LFU HDFS RS (6, 3) applying basic memory
cache structures.

Figure 8. Writing time according to the number of encodings.

Symmetry 2023, 15, 872 15 of 19

Figure 9 shows the reading time of decoding the encoded data from 100 to 1000 times.
As the number of decodings increases, the number of generated decoding matrices increases,
so the overall reading time increases. Measurements from 100 to 1000 times showed that
BASIC HDFS RS (6, 3) took 285 s to 313.8 s, LRU HDFS RS (6, 3) took 282.8 s to 305.9 s, and
LFU HDFS RS (6, 3) took 283.2 s to 304.2 s. WRP HDFS RS (6, 3) took 278.9 s to 295.8 s,
and WSCRP HDFS RS (6, 3) took 270.5 s to 290.1 s. When comparing BASIC HDFS RS
(6, 3) with WSCRP HDFS RS (6, 3) based on 1000 decoding times, the reading time can be
shortened by about 23 s. All the systems, except BASIC HDFS RS (6, 3), generate a decoding
matrix, upload it to cache memory, and reuse the uploaded matrix for the next decoding,
resulting in a small reduction in overall reading time. In particular, WSCRP HDFS RS (6, 3)
considering weights and parameters can save the most in reading time compared to LRU
HDFS RS (6, 3) and LFU HDFS RS (6, 3) applying basic memory cache structures.

Symmetry 2023, 15, x FOR PEER REVIEW 16 of 21

Figure 9. Reading time according to the number of decodings.

Figure 10 shows the recovery time measured when one to three nodes fail randomly,
and decoding is performed 1000 times. When compared to the reading time in Figure 9,
where decoding was performed 1000 times without failure, the recovery time measured
by the five systems gradually increases as the number of random node failures in Figure
10 increases. This increase in decoding time is due to the selection of a data node that can
respond, while excluding nodes with failures from the decoding matrix calculation.
Among the five systems, WSCRP HDFS RS (6, 3) shows the shortest recovery time, meas-
uring 296.1 s for a single failure of a random node, 305.3 s for double failures of a random
node, and 336.8 s for triple failures of a random node, making it the most efficient system
among the five.

Figure 9. Reading time according to the number of decodings.

Figure 10 shows the recovery time measured when one to three nodes fail randomly,
and decoding is performed 1000 times. When compared to the reading time in Figure 9,
where decoding was performed 1000 times without failure, the recovery time measured by
the five systems gradually increases as the number of random node failures in Figure 10
increases. This increase in decoding time is due to the selection of a data node that can
respond, while excluding nodes with failures from the decoding matrix calculation. Among
the five systems, WSCRP HDFS RS (6, 3) shows the shortest recovery time, measuring
296.1 s for a single failure of a random node, 305.3 s for double failures of a random node,
and 336.8 s for triple failures of a random node, making it the most efficient system among
the five.

The results of measuring writing and reading time by performing encoding and
decoding without any failure show that the number of matrices used is reduced. However,
as the maximum number of executions approaches 1000, both the writing and recovery
times gradually increase. This is because although the number of matrices used is smaller
than the number used in the presence of failures, the number of matrices increases with the

Symmetry 2023, 15, 872 16 of 19

number of encodings and decodings, which in turn results in an increase in writing and
reading time [41].

Symmetry 2023, 15, x FOR PEER REVIEW 17 of 21

Figure 10. Recovery time according to the number of random node failures.

The results of measuring writing and reading time by performing encoding and de-
coding without any failure show that the number of matrices used is reduced. However,
as the maximum number of executions approaches 1000, both the writing and recovery
times gradually increase. This is because although the number of matrices used is smaller
than the number used in the presence of failures, the number of matrices increases with
the number of encodings and decodings, which in turn results in an increase in writing
and reading time [41].

Figure 11 shows the hit rate of the matrix that was uploaded to and accessed from
the cache memory. During the experiment shown in Figure 11, the hit rate was measured
every 100 times while the recovery time of the random triple node failure (the third item
in Figure 10) was being evaluated.

Figure 10. Recovery time according to the number of random node failures.

Figure 11 shows the hit rate of the matrix that was uploaded to and accessed from
the cache memory. During the experiment shown in Figure 11, the hit rate was measured
every 100 times while the recovery time of the random triple node failure (the third item in
Figure 10) was being evaluated.

Symmetry 2023, 15, x FOR PEER REVIEW 18 of 21

Figure 11. Hit rate according to the number of decodings.

