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Abstract: For a graph, the SK index is equal to the half of the sum of the degrees of the vertices, the
SK1 index is equal to the half of the product of the degrees of the vertices, and the SK2 index is equal
to the half of the square of the sum of the degrees of the vertices. This paper shows a simple and
unified approach to the greatest SK indices for unicyclic graphs by using some transformations and
characterizes these graphs with the first, second, and third SK indices having order r ≥ 5 and girth
g ≥ 3, where girth is the length of the shortest cycle in a graph.
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1. Background Survey and Preliminary Results

In this paper, the term “graph” will always mean a simple, finite, and undirected
graph. A graph [1] is an ordered pair A = (V(A), E(A)) which is a representation of vertex
set V(A) and edge set E(A). Here, A is taken as a unicyclic connected graph having order r
and size e. Let the degree of a vertex ω be denoted by dA(ω) whereas the distance between
two vertices ω and x be denoted by d(ω, x). If d(ω) = 1 then ω is said to be a leaf or
pendant vertex.

A graph invariant is a numerical parameter for the characterization of the topology
of a graph which is calculated on the basis of a molecular graph of a chemical compound.
Some invariants are degree based and some are based on distance.

For constructing relationships between the physical, chemical and biological charac-
teristics and the arrangements of molecules in a chemical compound, the most useful tool
is chemical invariants. These invariants are symmetric functions and provide us with a
chance to examine or investigate the physical and chemical properties of molecules in a
compound without the expenditure of money and time used in testing in a laboratory [2].

The most former topological index introduced by Harold Wiener is the Wiener index [3]
which is expressed as

W(A) = ∑
{ω,x}⊆V(A)

dA(ω, x) (1)

i.e., the total of the distances between all of A’s unordered vertex pairs. Gutman and
Trinajstić [4] established the first degree-based topological indices, the Zagreb indices, more
than 30 years ago. Balaban et al. named them the Zagreb group indices after 10 years. It
was later reduced to the Zagreb index [5,6].

The first Zagreb index and second Zagreb indexare defined as

M1(A) = ∑
ωx∈E(A)

(d(ω) + d(x)) = ∑
ω∈V(A)

(d(ω))2 (2)

M2(A) = ∑
ω,x∈E(A)

(d(ω)d(x)) (3)
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In 2016, Shigehalli and Kanabur [7] put forward the new degree-based graph invari-
ants. These are presented as

SK(A) = ∑
ωx∈E(A)

d(ω) + d(x)
2

(4)

SK1(A) = ∑
ωx∈E(A)

d(ω)d(x)
2

(5)

SK2(A) = ∑
ωx∈E(A)

[
d(ω) + d(x)

2
]2 (6)

In the last 30 years, many researchers and scholars have been working on the chemical
graph theory. Many authors worked on these connectivity indices.

Shigehalli et al. [7] computed SK indices of the H-naphtalenic nanotube and the
T ∪ C4[m, n] nanotube. In [8], Shigehalli et al. obtained the explicit formulas without the
aid of a computer for the polyhex nanotube. In [9], SK indices first appeared and also their
explicit formula for Graphene was obtained. In [10], Shin Min Kang et al. calculated SK and
some other indices of Porphyrin, Zinc-Porphyrin, Propyl Ether Imine, and Poly Dendrimers
and also plotted them using Maple software. In [11], Ranjini and Lokeshacalculated the SK
Indices of a graph operator subdivision graph S(G) and semi-total point graph R(G) on cer-
tain important chemical structures like tetracenic nanotubes and tetracenicnanotori. In [12],
the behaviors of SK, SK1 and SK2 indices were investigated under some graphoperations
by Nurkahli and Buyukkose. In [13], Roy and Ghosh concluded that the ETA descriptors
were sufficiently rich in chemical information to encode the structural features contributing
to the toxicities and these indices might be used in combination with other topological and
physicochemical descriptors for the development of predictive QSAR models. Recently,
Lokesha et al. [14] established the SK indices of carbon nanocones using a Q(A) operator.
In [15], thegeneralized prism network of SK indices was investigated. In [16], Harisha et al.
calculated the SK indices of the semi-total point graph R(G) and subdivision graph S(G)
on tetracenic nanotubes and tetracenicnanotori, two significant chemical structures. In [17],
the behaviors of SK indices were investigated under some graph operations when defined
on weighted and interval weighted graphs.

1.1. Some Graph Transformations

In 2014, Tomescu et al. [18] used first and defined other three graph transformations to
find the minimum, second and third minimum general sum connectivity indices of unicyclic
connected graphs having fixed order and girth. These transformations are listed below.

M1-transformation: In general, let yz be an edge whose vertices y and z have no
common neighbor in a connected graph, where d(y), d(z) ≥ 2. Furthermore, let M1(A) be
the graph obtained by deleting an edge yz, identifying y and z in a new vertex t and adding
a pendant edge to it.

In particular, let there be a connected unicyclic graph A with two nearby vertices
ωi, ωi+1 having no common neighbor in A, such that µ and ν pendant edges are linked to
ωi and ωi+1 with d(ωi) = µ + 2 and d(ωi+1) = ν + 2, respectively, where d(ωi, ωi+1) ≥ 2.
Then, the graph obtained by contracting edge ωiωi+1 and attaching a new pendant edge to
vertex ωi is M1(A). (See Figure 1).
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M2-transformation: Let ωi, ωi+1 be the neighboring vertices with pendant edges such
that d(ωi) = µ + 2, d(ωi+1) = ν + 2 in a connected unicyclic graph A where µ, ν ≥ 1.
Furthermore, after removing all the pendant edges incident to ωi and attaching them to
ωi+1, we obtained a graph M2(A) (see Figure 2).
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M3-transformation: Let A be a unicyclic graph with vertices ωi, ωj such that their
distance d(ωi, ωj) ≥ 2 where d(ωi) = µ + 2, d(ωj) = ν + 2; 1 ≤ µ ≤ ν. Then, the graph we
have after deleting one pendant edge from ωi and adding it to ωj is M3(A) (see Figure 3).
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M4-transformation: Let ωi, ωi+1 be neighboring vertices of a unicyclic connected
graph A such that d(ωi) = µ + 2, d(ωi+1) = ν + 2; 1 ≤ µ ≤ ν. By M4-transformation, the
graph M4(A) is attained by separating one pendant edge from ωi and connecting it to ωi+1
(see Figure 4).
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1.2. Certain Unicyclic Graphic Structures

Let a unicyclic graph Ur(µ) which is deduced from X(r− µ, 3; r− µ− 3, 0, 0) by adding
µ pendant edges to a pendant vertex of it, where 1 ≤ µ ≤ r− 4.

Let the set of unlabelled connected unicyclic graphs be denoted by Or,g having
order r and girth g where r ≥ g ≥ 3. A unicyclic graph X(r, g; r1, r2, . . . , rg) with
ri ≥ 0 is obtained by joining the ri pendant edges to a vertex ωi; 1 ≤ i ≤ g of
cycle Cg = ω1, ω2, . . . , ωg, ω1 where r1 + r2 + . . . + rg = r − g. Moreover,
Xr,g = X(r, g; r − g, 0, . . . , 0) (see Figure 5).
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We will also use two sets of unicyclic connected graphs:

(i) Y(r, g) is the family of unicyclic graphs in which the r− g− 1 pendant edges are inci-
dent to a vertex ω ∈ V(Cg) and one pendant edge to x ∈ V(Cg), where d(ω, x) ≥ 2.

(ii) Z(r, g) is the set of unicyclic graphs in which the r− g− 2 pendant edges are incident
to ω and two pendant edges are incident to x, where d(ω, x) ≥ 2.

In Y(r, g) and Z(r, g), all graphs have similar index and properties. If E ∈ Yr,g and
F ∈ Zr,g then E = M3(F). Moreover, we will utilize six different kinds of graphs to prove
our main result, that are defined below:

(i) A1 = X(r, g; µ− 1, 1, 0, . . . , 0) where µ = r− g ≥ 2.
(ii) A2 = X(r, g; µ − 2, 0, 2, 0, . . . , 0) where µ = r − g ≥ 2. It can be easily seen that

A2 ∈ Zr,g.
(iii) A3 = X(r, g; µ− 1, 0, 1, 0, . . . , 0).
(iv) A4: It is deduced by attaching one pendant edge to a pendant vertex of X(r− 1, g; µ−

1, 0, . . . , 0)
(v) A5: It is obtained by connecting the µ− 1 pendant edges to the pendant vertex of

X(r− µ + 1, g; 1, 0, . . . , 0).
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(vi) A6 = X(r, g; µ− 2, 2, 0, . . . , 0).

(See Figure 6.)
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(iv) 𝐴4: It is deduced by attaching one pendant edge to a pendant vertex of 𝑋(𝑟 − 1, 𝑔; 𝜇 −

1,0, . . . ,0). 

(v) 𝐴5: It is obtained by connecting the𝜇 − 1 pendant edges to the pendant vertex of 

𝑋(𝑟 − 𝜇 + 1, 𝑔; 1,0, . . . ,0). 

(vi) 𝐴6 = 𝑋(𝑟, 𝑔; 𝜇 − 2,2,0, . . . ,0). 