BASIC HDFS RS (6, 3) does not upload the matrix generated by the decoding process
to the cache memory. As a result, the hit rate remains around 10% even as the number of
decodings increases. In contrast, the remaining four systems reuse the matrix uploaded to
the cache memory, causing the hit rate to gradually increase with the number of decod-
ings. The number of decodings increases rapidly up to 600. However, from 600 decodings
onwards, the hit rate increases only slightly compared to the previous values. This is be-
cause, at 600 decodings, the cache memory is full and the page replacement policy is trig-
gered. When the number of decodings reaches 1000, the hit rates of LRU HDFS RS (6, 3)
and LFU HDFS RS (6, 3) show little difference, measuring at 73.8% and 73.2%, respec-
tively. The hit rate of WRP HDFS RS (6, 3) is slightly superior to the LRU and LFU struc-
tures, measuring at 75.4%. As the number of decodings increases, the hit rate of WSCRP
HDFS RS (6, 3) is measured to be higher than that of WRP HDFS RS (6, 3). It reaches its
best value of 83.8% at 1000 decodings.

6. Conclusions and Future Directions
This paper proposes a cache-based matrix technique, which is a method for efficiently

utilizing symmetrical space in EC-based distributed file systems. The technique uses the
encoding used for file writing and the matrix generated when performing decoding used
for file reading and recovery. Up to 1001 matrices based on the RS (10, 4) volume were
generated, depending on the server that failed during file writing, reading, and recovery.
Cache-based matrix technology can maintain a high cache memory hit rate, which can
shorten file storage and recovery times during encoding and decoding. Additionally, since
cache memory is utilized in terms of software, there is no cost to adding or changing hard-
ware modules. The WSCRP algorithm underlying this technology can efficiently handle
the page replacement policy of cache memory through weights and cost parameters.
Therefore, this paper focuses on using matrices to reduce overhead in distributed file sys-
tems.

Future research directions are organized into three directions. First, the proposed
technology will be applied not only to RS (6, 3), but also to various volumes of RS (3, 2),
RS (8, 4), and RS (10, 4). Second, the proposed technology will be applied not only to HDFS
but also to Ceph and GlusterFS, which are distributed file systems that support the EC
algorithm. Finally, we will analyze the data blocks, parity blocks, and matrices that change
when data are updated in the distributed file system. We plan to study how to reduce the

Figure 11. Hit rate according to the number of decodings.

Symmetry 2023, 15, 872 17 of 19

BASIC HDFS RS (6, 3) does not upload the matrix generated by the decoding process
to the cache memory. As a result, the hit rate remains around 10% even as the number of
decodings increases. In contrast, the remaining four systems reuse the matrix uploaded to
the cache memory, causing the hit rate to gradually increase with the number of decodings.
The number of decodings increases rapidly up to 600. However, from 600 decodings
onwards, the hit rate increases only slightly compared to the previous values. This is
because, at 600 decodings, the cache memory is full and the page replacement policy is
triggered. When the number of decodings reaches 1000, the hit rates of LRU HDFS RS (6, 3)
and LFU HDFS RS (6, 3) show little difference, measuring at 73.8% and 73.2%, respectively.
The hit rate of WRP HDFS RS (6, 3) is slightly superior to the LRU and LFU structures,
measuring at 75.4%. As the number of decodings increases, the hit rate of WSCRP HDFS
RS (6, 3) is measured to be higher than that of WRP HDFS RS (6, 3). It reaches its best value
of 83.8% at 1000 decodings.

6. Conclusions and Future Directions

This paper proposes a cache-based matrix technique, which is a method for efficiently
utilizing symmetrical space in EC-based distributed file systems. The technique uses the
encoding used for file writing and the matrix generated when performing decoding used
for file reading and recovery. Up to 1001 matrices based on the RS (10, 4) volume were
generated, depending on the server that failed during file writing, reading, and recovery.
Cache-based matrix technology can maintain a high cache memory hit rate, which can
shorten file storage and recovery times during encoding and decoding. Additionally, since
cache memory is utilized in terms of software, there is no cost to adding or changing hard-
ware modules. The WSCRP algorithm underlying this technology can efficiently handle the
page replacement policy of cache memory through weights and cost parameters. Therefore,
this paper focuses on using matrices to reduce overhead in distributed file systems.