(See Figure 6.) 
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In this paper, we study three maximum SK indices, i.e., SK(A), SK1(A) and SK2(A)
in a unicyclic connected graph A having order r ≥ 5 and girth g ≥ 3.

2. Ordering Unicyclic Structures with the Greatest SK Index

In this section, we use some graph transformations which increase the SK index.

Lemma 1. Let M1(A) be a unicyclic connected graph as shown in Figure 1, then

SK(A) < SK(M1(A))

for any µ, v ≥ 0.

Proof. Case 1: Ref. [19] When M1 is performed excluding the vertices of Cg

SK(A)− SK(M1(A)) = 1
2 ∑

xy∈E(A)\{yz}
[(dx + dy)− (dx + dy + dz − 1)]

+ 1
2 ∑

xz∈E(A)\{yz}
[(dx + dz)− (dx + dy + dz − 1)] < 0; as dy ≥ 2

Case 2: When M1 is performed on the vertices of Cg

We have dA(ωi) = dM1(A)(ωi)− v− 1 < dM1(A)(ωi) and dM1(A)(ωi)+ dM1(A)(ωi+1) =
µ + v + 4.

Therefore, for j = 1, µ = 1, 2, . . . , µ, k = 1, v = 1, 2, . . . , v and by the definition of SK
index, we find

SK(A)− SK(M1(A)) = 1
2 [{d(ωi−1) + d(ωi)}+ µ{d(ωi,j) + d(ωi)}+ {d(ωi)

+d(ωi+1)}+ ν{d(ωi+1,k) + d(ωi+1)}+ {d(ωi+1) + d(ωi+2)}]
= 1

2 [{d(ωi−1) + d(ωi)}+ (µ + ν + 1){d(ωi,l) + d(ωi)}
{d(ωi) + d(ωi+2)}]
= −(µ + ν + µν + 1) < 0 f or µ, ν ≥ 0.

⇒ SK(A) < SK(M1(A)) �

Lemma 2. Let M2(A) be a unicyclic connected graph as depicted in Figure 2, where dA(ωi, ωi+1) = 1.
Then

SK(A) < SK(M2(A))
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for any v ≥ µ ≥ 1.

Proof. Since dM2(A)(ωi) = 2 < dA(ωi) = µ + 2 and dA(ωi+1) = ν + 2 < dM2(A)(ωi+1) =
ν + µ + 2.

SK(A)− SK(M2(A)) = 1
2 [{d(ui−1) + d(ui)}+

µ

∑
j=1

{d(ωi,j) + d(ωi)}+ {d(ωi) + d(ωi+1)}

+
ν
∑

k=1
{d(ωi+1,k) + d(ωi+1)}+ {d(ωi+1) + d(ωi+2)}]− 1

2 [{d(ωi−1)

+d(ωi)}+ {d(ωi) + d(ωi+1)}+ (µ + ν){d(ωi,j) + d(ωi+1)}
+{d(ωi+1) + d(ωi+2)}]
= 1

2 [{d(ωi−1) + d(ωi)}+ µ{d(ωi,j) + d(ωi)}+ {d(ωi) + d(ωi+1)}
+ν{d(ωi+1,k) + d(ωi+1)}+ {d(ωi+1) + d(ωi+2)}]− 1

2 [{d(ωi−1)

+d(ωi)}+ {d(ωi) + d(ωi+1)}+ (µ + ν){d(ωi,j) + d(ωi+1)}
+{d(ωi+1) + d(ωi+2)}]
= 1

2{(2 + µ + 2) + µ(1 + µ + 2) + (µ + 2 + ν + 2) + ν(1 + ν + 2)

+(ν + 2 + 2)} − 1
2{(2 + 2) + (2 + µ + ν + 2)

+(µ + ν)(1 + µ + ν + 2) + (µ + ν + 2 + 2)}
= −µν < 0 f or ν ≥ µ ≥ 1.

⇒ SK(A) < SK(M2(A)) �

Lemma 3. Let M3(A) be a unicyclic connected graph as presented in Figure 3, where dA(ωi, ωi+1) =
dM3(A)(ωi, ωi+1) ≥ 2. Then

SK(A) < SK(M3(A)); v ≥ µ ≥ 1

Proof. Following the previous lemma and by the definition of SK(A) we find

SK(A)− SK(M3(A)) = 1
2 [{d(ωi−1) + d(ωi)}+

µ

∑
k=1
{d(ωi,j) + d(ωi)}+ {d(ωi) + d(ωi+1)}

+{d(ωi+1) + d(ωj)}+
ν
∑

l=1
{d(ωj,ν) + d(ωj)}+ {d(ωj) + d(ωj+1)}]

− 1
2 [{d(ωi−1) + d(ωi)}+

µ−1
∑

k=1
{d(ωi,µ−1) + d(ωi)}+ {d(ωi)

+d(ωi+1)}+ {d(ωi+1) + d(ωj)}+
ν+1
∑

l=1
{d(ωj,ν) + d(ωj)}

+{d(ωj) + d(ωj+1)}]
= 1

2 [{d(ωi−1) + d(ωi)}+ µ{d(ωi,j) + d(ωi)}+ {d(ωi) + d(ωi+1)}
+{d(ωi+1) + d(ωj)}+ ν{d(ωj,ν) + d(ωj)}+ {d(ωj) + d(ωj+1)}]
− 1

2 [{d(ωi−1) + d(ωi)}+ (µ− 1){d(ωi,µ−1) + d(ωi)}+ {d(ωi)

+d(ωi+1)}+ {d(ωi+1) + d(ωj)}+ (ν + 1){d(ωj,ν) + d(ωj)}
+{d(ωj) + d(ωj+1)}]
= 1

2{(2 + µ + 2) + µ(1 + µ + 2) + (µ + 2 + 2) + (2 + ν + 2)

+ν(1 + ν + 2) + (ν + 2 + 2)} − 1
2{2 + µ− 1 + 2 + (µ− 1)

(1 + µ− 1 + 2) + (µ− 1 + 2 + 2) + (2 + 1 + ν + 2)

+(ν + 1)(1 + ν + 1 + 2) + (ν + 1 + 2 + 2)}
= µ− (ν + 1) < 0 ν ≥ µ ≥ 1

⇒ SK(A) < SK(M3(A)) �
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Hence, the proof is complete.

Lemma 4. Let M4(A)be the connected unicyclic graph as illustrated in Figure 4. For any
v ≥ µ ≥ 1, we have

SK(A) < SK(M4(A))

Proof. If dA(ωi, ωi+1) = 1 then dM4(A)(ωi) + dM4(A)(ωi+1) = µ + 2 + ν + 2 = dA(ωi) +
dA(ωj) and by the definition of SK(A), we have

SK(A)− SK(M3(A)) = 1
2 [{d(ωi−1) + d(ωi)}+

µ

∑
k=1
{d(ωi,j) + d(ωi)}+ {d(ωi) + d(ωi+1)}

+{d(ωi+1) + d(ωj)}+
ν
∑

l=1
{d(ωj,ν) + d(ωj)}+ {d(ωj) + d(ωj+1)}]

− 1
2 [{d(ωi−1) + d(ωi)}+

µ−1
∑

k=1
{d(ωi,µ−1) + d(ωi)}+ {d(ωi)

+d(ωi+1)}+ {d(ωi+1) + d(ωj)}+
ν+1
∑

l=1
{d(ωj,ν) + d(ωj)}

+{d(ωj) + d(ωj+1)}]
= 1

2 [{d(ωi−1) + d(ωi)}+ µ{d(ωi,j) + d(ωi)}+ {d(ωi) + d(ωi+1)}
+{d(ωi+1) + d(ωj)}+ ν{d(ωj,ν) + d(ωj)}+ {d(ωj) + d(ωj+1)}]
− 1

2 [{d(ωi−1) + d(ωi)}+ (µ− 1){d(ωi,µ−1) + d(ωi)}+ {d(ωi)

+d(ωi+1)}+ {d(ωi+1) + d(ωj)}+ (ν + 1){d(ωj,ν) + d(ωj)}
+{d(ωj) + d(ωj+1)}]
= 1

2{(2 + µ + 2) + µ(1 + µ + 2) + (µ + 2 + 2) + (2 + ν + 2)
+ν(1 + ν + 2) + (ν + 2 + 2)} − 1

2{2 + µ− 1 + 2 + (µ− 1)
(1 + µ− 1 + 2) + (µ− 1 + 2 + 2) + (2 + 1 + ν + 2)
+(ν + 1)(1 + ν + 1 + 2) + (ν + 1 + 2 + 2)}
= µ− (ν + 1) < 0 ν ≥ µ ≥ 1

⇒ SK(A) < SK(M4(A)) �

Now, first we find the extremal graphs having the greatest value and then give an
ordering of the unicyclic connected graphs in decreasing order for the SK index.

Theorem 1. Ref. [19] Let X(r, 3; a, b, c) ; a + b + c = r− 3 ; a ≥ b ≥ c ≥ 1 be a set of unicyclic
connected graphs with r ≥ 5. Then, the first maximum and second maximum values of the SK
index are attained by X(r, 3; r− 3, 0, 0) and X(r, 3; r− 4, 1, 0), respectively, i.e.,

SK(X(r, 3; r− 4, 1, 0)) < SK(X(r, 3; r− 3, 0, 0))

(See Figure 7.)
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Proof. We need only to prove SK(X(r, 3; a, b, c)) < SK(X(r, 3; a + 1, b− 1, c)). Consider
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SK(X(r, 3; a, b, c))− SK(X(r, 3; a + 1, b− 1, c))
= 1

2{a(1 + a + 2) + (a + 2 + b + 2) + b(1 + b + 2) + (b + 2 + c + 2) + c(1 + c + 2)
+(c + 2 + a + 2)} − 1

2{(a + 1)(1 + a + 1 + 2) + (a + 1 + 2 + b− 1 + 2)
+(b− 1)(1 + b− 1 + 2) + (b− 1 + 2 + c + 2) + c(1 + c + 2) + (c + 2 + a + 1 + 2)}
= −a + b− 1 < 0 f or a ≥ b ≥ c ≥ 1.

�

Hence, the result follows.

Lemma 5. Ref. [19] If SK(Ur(µ)) is the maximum for fixed r ≥ 5, where 1 ≤ µ ≤ r− 4, then we
have µ = 1 or r− 4.

Proof. For r = 5, µ = 1 = r− 4 and there is only one graph U5(1). So, there cannot be a
debate in choosing the maximum or minimum. Suppose that 3 ≤ µ ≤ r− 5

SK(Ur(µ)) = 1
2{2(2 + r− µ− 4 + 3) + (r− µ− 4)(1 + r− µ− 4 + 3) + (r− µ− 4

+3 + µ + 1) + µ(1 + µ + 1) + (2 + 2)} = 1
2 (r

2 + 2µ2 − r + 4µ− 2rµ + 6)

SK(Ur(µ + 1)) = 1
2 (r

2 + 2µ2 + r + 4µ− 2rµ + 10)

By using the above calculations, we determine

SK(Ur(µ + 1))− SK(Ur(µ)) = r + 2 > 0

⇒ SK(Ur(µ + 1)) > SK(Ur(µ))

concluding that SK(Ur(r− 4)) > SK(Ur(µ))

where

SK(Ur(r− 4)) =
1
2
(r2 − 5r + 22)

For µ = 1, 2, we have

SK(Ur(1)) = 1
2 (r

2 − 3r + 12)

SK(Ur(2)) = 1
2 (r

2 − 5r + 22)

Furthermore
SK(Ur(1))− SK(Ur(2)) = r− 5 > 0

SK(Ur(1))− SK(Ur(r− 4)) = r− 5 > 0

SK(Ur(2))− SK(Ur(r− 4)) = 0

By the above inequalities, we have

SK(Ur(1)) > SK(Ur(2)) = SK(Ur(r− 4)) > SK(Ur(µ)), Ur(µ); 3 ≤ µ ≤ r− 5

The above used graphs are shown in Figure 8.
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So, Ur(1) is the graph with the first maximum and Ur(2) and Ur(r− 4) with the second
maximum SK index, and we are complete. �

Theorem 2. Let A having girth g with 4 ≤ g ≤ r, be a connected unicyclic graph. Then

SK(A) ≤ SK(Xr,g)

where Xr,g = X(r, g; r− g, 0, . . . , 0).

Proof. Let A ∈ Or,g, where Or,g be the set of unlabeled connected unicyclic graphs
having order r and girth g with r ≥ g > 3. If g = r, then A = Cg; for g = r − 1
then A = X(r, r− 1; 1, 0, . . . , 0). Suppose that 3 ≤ g ≤ r − 2 and A has the largest SK
index. A is a graph with some vertex disjoint trees having each a common vertex with
Cg. After applying M1-transformation, the trees are reduced to some stars with centers
on Cg and the SK index strictly increases by Lemma 1. Since SK(A) is the maximum,
it implies that A = X(r, g; r1, . . . , rg) where r1, . . . , rg ≥ 0 and r1 + . . . + rg = r − g.
All the pendant edges attached at the vertices of Cg are made incident to the unique
and same vertex. After applying M2, M3-transformations several times, that would give
A = Xr,g = X(r, g; r− g, 0, . . . , 0). �

Remark 1. If r− 1 ≥ g ≥ 3 then SK(X(r, g; r− g, 0, . . . , 0)) > SK(X(r, g + 1; r− g− 1, 0, . . . ,
0)) by Case 1 of Lemma 1.

Lemma 6. For p = r− g ≥ 2, we have

(a) SK(A2) < SK(A1)
(b) SK(A3) = SK(A1)
(c) SK(A4) < SK(A1)
(d) SK(A5) < SK(A1)

(See Figure 8.)

Proof.

(a) SK(A2)− SK(A1)

= 1
2{(2 + µ− 2 + 2) + (µ− 2)(1 + µ− 2 + 2) + (µ− 2 + 2 + 2) + (2 + 4) + (4 + 2)

+(4 + 2)} − 1
2{(2 + µ− 1 + 2) + (µ− 1)(1 + µ− 1 + 2) + (µ− 1 + 2 + 3) + (3 + 1)

+(3 + 2) + (2 + 2)} = −µ + 1 < 0.
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(b) SK(A3)− SK(A1)

= 1
2{(µ− 1)(1 + µ− 1 + 2) + (µ− 1 + 2 + 2) + (2 + 3) + (3 + 1) + (3 + 2)}

− 1
2{(µ− 1)(1 + µ− 1 + 2) + (µ− 1 + 2 + 3) + (3 + 1) + (3 + 2) + (2 + 2)} = 0.

(c) SK(A4)− SK(A1)

= 1
2{(2 + µ− 1 + 2) + (µ− 2)(1 + µ− 2 + 3) + (µ− 2 + 3 + 2) + (2 + 1) + (µ− 1 + 2 + 2)

+(2 + 2)} − 1
2{(2 + µ− 1 + 2) + (µ− 1)(1 + µ− 1 + 2) + (µ− 1 + 2 + 3) + (3 + 1)

+(3 + 2)} = −1 < 0.

(d) SK(A5)− SK(A1)

= 1
2{(2 + 3) + (3 + µ− 1 + 1) + (µ− 1)(1 + µ− 1 + 1) + (3 + 2) + (2 + 2)}

− 1
2{(2 + µ− 1 + 2) + (µ− 1)(1 + µ− 1 + 2) + (µ− 1 + 2 + 3) + (3 + 1) + (3 + 2)}

= −µ + 1 < 0.

�

Theorem 3. (a) Let A ∈ Or,g\{Xr,g}, where r ≥ 6, (4 ≤ g ≤ r− 2). Then A has a maximum
SK index if, and only if, A = A1(= A3).
(b) Let A ∈ Or,g\{(A1 ∪ Xr,g)}, where r ≥ 6, (4 ≤ g ≤ r − 2). Then A has a maximum SK
index if, and only if, A = X(r, g; r− g− 2, 0, 2, 0, . . . , 0) = A2.

Proof. Let A ∈ Or,g be a connected unicyclic graph having the second or third maximum
SK index. Suppose that there is a vertex with a degree of at least 3 in a cycle Cg of A. Since
A 6= Xr,g, then there is at least one non-pendant vertex in C.

Case 1: When there is exactly one non-pendant vertex outside C, we obtained A by
attaching the µ pendant edges to a pendant vertex of X(r− µ, g; r− g− µ, 0, . . . , 0) where
(1 ≤ µ ≤ r − g − 1). Lemma 5 states that for µ = 1 or r − 4 we have a maximum of
SK(Ur(µ)) with corresponding graphs A4 and A5, respectively.

However, Lemma 6 implies that the graphs with the second or third maximum SK
index cannot be A4 or A5.

Case 2: When there are at least two non-pendant vertices outside C, after the continu-
ous application of M1-transformation, we have

SK(A) < max{SK(A4), SK(A5)} < SK(A3) = SK(A1) < SK(Xr,g)

as SK(A1)− SK(Xr,g) = {
1
2
(r2 + g2 + 3r + g− 2rg + 2)} − {1

2
(r2 + g2 + 5r− g− 2rg)} = −r + g + 1 < 0 (7)

Thus, we knew that if A has a second or third maximum SK index then the two vertices
on Cg must exist having a degree of at least three.

(a) For A 6= Xr,g, if A has a maximum SK then Cg cannot have three vertices with a
degree of at least 3.

We obtained Xr,g after several applications of Mi-transformations (i ≥ 1). However,
we found a graph with an index less than Xr,g, we see that

SK(A) < max{SK(A3), SK(A1)} = SK(A3) = SK(A1) < SK(Xr,g)

It implies that A has exactly two vertices m, n on Cg having a degree of at least 3.
Degrees of m and n must be as: d(m) = r− g + 1, d(n) = 3, since other cases cannot

hold because if d(m) = 2 then A becomes Xr,g (since our supposition of the degree is
at least 3) and if d(m) = 4 then A cannot become the second maximum because A with
d(m) = 3 has a greater index than A with d(m) = 4.