Future research directions are organized into three directions. First, the proposed
technology will be applied not only to RS (6, 3), but also to various volumes of RS (3, 2), RS
(8, 4), and RS (10, 4). Second, the proposed technology will be applied not only to HDFS
but also to Ceph and GlusterFS, which are distributed file systems that support the EC
algorithm. Finally, we will analyze the data blocks, parity blocks, and matrices that change
when data are updated in the distributed file system. We plan to study how to reduce the
overhead that occurs when updating data, as well as writing, reading, and recovering data.

Author Contributions: Conceptualization, D.-J.S. and J.-J.K.; methodology, D.-J.S. and J.-J.K.; soft-
ware, D.-J.S.; validation, J.-J.K.; formal analysis, D.-J.S. and J.-J.K.; investigation, D.-J.S.; resources,
J.-J.K.; data curation, D.-J.S.; writing—original draft preparation, D.-J.S.; writing—review and editing,
J.-J.K.; visualization, D.-J.S.; supervision, J.-J.K. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. 2022R1F1A1062953).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are provided via commands that create dummy data in Linux.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ASIC Application-Specific Integrated Circuit
EC Erasure Coding
GB Gigabytes
HDFS Hadoop Distributed File System

Symmetry 2023, 15, 872 18 of 19

I/O Input/Output
IoT Internet of Things
JDK Java Development Kit
LFU Least Frequently Used
LRC Local Reconstruction Code
LRU Least Recently Used
RAID Redundant Array of Inexpensive Disks
RS Reed Solomon
SCM Size of Cache Memory
SRM Size of Request Matrix
TB Terabytes
WRP Weighting Replacement Policy
WSCRP Weighting Size and Cost Replacement Policy

References
1. Sigov, A.; Ratkin, L.; Ivanov, L.A.; Xu, L.D. Emerging enabling technologies for industry 4.0 and beyond. Inf. Syst. Front. 2022,

1–11. [CrossRef]
2. Macko, P.; Hennessey, J. Survey of Distributed File System Design Choices. ACM Trans. Storage 2022, 18, 1–34. [CrossRef]
3. Karun, A.K.; Chitharanjan, K. A review on hadoop—HDFS infrastructure extensions. In Proceedings of the 2013 IEEE Conference

on Information & Communication Technologies, Thuckalay, India, 11–12 April 2013.
4. Shin, D.J.; Kim, J.J. Research on Improving disk throughput in EC-based distributed file system. Psychology 2021, 58, 9664–9671.
5. Kim, D.O.; Kim, H.Y.; Kim, Y.K.; Kim, J.J. Cost analysis of erasure coding for exa-scale storage. J. Supercomput. 2018, 75, 4638–4656.

[CrossRef]
6. Balaji, S.B.; Krishnan, M.N.; Vajha, M.; Ramkumar, V.; Sasidharan, B.; Kumar, P.V. Erasure coding for distributed storage: An

overview. Sci. China Inf. Sci. 2018, 61, 100301. [CrossRef]
7. Ma, T.; Hao, Y.; Shen, W.; Tian, Y.; Al-Rodhaan, M. An improved web cache replacement algorithm based on weighting and cost.

IEEE Access 2018, 6, 27010–27017. [CrossRef]
8. Samiee, K. A replacement algorithm based on weighting and ranking cache objects. Int. J. Hybrid Inf. Technol. 2009, 2, 93–104.
9. Cook, J.D.; Primmer, R.; de Kwant, A. Compare cost and performance of replication and erasure coding. Hitachi Rev. 2014, 63,

304–310.
10. Luo, J.; Shrestha, M.; Xu, L.; Plank, J.S. Efficient encoding schedules for XOR-based erasure codes. IEEE Trans. Comput. 2013, 63,

2259–2272. [CrossRef]
11. Plank, J.S. A tutorial on Reed–Solomon coding for fault-tolerance in RAID-like systems. Softw. Pract. Exp. 1997, 27, 995–1012.

[CrossRef]
12. Plank, J.S. The raid-6 liber8tion code. Int. J. High Perform. Comput. Appl. Int. J. High Perform. C 2009, 23, 242–251. [CrossRef]
13. Hafner, J.L. WEAVER Codes: Highly Fault Tolerant Erasure Codes for Storage Systems. In Proceedings of the FAST’05: 4th

USENIX Conference on File and Storage Technologies, San Francisco, CA, USA, 13–16 December 2005.
14. Introduction to HDFS Erasure Coding in Apache Hadoop. Available online: https://blog.cloudera.com/introduction-to-hdfs-

erasure-coding-in-apache-hadoop/ (accessed on 15 January 2023).
15. Plank, J.S. Erasure codes for storage systems: A brief primer. Login 2013, 38, 44–50.
16. Huang, C.; Simitci, H.; Xu, Y.; Ogus, A.; Calder, B.; Gopalan, P.; Yekhanin, S. Erasure coding in windows azure storage. In

Proceedings of the USENIX ATC’12: The 2012 USENIX Conference on Annual Technical Conference, Boston, MA, USA, 13–15
June 2012.