Now, if d(m, n) = 1 then A = A1 and if d(m, n) ≥ 2 then A ∈ Y(r, g) class including A3.
Lemma 6 implies that, in this case, extremal graph is A1.
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(b) For A ∈ Or,g\(A1 ∪ Xr,g), by the same argument we deduce that Cg cannot have
three vertices with a degree of at least 3, if A has a maximum SK index, since, in this case,
we would have

SK(A) < SK(A2) < SK(A3) = SK(A1) < SK(Xr,g)

as SK(A2)− SK(A1) =

{
1
2

(
r2 + g2 + r + 3g− 2rg + 4

)}
−
{

1
2

(
r2 + g2 + 3r + g− 2rg + 2

)}
=

1
2
(−2r + 2g + 2) = −r + g + 1 < 0

It implies that A has exactly two vertices a, b on Cg having a degree of at least 3.
By the same argument (used above), d(m) = r− g and d(n) = 4.
If d(m, n) = 1 then A = A6 and if d(m, n) ≥ 2 then A ∈ Z(r, g) class including A2,

which ends the proof(see Figure 9). �
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3. Ordering Unicyclic Structures with the Greatest SK1 Index

In this section, we use graph transformations which increase the SK1 index.

Lemma 7. Let M1(A) be a unicyclic connected graph as shown in Figure 1, then

SK1(A) < SK1(M1(A))

for any µ, v ≥ 0.

Proof. Case 1: Ref. [19] When M1 is performed excluding vertices of Cg

SK1(A)− SK1(M1(A)) = 1
2 ∑

xy∈E(A)\{yz}
[(dx.dy)− (dx)(dy + dz − 1)]

+ 1
2 ∑

xz∈E(A)\{yz}
[(dx.dz)− (dx)(dy + dz − 1)] < 0; as dy ≥ 2

Case 2: When M1 is performed on vertices of Cg
We have dA(ωi) = dM1(A)(ωi)− v− 1 < dM1(A)(ωi) and dM1(A)(ωi)+ dM1(A)(ωi+1) =

µ + v + 4.
Therefore, for j = 1, µ = 1, 2, . . . , µ, k = 1, v = 1, 2, . . . , v and by the definition of the

SK1 index, we find
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SK1(A)− SK1(M1(A)) = 1
2 [{d(ωi−1).d(ωi)}+ µ{d(ωi,j).d(ωi)}+ {d(ωi).d(ωi+1)}

+ν{d(ωi+1,k).d(ωi+1)}+ {d(ωi+1).d(ωi+2)}]− 1
2 [{d(ωi−1).d(ωi)}

+(µ + ν + 1){d(ωi,j).d(ωi)}+ {d(ωi).d(ωi+2)}]
= 1

2 [{(2)(µ + 2)}+ µ{(1)(µ + 2)}{(µ + 2)(ν + 2)}
+ν{(1)(ν + 2)}+ {(ν + 2)(2)}]− 1

2 [{(2)(µ + ν + 3)}
+(µ + ν + 1){(1)(µ + ν + 3)}+ {(µ + ν + 3)(2)}]
= −{µ + ν + 1

2 (3 + µν)} < 0 f or µ, ν ≥ 1.

⇒ SK1(A) < SK1(M1(A)) �

Lemma 8. Let M2(A) be a unicyclic connected graph as depicted in Figure 2, where dA(ωi, ωi+1) = 1.
Then

SK1(A) < SK1(M2(A))

for any v ≥ µ ≥ 1.

Proof. Since dM2(A)(ωi) = 2 < dA(ωi) = µ + 2 and dA(ωi+1) = ν + 2 < dM2(A)(ωi+1) =
ν + µ + 2.

SK1(A)− SK1(M2(A)) = 1
2 [{d(ωi−1).d(ωi)}+

µ

∑
j=1
{d(ωi,j).d(ωi)}+ {d(ωi).d(ωi+1)}

+
ν
∑

k=1
{d(ωi+1,k).d(ωi+1)}+ {d(ωi+1).d(ωi+2)}]

1
2 [{d(ωi−1).d(ωi)}+ {d(ωi).d(ωi+1)}+ (µ + ν){d(ωi,j).d(ωi+1)}
+{d(ωi+1).d(ωi+2)}]
= 1

2 [{d(ωi−1).d(ωi)}+ µ{d(ωi,j).d(ωi)}+ {d(ωi).d(ωi+1)}
+ν{d(ωi+1,k).d(ωi+1)}+ {d(ωi+1).d(ωi+2)}]
1
2 [{d(ωi−1).d(ωi)}+ {d(ωi).d(ωi+1)}+ (µ + ν){d(ωi,j).d(ωi+1)}
+{d(ωi+1).d(ωi+2)}]
= 1

2{(2)(µ + 2) + µ(1)(µ + 2) + (µ + 2)(ν + 2) + ν(1)(ν + 2)

+(ν + 2)(2)} − 1
2{(2)(2) + (2)(µ + ν + 2) + (µ + ν)(1)(µ + ν + 2)

+(µ + ν + 2)(2)}
= − 1

2 (µν) < 0 f or ν ≥ µ ≥ 1.

⇒ SK1(A) < SK1(M2(A)) �

Lemma 9. Let M3(A) be a unicyclic connected graph as presented in Figure 3, where dA(ωi, ωi+1) =
dM3(A)(ωi, ωi+1) ≥ 2. Then

SK1(A) < SK1(M3(A)); v ≥ µ ≥ 1

Proof. Following the previous lemma and by the definition of SK1(A), we find
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SK1(A)− SK1(M3(A)) = 1
2 [{d(ωi−1).d(ωi)}+

µ

∑
k=1
{d(ωi,j).d(ωi)}+ {d(ωi).d(ωi+1)}

+{d(ωi+1).d(ωj)}+
ν
∑

l=1
{d(ωj,ν).d(ωj)}+ {d(ωj).d(ωj+1)}]

− 1
2 [{d(ωi−1).d(ωi)}+

µ−1
∑

k=1
{d(ωi,µ−1).d(ωi)}+ {d(ωi).d(ωi+1)}

+{d(ωi+1).d(ωj)}+
ν+1
∑

l=1
{d(ωj,ν).d(ωj)}+ {d(ωj).d(ωj+1)}]

= 1
2 [{d(ωi−1).d(ωi)}+ µ{d(ωi,j).d(ωi)}+ {d(ωi).d(ωi+1)}

+{d(ωi+1).d(ωj)}+ ν{d(ωj,ν).d(ωj)}+ {d(ωj).d(ωj+1)}]
− 1

2 [{d(ωi−1).d(ωi)}+ (µ− 1){d(ωi,µ−1).d(ωi)}+ {d(ωi).d(ωi+1)}
+{d(ωi+1).d(ωj)}+ (ν + 1){d(ωj,ν).d(ωj)}+ {d(ωj).d(ωj+1)}]
= 1

2{(2)(µ + 2) + µ(1)(µ + 2) + (µ + 2)(2) + (2)(ν + 2)

+ν(1)(ν + 2) + (ν + 2)(2)} − 1
2{2(µ− 1 + 2) + (µ− 1)(1)

(µ− 1 + 2) + (µ− 1 + 2)(2) + (2)(1 + ν + 2) + (ν + 1)(1)(ν + 1 + 2)

+(ν + 1 + 2)(2)}
= 1

2 (2µ− 2ν− 2) = µ− ν− 1 < 0 ν ≥ µ ≥ 1

⇒ SK1(A) < SK1(M3(A)) �

Hence, the proof is complete.

Lemma 10. Let M4(A) be the graph attained from A as illustrated in Figure 4. For any ν ≥ µ ≥ 1,
we have

SK1(A) < SK1(M4(A))

Proof. If dA(ωi, ωi+1) = 1 then dM4(A)(ωi) + dM4(A)(ωi+1) = µ + 2 + v + 2 = dA(ωi) +
dA(ωj) and by the definition of SK1(A), we have

SK1(A)− SK1(M4(A)) = 1
2 [{d(ωi−1).d(ωi)}+

µ

∑
j=1
{d(ωi,j).d(ωi)}+ {d(ωi).d(ωi+1)}

+
ν
∑

k=1
{d(ωi+1,k).d(ωi+1)}+ {d(ωi+1).d(ωi+2)}]− 1

2 [{d(ωi−1)

.d(ωi)}+
µ−1
∑

j=1
{d(ωi,µ−1).d(ωi)}+ {d(ωi).d(ωi+1)}

+
ν+1
∑

k=1
{d(ωi+1,k).d(ωi+1)}+ {d(ωi+1).d(ωi+2)}]

= 1
2 [{d(ωi−1).d(ωi)}+ µ{d(ωi,j).d(ωi)}+ {d(ωi).d(ωi+1)}

+ν{d(ωi+1,k).d(ωi+1)}+ {d(ωi+1).d(ωi+2)}]− 1
2 [{d(ωi−1)

.d(ωi)}+ (µ− 1){d(ωi,µ−1).d(ωi)}+ {d(ωi).d(ωi+1)}
+(ν + 1){d(ωi+1,k).d(ωi+1)}+ {d(ωi+1).d(ωi+2)}]
= 1

2{(2)(µ + 2) + µ(1)(µ + 2) + (µ + 2)(ν + 2) + ν(1)(ν + 2)

+(ν + 2)(2)} − 1
2{(2)(µ− 1 + 2) + (µ− 1)(1)(µ− 1 + 2)

+(µ− 1 + 2)(ν + 1 + 2) + (ν + 1)(1)(ν + 1 + 2) + (ν + 1 + 2)(2)}
= 1

2 (µ− ν− 1) < 0 f or ν ≥ µ ≥ 1.

⇒ SK1(A) < SK1(M4(A)) �
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Now first, we find the extremal graphs having the greatest value and then give an
ordering of the unicyclic connected graphs in decreasing order for the SK1 index.

Theorem 4 (Ref. [19]). Let X(r, 3; a, b, c); a + b + c = r− 3; a ≥ b ≥ c ≥ 1 be a set of unicyclic
connected graphs with r ≥ 5. Then the first maximum and second maximum values of the SK1
index are attained by X(r, 3; r− 3, 0, 0) and X(r, 3; r− 4, 1, 0), respectively, i.e.,

SK1(X(r, 3; r− 4, 1, 0)) < SK1(X(r, 3; r− 3, 0, 0))

(See Figure 7.)

Proof. We need only to prove SK1(X(r, 3; a, b, c)) < SK1(X(r, 3; a + 1, b− 1, c)).
Consider

SK1(X(r, 3; a, b, c))− SK1(X(r, 3; a + 1, b− 1, c))
= 1

2{a(1)(a + 2) + (a + 2)(b + 2) + b(1)(b + 2) + (b + 2)(c + 2) + c(1)(c + 2)
+(c + 2)(a + 2)} − 1

2{(a + 1)(1)(a + 1 + 2) + (a + 1 + 2)(b− 1 + 2)
+(b− 1)(1)(b− 1 + 2) + (b− 1 + 2)(c + 2) + c(1)(c + 2) + (c + 2)(a + 1 + 2)}
= 1

2 (−a + b− 1) < 0 f or a ≥ b ≥ c ≥ 1.

�

Hence, the result follows.

Lemma 11. (Ref. [19]). If SK1(Ur(µ)) is the maximum for fixed r ≥ 5, where 1 ≤ µ ≤ r− 4,
then we have µ = 1 or r− 4.

Proof. For r = 5, µ = 1 = r− 4 and there is only one graph U5(1). So, there cannot be a
debate in choosing the maximum or the minimum.

Suppose that 3 ≤ µ ≤ r− 5

SK1(Ur(µ)) = 1
2{2(2)(r− µ− 4 + 3) + (r− µ− 4)(1)(r− µ− 4 + 3) + (r− µ− 4 + 3)

(µ + 1) + µ(1)(µ + 1) + (2)(2)} = 1
2 (r

2 + µ2 − rµ + 3)

SK1(Ur(µ + 1)) = 1
2 (r

2 + µ2 + 3r− rµ + 6)

By using the above calculations, we determine

SK1(Ur(µ + 1))− SK1(Ur(µ)) =
3
2
(r + 1) > 0

⇒ SK1(Ur(µ + 1)) > SK1(Ur(µ))

concluding that SK1(Ur(µ)) > SK1(Ur(r− 4))

where

SK1(Ur(r− 4)) =
1
2
(r2 − 4r + 19)

For p = 1, 2, we have

SK1(Ur(1)) = 1
2 (r

2 − r + 4)

SK1(Ur(2)) = 1
2 (r

2 − 2r + 7)

Furthermore
SK1(Ur(1))− SK1(Ur(2)) =

1
2
(r− 3) > 0

SK1(Ur(1))− SK1(Ur(r− 4)) =
3
2
(r− 5) > 0



Symmetry 2023, 15, 871 15 of 24

SK1(Ur(2))− SK1(Ur(r− 4)) = r− 6 > 0

By the above inequalities, we have

SK1(Ur(1)) > SK1(Ur(2)) > SK1(Ur(µ)) > SK1(Ur(r− 4)), Ur(µ); 3 ≤ µ ≤ r− 5

The above used graphs are shown in Figure 8. Therefore, Ur(1) is a graph with the
first maximum and Ur(2) with the second maximum SK1 index, and we are complete. �

Theorem 5. Let A having girth g with 4 ≤ g ≤ r, be a connected unicyclic graph. Then

SK1(A) ≤ SK1(Xr,g)

where Xr,g = X(r, g; r− g, 0, . . . , 0).

Proof. Let A ∈ Or,g, where Or,g be the set of unlabelled connected unicyclic graphs
having order r and girth g with r ≥ g > 3. If g = r, then A = Cg; for g = r − 1
then A = X(r, r − 1; 1, 0, . . . , 0). Suppose that 3 ≤ g ≤ r − 2 and A has the largest
SK1 index. A is a graph with some vertex disjoint trees having each a common vertex
with Cg. After applying M1-transformation, the trees are reduced to some stars with
centers on Cg and the SK1 index strictly increases by Lemma 7. Since SK1(A) is the maxi-
mum, it implies that A = X(r, g; r1, . . . , rg) where r1, . . . , rg ≥ 0 and r1 + . . . + rg = r− g.
All the pendant edges attached at the vertices of Cg are made incident to the unique
and same vertex. After applying M2, M3-transformations several times, that would give
A = Xr,g = X(r, g; r− g, 0, . . . , 0). �

Remark 2. If r − 1 ≥ g ≥ 3 then SK1(X(r, g; r − g, 0, . . . , 0)) > SK1(X(r, g + 1; r − g −
1, 0, . . . , 0)) by Case 1 of Lemma 7.

Lemma 12. (1) For p = r− g ≥ 3, we have

SK1(A2) < SK1(A1)

(2) For p = r− g ≥ 2, we have

(a) SK1(A3) < SK1(A1).
(b) SK1(A4) < SK1(A1).
(c) SK1(A5) < SK1(A1).

See Figure 6.

Proof.

SK1(A2)− SK1(A1)

= 1
2{(2)(µ− 2 + 2) + (µ− 2)(1)(µ− 2 + 2) + (µ− 2 + 2)(2) + (2)(4) + (4)(2) + (4)(2)}

− 1
2{(2)(µ− 1 + 2) + (µ− 1)(1)(µ− 1 + 2) + (µ− 1 + 2)(3) + (3)(1) + (3)(2) + (2)(2)}

= 1
2 (−3µ + 7) < 0.

(a) SK1(A3)− SK1(A1)

= 1
2{(µ− 1)(1)(µ− 1 + 2) + (µ− 1 + 2)(2) + (2)(3) + (3)(1) + (3)(2)}

− 1
2{(µ− 1)(1)(µ− 1 + 2) + (µ− 1 + 2)(3) + (3)(1) + (3)(2) + (2)(2)}

= 1
2 (−µ + 1) < 0.

(b) SK1(A4)− SK1(A1)

= 1
2{(2 + µ− 1)(2) + (µ− 2)(1)(µ− 2 + 3) + (µ− 2 + 3)(2) + (2)(1) + (µ− 1 + 2)(2)

+(2)(2)} − 1
2{(2 + µ− 1)(2) + (µ− 1)(1)(µ− 1 + 2) + (µ− 1 + 2)(3) + (3)(1) + (3)(2)}

= − 3
2 < 0.
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(c) SK1(A5)− SK1(A1)

= 1
2{(2)(3) + (3)(µ− 1 + 1) + (µ− 1)(1)(µ− 1 + 1) + (3)(2) + (2)(2)}

− 1
2{(2)(µ− 1 + 2) + (µ− 1)(1)(µ− 1 + 2) + (µ− 1 + 2)(3) + (3)(1) + (3)(2)}

= 1
2 (−3µ + 3) < 0.

�

Theorem 6. (a) Let A ∈ Or,g\{Xr,g}, where r ≥ 6, (4 ≤ g ≤ r− 2). Then A has a maximum
SK1 index if, and only if, A = A1.

(b) Let A ∈ Or,g\{(A1 ∪ Xr,g)}, where r ≥ 7, (4 ≤ g ≤ r− 3). Then A has a maximum
SK1 index if, and only if, A = X(r, g; r− g− 1, 0, 1, 0, . . . , 0) = A3.

Proof. Let A ∈ Or,g be a connected unicyclic graph having the second or third maximum
SK1 index. Suppose that there is a vertex with a degree of at least 3 in a cycle Cg of A. Since
A 6= Xr,g, then there is at least one non-pendant vertex in C.

Case 1: When there is exactly one non-pendant vertex outside C, we obtained A by
attaching the µ pendant edges to a pendant vertex of X(r− µ, g; r− g− µ, 0, . . . , 0) where
(1 ≤ µ ≤ r− g− 1).

Lemma 11 states that for µ = 1 or r− 4 we have the maximum of SK1(Ur(µ)) with
corresponding graphs A4 and A5.

However, Lemma 12 implies that the graphs with the second or third maximum SK1
index, cannot be A4 or A5.

Case 2: When there are at least two non-pendant vertices outside C, after the continu-
ous application of M1-transformation, we have

SK1(A) < max{SK1(A4), SK1(A5)} < SK1(A3) < SK1(A1) < SK1(Xr,g)

as SK1(A1)− SK1(Xr,g) = { 1
2 (r

2 + g2 + 5r− g− 2rg + 1)} − { 1
2 (r

2 + g2+

6r− 2g− 2rg)} = 1
2 (−r + g + 1) < 0

Thus, we knew that if A has a second or third maximum SK1 index then the two
vertices on Cg must exist having a degree of at least three.

(a) For A 6= Xr,g, if A has a maximum SK1 then Cg cannot have three vertices with a
degree of at least 3.