17. Rashmi, K.V.; Shah, N.B.; Gu, D.; Kuang, H.; Borthakur, D.; Ramchandran, K. A solution to the network challenges of data
recovery in erasure-coded distributed storage systems: A study on the Facebook warehouse cluster. In Proceedings of the 5th
USENIX Workshop on Hot Topics in Storage and File Systems, San Jose, CA, USA, 27–28 June 2013.

18. Papailiopoulos, D.S.; Dimakis, A.G.; Cadambe, V.R. Repair optimal erasure codes through hadamard designs. IEEE Trans. Inf.
2013, 59, 3021–3037. [CrossRef]

19. Chen, B.; Ammula, A.K.; Curtmola, R. Towards server-side repair for erasure coding-based distributed storage systems. In
Proceedings of the 5th ACM Conference on Data and Application Security and Privacy, New York, NY, USA, 2–4 March 2015.

20. Li, J.; Li, B. Zebra: Demand-aware erasure coding for distributed storage systems. In Proceedings of the IEEE/ACM 24th
International Symposium on Quality of Service (IWQoS), Beijing, China, 20–21 June 2016.

21. Kim, D.O.; Kim, H.Y.; Kim, Y.K.; Kim, J.J. Efficient techniques of parallel recovery for erasure-coding-based distributed file
systems. Comput. J. 2019, 101, 1861–1884. [CrossRef]

22. Bashyam, K.R. Repair Pipelining for Clay-Coded Storage. In Proceedings of the 2021 International Conference on COMmunication
Systems & NETworkS (COMSNETS), Bangalore, India, 5–9 January 2021.

23. Arslan, Ş.Ş. Founsure 1.0: An erasure code library with efficient repair and update features. SoftwareX 2021, 13, 100662. [CrossRef]
24. Uezato, Y. Accelerating XOR-based erasure coding using program optimization techniques. In Proceedings of the International

Conference for High Performance Computing, Networking, Storage and Analysis, New York, NY, USA, 14–19 November 2021.

http://doi.org/10.1007/s10796-021-10213-w
http://doi.org/10.1145/3465405
http://doi.org/10.1007/s11227-018-2663-4
http://doi.org/10.1007/s11432-018-9482-6
http://doi.org/10.1109/ACCESS.2018.2829142
http://doi.org/10.1109/TC.2013.23
http://doi.org/10.1002/(SICI)1097-024X(199709)27:9<995::AID-SPE111>3.0.CO;2-6
http://doi.org/10.1177/1094342009106191
https://blog.cloudera.com/introduction-to-hdfs-erasure-coding-in-apache-hadoop/
https://blog.cloudera.com/introduction-to-hdfs-erasure-coding-in-apache-hadoop/
http://doi.org/10.1109/TIT.2013.2241819
http://doi.org/10.1007/s00607-019-00714-7
http://doi.org/10.1016/j.softx.2021.100662

Symmetry 2023, 15, 872 19 of 19

25. Muntz, D.; Honeyman, P. Multi-level Caching in Distributed File Systems. In Proceedings of the Winter USENIX Conference, San
Francisco, CA, USA, 16 August 1991.

26. Zhang, J.; Wu, G.; Hu, X.; Wu, X. A Distributed Cache for Hadoop Distributed File System in Real-Time Cloud Services. In
Proceedings of the ACM/IEEE 13th International Conference on Grid Computing, Beijing, China, 20–23 September 2012.

27. Rashmi, K.V.; Chowdhury, M.; Kosaian, J.; Stoica, I.; Ramchandran, K. EC-Cache: Load-Balanced, Low-Latency Cluster Caching
with Online Erasure Coding. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation,
Savannah, GA, USA, 2–4 November 2016.

28. Anderson, T.E.; Canini, M.; Kim, J.; Kostic, D.; Kwon, Y.; Peter, S.; Reda, W.; Schuh, H.N.; Witchel, E. Assise: Performance and
Availability via Client-local NVM in a Distributed File System. In Proceedings of the 14th USENIX Symposium on Operating
Systems Design and Implementation, Virtual Event, 4–6 November 2020.