We obtained Xr,g after several applications of Mi-transformations (i ≥ 1). However,
we found a graph with an index less than Xr,g, we see that

SK1(A) < max{SK1(A3), SK1(A1)} = SK1(A1) < SK1(Xr,g)

It implies that A has exactly two vertices m, n on Cg having a degree of at least 3.
Degrees of m and n must be as: d(m) = r− g + 1, d(n) = 3, since other cases cannot

hold because if d(m) = 2 then A becomes Xr,g (since our supposition of degree is at least 3)
and if d(m) = 4 then A cannot become the second maximum because A with d(m) = 3 has
a greater index than A with d(m) = 4.

Now, if d(m, n) = 1 then A = A1 and if d(m, n) ≥ 2 then A ∈ Y(r, g) class including A3.
Lemma 12 implies that, in this case, the extremal graph is A1.
(b) For A ∈ Or,g\(A1 ∪ Xr,g), by the same argument we deduce that Cg cannot have

three vertices with a degree of at least 3, if A has a maximum SK1 index, since, in this case,
we would have

SK1(A) < SK1(A3) < SK1(A1) < SK1(Xr,g)

as SK1(A3)− SK1(A1) = { 1
2 (r

2 + g2 + 4r− 2rg + 2)} − { 1
2 (r

2 + g2 + 5r−
g− 2rg + 1)} = 1

2 (−r + g + 2) < 0

It implies that A has exactly two vertices a, b on Cg having a degree of at least 3. By
the same argument (used above), d(m) = r− g and d(n) = 4.
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If d(m, n) = 1 then A = A6 and if d(m, n) ≥ 2 then A ∈ Z(r, g) class including A2,
which ends the proof. �

(See Figure 10.)
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4. Ordering Unicyclic Structures with the Greatest SK2 Index

In this section, we use graph transformations which increase the SK2 index.

Lemma 13. Let M1(A) be a unicyclic connected graph as shown in Figure 1, then

SK2(A) < SK2(M1(A))

for any µ, v ≥ 0.

Proof. Case 1: Ref. [19] When M1 is performed excluding the vertices of Cg

SK2(A)− SK2(M1(A)) = 1
4 ∑

xy∈E(A)\{yz}
[(dx + dy)2 − (dx + dy + dz − 1)2]

+ 1
4 ∑

xz∈E(A)\{yz}
[(dx + dz)2 − (dx + dy + dz − 1)2] < 0; as dy ≥ 2

Case 2: When M1 is performed on the vertices of Cg
We have dA(ωi) = dM1(A)(ωi)− v− 1 < dM1(A)(ωi) and dM1(A)(ωi)+ dM1(A)(ωi+1) =

µ + v + 4.
Therefore, for j = 1, µ = 1, 2, . . . , µ, k = 1, v = 1, 2, . . . , v and by the definition of the

SK2 index, we find

SK2(A)− SK2(M1(A)) = 1
4 [{d(ωi−1) + d(ωi)}2 + µ{d(ωi,j) + d(ωi)}2 + {d(ωi)

+d(ωi+1)}2 + ν{d(ωi+1,k) + d(ωi+1)}2 + {d(ωi+1) + d(ωi+2)}2]

− 1
4 [{d(ωi−1) + d(ωi)}2 + (µ + ν + 1){d(ωi,j) + d(ωi)}2

+{d(ωi) + d(ωi+2)}2]

= 1
4{(2 + µ + 2)2 + µ(1 + µ + 2)2 + (µ + 2 + ν + 2)2 + ν(1 + ν + 2)2

+(ν + 2 + 2)2} − 1
4{(2 + µ + ν + 1 + 2)2 + (µ + ν + 1)

(1 + µ + ν + 1 + 2)2 + (µ + ν + 1 + 2 + 2)2}
= − 1

4 (3µ2 + 3ν2 + 19µ + 19ν + 20µν + 3µ2ν + 3µν2 + 18) < 0.

⇒ SK2(A) < SK2(M1(A)) �
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Lemma 14. Let M2(A) be a unicyclic connected graph as depicted in Figure 2, where dA(ωi, ωi+1) = 1.
Then

SK2(A) < SK2(M2(A))

for any v ≥ µ ≥ 1.

Proof. Since dM2(A)(ωi) = 2 < dA(ωi) = µ + 2 and dA(ωi+1) = ν + 2 < dM2(A)(ωi+1) =
ν + µ + 2.

SK2(A)− SK2(M2(A)) = 1
4 [{d(ωi−1) + d(ωi)}2 +

µ

∑
j=1
{d(ωi,j) + d(ωi)}2 + {d(ωi)

+d(ωi+1)}2 +
ν
∑

k=1
{d(ωi+1,k) + d(ωi+1)}2 + {d(ωi+1) + d(ωi+2)}2]

− 1
4 [{d(ωi−1) + d(ωi)}2 + {d(ωi) + d(ωi+1)}2

+(µ + ν){d(ωi,j) + d(ωi+1)}2 + {d(ωi+1) + d(ωi+2)}2]

= 1
4 [{d(ωi−1) + d(ωi)}2 + µ{d(ωi,j) + d(ωi)}2 + {d(ωi)

+d(ωi+1)}2 + ν{d(ωi+1,k) + d(ωi+1)}2 + {d(ωi+1) + d(ωi+2)}2]

− 1
4 [{d(ωi−1) + d(ωi)}2 + {d(ωi) + d(ωi+1)}2

+(µ + ν){d(ωi,j) + d(ωi+1)}2 + {d(ωi+1) + d(ωi+2)}2]

= 1
4{(2 + µ + 2)2 + µ(1 + µ + 2)2 + (µ + 2 + ν + 2)2 + ν

(1 + ν + 2)2 + (ν + 2 + 2)2} − 1
4{(2 + 2)2 + (2 + µ + ν + 2)2

+(µ + ν)(1 + µ + ν + 2)2 + (µ + ν + 2 + 2)2}
= − µν

4 (3µ + 3ν + 14) < 0 f or ν ≥ µ ≥ 1.

⇒ SK2(A) < SK2(M2(A)) �

Lemma 15. Let M3(A) be a unicyclic connected graph as presented in Figure 3, where dA(ωi, ωi+1) =
dM3(A)(ωi, ωi+1) ≥ 2. Then

SK2(A) < SK2(M3(A)); v ≥ µ ≥ 1

Proof. Following the previous lemma and by the definition of SK2(A), we find

SK2(A)− SK2(M3(A)) = 1
4 [{d(ωi−1) + d(ωi)}2 +

µ

∑
k=1
{d(ωi,j) + d(ωi)}2

+{d(ωi) + d(ωi+1)}2 + {d(ωi+1) + d(ωj)}2 +
ν
∑

l=1
{d(ωj,ν) + d(ωj)}2

+{d(ωj) + d(ωj+1)}2]− 1
4 [{d(ωi−1) + d(ωi)}2 +

µ−1
∑

k=1

{d(ωi,µ−1) + d(ωi)}2 + {d(ωi) + d(ωi+1)}2 + {d(ωi+1)

+d(ωj)}2 +
ν+1
∑

l=1
{d(ωj,ν) + d(ωj)}2 + {d(ωj) + d(ωj+1)}2]

= 1
4 [{d(ωi−1) + d(ωi)}2 + µ{d(ωi,j) + d(ωi)}2

+{d(ωi) + d(ωi+1)}2 + {d(ωi+1) + d(ωj)}2 + ν{d(ωj,ν) + d(ωj)}2

+{d(ωj) + d(ωj+1)}2]− 1
4 [{d(ωi−1) + d(ωi)}2 + (µ− 1)

{d(ωi,µ−1) + d(ωi)}2 + {d(ωi) + d(ωi+1)}2 + {d(ωi+1)

+d(ωj)}2 + (ν + 1){d(ωj,ν) + d(ωj)}2 + {d(ωj) + d(ωj+1)}2]

= 1
4{(2 + µ + 2)2 + µ(1 + µ + 2)2 + (µ + 2 + 2)2 + (2 + ν + 2)2

+ν(1 + ν + 2)2 + (ν + 2 + 2)2} − 1
4{(2 + µ− 1 + 2)2

+(µ− 1)(1 + µ− 1 + 2)2 + (µ− 1 + 2 + 2)2 + (2 + 1 + ν + 2)2

+(ν + 1)(1 + ν + 1 + 2)2 + (ν + 1 + 2 + 2)2}
= 1

4 [(µ− ν){3µ + 3ν + 13} − 6ν− 7] < 0 ν ≥ µ ≥ 1.
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⇒ SK2(A) < SK2(M3(A)) �

Hence, the proof is complete.
Lemma 16. Let M4(A) be the graph as illustrated in Figure 4. For any ν ≥ µ ≥ 1, we have

SK2(A) < SK2(M4(A))

Proof. If dA(ωi, ωi+1) = 1 then dM4(A)(ωi) + dM4(A)(ωi+1) = µ + 2 + v + 2 = dA(ωi) +
dA(ωj) and by the definition of SK2(A), we have

SK2(A)− SK2(M4(A)) = 1
4 [{d(ωi−1) + d(ωi)}2 +

µ

∑
j=1
{d(ωi,j) + d(ωi)}2 + {d(ωi)

+d(ωi+1)}2 +
ν
∑

k=1
{d(ωi+1,k) + d(ωi+1)}2 + {d(ωi+1) + d(ωi+2)}2]

− 1
4 [{d(ωi−1) + d(ωi)}2 +

µ−1
∑

j=1
{d(ωi,µ−1) + d(ωi)}2 + {d(ωi)

+d(ωi+1)}2 +
ν+1
∑

k=1
{d(ωi+1,k) + d(ωi+1)}2 + {d(ωi+1) + d(ωi+2)}2]

= 1
4 [{d(ωi−1) + d(ωi)}2 + µ{d(ωi,j) + d(ωi)}2 + {d(ωi)

+d(ωi+1)}2 + ν{d(ωi+1,k) + d(ωi+1)}2 + {d(ωi+1) + d(ωi+2)}2]

− 1
4 [{d(ωi−1) + d(ωi)}2 + (µ− 1){d(ωi,µ−1) + d(ωi)}2 + {d(ωi)

+d(ωi+1)}2 + (ν + 1){d(ωi+1,k) + d(ωi+1)}2 + {d(ωi+1) + d(ωi+2)}2]

= 1
4{(2 + µ + 2)2 + µ(1 + µ + 2)2 + (µ + 2 + ν + 2)2 + ν

(1 + ν + 2)2 + (ν + 2 + 2)2} − 1
4{(2 + µ− 1 + 2)2 + (µ− 1)

(1 + µ− 1 + 2)2 + (µ− 1 + 2 + ν + 1 + 2)2 + (ν + 1)
(1 + ν + 1 + 2)2 + (ν + 1 + 2 + 2)2}
= 1

4 [(µ− ν){3(µ + ν) + 11} − 6ν− 14] < 0 f or ν ≥ µ ≥ 1.

⇒ SK2(A) < SK2(M4(A)) �

Now first, we find the extremal graphs having the greatest value and then give an
ordering of the unicyclic connected graphs in decreasing order for the SK2 index.

Theorem 7 (Ref. [19]). LetX(r, 3; a, b, c) ; a + b + c = r− 3 ; a ≥ b ≥ c ≥ 1 be a set of unicyclic
connected graphs withr ≥ 5. Then the first maximum and second maximum values of theSK2 index
are attained byX(r, 3; r− 3, 0, 0) andX(r, 3; r− 4, 1, 0), respectively,i.e.,

SK2(X(r, 3; r− 4, 1, 0)) < SK2(X(r, 3; r− 3, 0, 0))

See Figure 10.

Proof. We need only to prove SK2(X(r, 3; a, b, c)) < SK2(X(r, 3; a + 1, b− 1, c)).

SK2(X(r, 3; a, b, c))− SK(X2(r, 3; a + 1, b− 1, c))
= 1

4{a(1 + a + 2)2 + (a + 2 + b + 2)2 + b(1 + b + 2)2 + (b + 2 + c + 2)2 + c(1 + c + 2)2

+(c + 2 + a + 2)2} − 1
4{(a + 1)(1 + a + 1 + 2)2 + (a + 1 + 2 + b− 1 + 2)2

+(b− 1)(1 + b− 1 + 2)2 + (b− 1 + 2 + c + 2)2 + c(1 + c + 2)2 + (c + 2 + a + 1 + 2)2}
= 1

4 (−3a2 + 3b2 − 17a + 11b− 14) < 0 f or a ≥ b ≥ c ≥ 1.

�

Hence, the result follows.
Lemma 17 (Ref. [19]). If SK2(Ur(µ)) is the maximum for fixed r ≥ 5, where 1 ≤ µ ≤ r − 4,
then we have µ = 1 or r− 4.

Proof. For r = 5, µ = 1 = r− 4 and there is only one graph U5(1). Therefore, there cannot
be a debate in choosing the maximum or minimum.
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Suppose that 3 ≤ µ ≤ r− 5, then

SK2(Ur(µ)) = 1
4{2(2 + r− µ− 4 + 3)2 + (r− µ− 4)(1 + r− µ− 4 + 3)2

+(r− µ− 4 + 3 + µ + 1)2 + µ(1 + µ + 1)2 + (2 + 2)2}
= 1

4 (r
3 − r2 + 2µ2 − 3r2µ + 3rµ2 + 4r + 4rµ + 18)

SK2(Ur(µ + 1)) = 1
4 (r

3 + 2r2 + 8µ2 − 3r2µ + 3rµ2 + 7r + 12µ− 2rµ + 34)

By using the above calculations, we determine

SK2(Ur(µ + 1))− SK2(Ur(µ)) =
1
4
(3r2 + 6µ2 + 3r + 12µ− 6rµ + 16) > 0

⇒ SK2(Ur(µ + 1)) > SK2(Ur(µ))

concluding that SK2(Ur(µ)) > SK2(Ur(r− 4))

where

SK2(Ur(r− 4)) = 1
4{2(2 + 3)2 + (3 + r− 4 + 1)2 + (r− 4)(1 + r− 4 + 1)2 + (2 + 2)2}

= 1
4 (r

3 − 7r2 + 20r + 50)

For µ = 1, 2, we have

SK2(Ur(1)) = 1
4 (r

3 − 4r2 + 11r + 20)

SK2(Ur(2)) = 1
4 (r

3 − 7r2 + 24r + 26)

Furthermore

SK2(Ur(1))− SK2(Ur(2)) =
1
4
(3r2 − 13r− 6) > 0

SK2(Ur(1))− SK2(Ur(r− 4)) =
1
4
(3r2 − 9r− 30) > 0

SK2(Ur(2))− SK2(Ur(r− 4)) = r− 6 > 0

By the above inequalities, we have

SK2(Ur(1)) > SK2(Ur(2)) > SK2(Ur(µ)) > SK2(Ur(r− 4)), Ur(µ); 3 ≤ µ ≤ r− 5 �

The above used graphs are shown in Figure 8. Therefore, Ur(1) is a graph with the
first maximum and Ur(2) with the second maximum SK2 index, andwe are complete.
Theorem 8. Let A having girth g with 4 ≤ g ≤ r, be a connected unicyclic graph. Then

SK2(A) ≤ SK2(Xr,g)

where Xr,g = X(r, g; r− g, 0, . . . , 0).

Proof. Let A ∈ Or,g, where Or,g be the set of unlabelled connected unicyclic graphs
having order r and girth g with r ≥ g > 3. If g = r, then A = Cg; for g = r − 1
then A = X(r, r − 1; 1, 0, . . . , 0). Suppose that 3 ≤ g ≤ r − 2 and A has the largest SK2
index. A is a graph with some vertex disjoint trees having each a common vertex with
Cg. After applying M1-transformation, the trees are reduced to some stars with centers
on Cg and the SK2 index strictly increases by Lemma 13. Since SK2(A) is the maximum,
it implies that A = X(r, g; r1, . . . , rg) where r1, . . . , rg ≥ 0 and r1 + . . . + rg = r − g. All
the pendant edges attached at the vertices of Cg are made incident to the unique and
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same vertex. After applying the M2, M3-transformations several times, that would give
A = Xr,g = X(r, g; r− g, 0, . . . , 0). �

Remark 3. If r − 1 ≥ g ≥ 3 then SK2(X(r, g; r − g, 0, . . . , 0)) > SK2(X(r, g + 1; r − g −
1, 0, . . . , 0)) by Case 1 of Lemma 13.

Lemma 18. For p = r− g ≥ 2, we have

(a) SK2(A2) < SK2(A1).
(b) SK2(A3) < SK2(A1).
(c) SK2(A4) < SK2(A1).
(d) SK2(A5) < SK2(A1).

See Figure 6.
Proof.

(a) SK2(A2)− SK2(A1)

= 1
4{(2 + µ− 2 + 2)2 + (µ− 2)(1 + µ− 2 + 2)2 + (µ− 2 + 2 + 2)2 + (2 + 4)2 + (4 + 2)2

+(4 + 2)2} − 1
4{(2 + µ− 1 + 2)2 + (µ− 1)(1 + µ− 1 + 2)2 + (µ− 1 + 2 + 3)2 + (3 + 1)2

+(3 + 2)2 + (2 + 2)2}
= − 3

4{µ(µ + 3)− 12} < 0.

(b) SK2(A3)− SK2(A1)

= 1
4{(µ− 1)(1 + µ− 1 + 2)2 + (µ− 1 + 2 + 2)2 + (2 + 3)2 + (3 + 1)2 + (3 + 2)2}

− 1
4{(µ− 1)(1 + µ− 1 + 2)2 + (µ− 1 + 2 + 3)2 + (3 + 1)2 + (3 + 2)2 + (2 + 2)2}

= 1
2 (−µ + 1) < 0.

(c) SK2(A4)− SK2(A1)

= 1
4{(2 + µ− 1 + 2)2 + (µ− 2)(1 + µ− 2 + 3)2 + (µ− 2 + 3 + 2)2 + (2 + 1)2

+(µ− 1 + 2 + 2)2 + (2 + 2)2} − 1
4{(2 + µ− 1 + 2)2 + (µ− 1)(1 + µ− 1 + 2)2

+(µ− 1 + 2 + 3)2 + (3 + 1)2 + (3 + 2)2}
= − 9

2 < 0.