29. Ruty, G.; Baccouch, H.; Nguyen, V.; Surcouf, A.; Rougier, J.L.; Boukhatem, N. Popularity-based full replica caching for erasure-
coded distributed storage systems. Clust. Comput. 2021, 24, 3173–3186. [CrossRef]

30. Silberstein, M.; Ganesh, L.; Wang, Y.; Alvisi, L.; Dahlin, M. Lazy means smart: Reducing repair bandwidth costs in erasure-coded
distributed storage. In Proceedings of the SYSTOR 2014 International Conference on Systems and Storage, New York, NY, USA,
30 June–2 July 2014.

31. Mitra, S.; Panta, R.; Ra, M.R.; Bagchi, S. Partial-parallel-repair (PPR) a distributed technique for repairing erasure coded storage.
In Proceedings of the Eleventh European Conference on Computer Systems, New York, NY, USA, 18–21 April 2016.

32. Pei, X.; Wang, Y.; Ma, X.; Xu, F. T-update: A tree-structured update scheme with top-down transmission in erasure-coded systems.
In Proceedings of the IEEE INFOCOM 2016—The 35th Annual IEEE International Conference on Computer Communications,
San Francisco, CA, USA, 10–14 April 2016.

33. Li, R.; Li, X.; Lee, P.P.; Huang, Q. Repair Pipelining for Erasure-Coded Storage. In Proceedings of the 2017 USENIX Annual
Technical Conference (USENIX ATC’17), Santa Clara, CA, USA, 12–14 July 2017.

34. Wang, F.; Tang, Y.; Xie, Y.; Tang, X. XORInc: Optimizing data repair and update for erasure-coded systems with XOR-based
in-network computation. In Proceedings of the 35th Symposium on Mass Storage Systems and Technologies (MSST), Santa Clara,
CA, USA, 20–24 May 2019.

35. Xia, J.; Guo, D.; Xie, J. Efficient in-network aggregation mechanism for data block repairing in data centers. Future Gener. Comput.
Syst. 2020, 105, 33–43. [CrossRef]

36. Qiao, Y.; Kong, X.; Zhang, M.; Zhou, Y.; Xu, M.; Bi, J. Towards in-network acceleration of erasure coding. In Proceedings of the
Symposium on SDN Research, San Jose, CA, USA, 3 March 2020.

37. Zeng, H.; Zhang, C.; Wu, C.; Yang, G.; Li, J.; Xue, G.; Guo, M. FAGR: An efficient file-aware graph recovery scheme for erasure
coded cloud storage systems. In Proceedings of the 2020 IEEE 38th International Conference on Computer Design (ICCD),
Hartford, CT, USA, 18–21 October 2020.

38. Zhou, A.; Yi, B.; Liu, Y.; Luo, L. An Optimal Tree-Structured Repair Scheme of Multiple Failure Nodes for Distributed Storage
Systems. IEEE Access 2021, 9, 21843–21858. [CrossRef]

39. Lee, K.H. Consideration of the Permutations and Combinations Taught in Secondary Schools. Master’s Thesis, Yonsei University
Graduate School of Education, Seoul, Republic of Korea, 1 June 2007.

40. Hafner, J.L.; Deenadhayalan, V.; Rao, K.K.; Tomlin, J.A. Matrix Methods for Lost Data Reconstruction in Erasure Codes. In
Proceedings of the FAST’05: Proceedings of the 4th Conference on USENIX Conference on File and Storage Technologies, San
Francisco, CA, USA, 13–16 December 2005.

41. Kim, J.J. Erasure-Coding-Based Storage and Recovery for Distributed Exascale Storage Systems. Appl. Sci. 2021, 11, 3298.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s10586-021-03317-0
http://doi.org/10.1016/j.future.2019.10.033
http://doi.org/10.1109/ACCESS.2021.3054954
http://doi.org/10.3390/app11083298

	Introduction
	Background
	Related Works and Contributions
	A Study of Erasure Coding Distributed File System Algorithm
	A Study of Erasure Coding Distributed File System Network Traffic
	Contribution

	Problem Analysis and Methodology Proposal
	Matrix Analysis for Encoding and Decoding
	Methodology of Cache-Based Matrix Technology
	Structure Design and CPU Performance of Cache-Based Matrix Technology

	Experiments
	Experimental Environment
	Experiments Result and Discussion

	Conclusions and Future Directions
	References