(d) SK2(A5)− SK2(A1)

= 1
4{(2 + 3)2 + (3 + µ− 1 + 1)2 + (µ− 1)(1 + µ− 1 + 1)2 + (3 + 2)2 + (2 + 2)2}

− 1
4{(2 + µ− 1 + 2)2 + (µ− 1)(1 + µ− 1 + 2)2 + (µ− 1 + 2 + 3)2 + (3 + 1)2 + (3 + 2)2}

= − 3
4{(µ− 1)(µ + 4)} < 0.

�

Theorem 9. (a) Let A ∈ Or,g\{Xr,g}, where r ≥ 4, (4 ≤ g ≤ r). Then A has a maximum
SK2 index if, and only if, A = A1.

(b) Let A ∈ Or,g\{(A1 ∪ Xr,g)}, where r ≥ 4, (4 ≤ g ≤ r). Then A has a maximum SK2
index if, and only if, A = X(r, g; r− g− 1, 0, 1, 0, . . . , 0) = A3.

Proof. Let A ∈ Or,g be a connected unicyclic graph having a second or third maximum SK2
index. Suppose that there is a vertex with a degree at of least 3 in a cycle Cg of A. Since
A 6= Xr,g, then there is at least one non-pendant vertex in C.

Case 1: When there is exactly one non-pendant vertex outside C, we obtained A by
attaching the µ pendant edges to a pendant vertex of X(r− µ, g; r− g− µ, 0, . . . , 0) where
(1 ≤ µ ≤ r− g− 1).

Lemma 17 states that for µ = 1 or r − 4 we have a maximum of SK2(Ur(µ)) with
corresponding graphs A4 and A5, respectively.

However, Lemma 17 implies that the graphs with a second or third maximum SK2
index, cannot be A4 or A5.

Case 2: When there are at least two non-pendant vertices outside C, after the continu-
ous application of M1-transformation, we have

SK2(A) < max{SK2(A4), SK2(A5)} < SK2(A3) < SK2(A1) < SK2(Xr,g)
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as SK2(A1)− SK2
(
Xr,g

)
=
{

1
4
(
r3 − g3 + 5r2 + 5g2 − 3r2g + 3rg2 + 14r + 2g− 10rg + 14

)}
−
{

1
4
(
r3 − g3 + 8r2 + 8g2 − 3r2g + 3rg2 + 25r− 9g− 16rg

)}
=

1
4
(−3r2 − 3g2 − 11r + 11g + 6rg + 14) < 0

Thus, we knew that if A has a second or third maximum SK2 index then the two
vertices on Cg must exist having a degree of at least three.

(a) For A 6= Xr,g, if A has a maximum SK2 then Cg cannot have three vertices with a
degree of at least 3.

We obtained Xr,g after several applications of Mi-transformations (i ≥ 1). However,
we found a graph with an index less than Xr,g, we see that

SK2(A) < max{SK2(A3), SK2(A1)} = SK2(A1) < SK2(Xr,g)

It implies that A has exactly two vertices m, n on Cg having a degree of at least 3.
Degrees of m and n must be as: d(m) = r− g + 1, d(n) = 3, since other cases cannot

hold because if d(m) = 2 then A becomes Xr,g (since our supposition of degree is at least 3)
and if d(m) = 4 then A cannot become the second maximum because A with d(m) = 3 has
a greater index than A with d(m) = 4.

Now, if d(m, n) = 1 then A = A1 and if d(m, n) ≥ 2 then A ∈ Y(r, g) class including A3.
Lemma 18 implies that extremal graph is A1 in this case.
(b) For A ∈ Or,g\(A1 ∪ Xr,g), by the same argument we deduce that Cg cannot have

three vertices with a degree of at least 3, if A has a maximum SK index, since, in this case,
we would have

SK2(A) < SK2(A3) < SK2(A1) < SK2(Xr,g)

as SK2(A3)− SK2(A1) = { 1
4 (r

3 − g3 + 5r2 + 5g2 − 3r2g + 3rg2 + 12r + 4g− 10rg+
16)} − { 1

4 (r
3 − g3 + 5r2 + 5g2 − 3r2g + 3rg2 + 14r + 2g− 10rg + 14)} = 1

4 (−2r+
2g + 2) < 0

It implies that A has exactly two vertices a, b on Cg having a degree of at least 3.
By the same argument (used above), d(m) = r− g and d(n) = 4.
If d(m, n) = 1 then A = A6 and if d(m, n) ≥ 2 then A ∈ Z(r, g) class including A2,

which ends the proof. �
(See Figure 10.)
Now we take some graph structures τ1, τ2, τ3, τ4, τ5, τ6 with order r = 11 and girth g = 5,

shown in Figure 11. Numerical values of Shighalli–Kanabur invariants are shown in Table 1
for the above-mentioned graphic structures. We can see that these computations verify our
main results in Theorems 3, 6 and 9. We have molecular structures of certain compounds in
chemistry which represents some of the graphs of our research as shown in Figure 12.
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Figure 11. Unicyclic connected graphs having the greatest SK index.

Table 1. Comparison of different values of the SK, SK1 and SK2 indices.

Graphic Structure (τ) SK (τ) SK1 (τ) SK2 (τ)

τ1 33 39 109
τ2 38 43.5 143.5
τ3 35 38 115.5
τ4 38 41 141
τ5 33 44 107.5
τ6 43 46 183.5
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These structures represents unicyclic graphs having pendant vertices, pendant edges,
or pendant paths attached to the vertices of a cycle.

5. Conclusions

In this work, we determined the extremal unicyclic connected graphs of these certain
degree-based chemical invariants, i.e., the SK index, the SK1 index, and the SK2 index of a
given size, order, number of pendant vertices and girth by using some graph transforma-
tions. Furthermore, we presented an ordering giving a sequence of unicyclic connected
graphs having these indices from greatest in decreasing order.

Author Contributions: Conceptualization, W.H., A.A., S.K., M.A., T.S.S. and X.Z.; methodology,
A.A, S.K. and M.A.; validation, W.H., A.A., S.K., M.A., T.S.S. and X.Z.; formal analysis, A.A., S.K.,
T.S.S. and X.Z.; investigation, W.H., A.A. and S.K.; writing—original draft preparation, W.H., M.A.,
T.S.S. and X.Z.; writing—review and editing, A.A. and S.K. All authors have read and agreed to the
published version of the manuscript.

Funding: This research project is supported by the Natural Science Foundation of Anhui Province
Higher School (KJ2021A1154; 2022AH051864).



Symmetry 2023, 15, 871 24 of 24

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Topological Indices, and Applications of Graph Theory; Hindawi: London, UK, 2021.
2. Rouvray, D.H. The Search for Useful Topological Indices in Chemistry: Topological indices promise to have far-reaching

applications in fields as diverse as bonding theory, cancer research, and drug design. Am. Sci. 1973, 61, 729–735.
3. Eliasi, M.; Taeri, B. Four new sums of graphs and their Wiener indices. Discret. Appl. Math. 2009, 157, 794–803. [CrossRef]
4. Gutman, I.; Trinajstic, N. Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons. Chem. Phys.

Lett. 1972, 17, 535–538. [CrossRef]
5. Khalifeh, M.H.; Yousefi-Azari, H.; Ashrafi, A.R. The first and second Zagreb indices of some graph operations. Discret. Appl.

Math. 2009, 157, 804–811. [CrossRef]
6. Ghorbaninejad, M. The Zagreb-coindex of Four Operations on Graphs. Fuzzy Optim. Model. J. 2021, 3, 41–45.
7. Shigehalli, V.; Kanabur, R. New version of degree-based topological indices of certain nanotube. J. Math. Nanosci. 2016, 6, 27–40.
8. Kanabur, R.; Shigehalli, V. Computing Degree-Based Topological Indices of Polyhex Nanotubes. J. Math. Nanosci. 2016, 6, 47–55.
9. Shigehalli, V.S.; Kanabur, R. Computation of New Degree-Based Topological Indices of Graphene. J. Math. 2016, 2016, 4341919.

[CrossRef]
10. Kang, S.M.; Zahid, M.A.; Virk, A.U.R.; Nazeer, W.; Gao, W. Calculating the Degree-based Topological Indices of Dendrimers.

Open Chem. 2018, 16, 681–688. [CrossRef]
11. Ranjini, P.S.W.; Lokesha, V. SK Indices of Graph Operator S(G) and R(G) on few Nanostructures. Montes Taurus J. Pure Appl. Math.

2020, 2, 38–44.
12. Nurkahli, S.B.; Büyükköse, S. A Note on SK, SK1 and SK2 indices of Interval Weighted Graphs. Adv. Inlinear Algebra Matrix Theory

2021, 11, 14. [CrossRef]
13. Roy, K.; Ghosh, G. Exploring QSARS with Extended Topochemical Atom (ETA) indices for modeling chemical and drug toxicity.

Curr. Pharm. Des. 2010, 16, 2625–2639. [CrossRef] [PubMed]
14. Hosoya, H. Topological index as a sorting device for coding chemical structures. J. Chem. Doc. 1972, 12, 181–183. [CrossRef]
15. Hosoya, H. Graphical enumeration of the coefficients of the secular polynomials of the Hückel molecular orbitals. Theor. Chim.

Acta 1972, 25, 215–222. [CrossRef]
16. Tomescu, I.; Kanwal, S. Unicyclic graphs of given girth k = 4 having smallest general sum-connectivity index. Discret. Appl. Math.

2014, 164, 344–348. [CrossRef]
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