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Abstract: In this paper, a hybrid variable-order mathematical model for multi-vaccination COVID-19
is analyzed. The hybrid variable-order derivative is defined as a linear combination of the variable-
order integral of Riemann–Liouville and the variable-order Caputo derivative. A symmetry parameter
σ is presented in order to be consistent with the physical model problem. The existence, uniqueness,
boundedness and positivity of the proposed model are given. Moreover, the stability of the proposed
model is discussed. The theta finite difference method with the discretization of the hybrid variable-
order operator is developed for solving numerically the model problem. This method can be explicit
or fully implicit with a large stability region depending on values of the factor Θ. The convergence
and stability analysis of the proposed method are proved. Moreover, the fourth order generalized
Runge–Kutta method is also used to study the proposed model. Comparative studies and numerical
examples are presented. We found that the proposed model is also more general than the model
in the previous study; the results obtained by the proposed method are more stable than previous
research in this area.

Keywords: variable-order hybrid operator; Pfizer vaccine; Moderna vaccine; Janssen vaccine; theta
finite difference method; generalized fourth order Runge–Kutta method

MSC: 65L05; 37N30; 65M06

1. Introduction

Coronaviruses are a large family of viruses known to cause illnesses ranging from
the common cold to more serious illnesses such as severe acute respiratory syndrome [1].
The World Health Organization has designated this variant as a variant of serious concern.
The United States Centers for Disease Control and Prevention has granted Emergency Use
Authorization to the following vaccines: Pfizer-BioNTech with 95% efficacy against symp-
tomatic COVID-19, Moderna vaccine with 94.5% efficacy and Janssen vaccine manufactured
by Johnson & Johnson, which has an efficacy rating of 67%, as well as many others [1,2].
SARS-CoV-2 vaccinations have been shown to be effective against infections, including both
silent and symptomatic cases, of severe COVID-19 illness and deaths [2]. Mathematical
modeling is a valuable tool to study disease spread and control very effectively. Several
mathematical models have been proposed in the literature to study and understand the
novel complex transmission pattern of the COVID-19 pandemic; see, for example, [3–8].

In the meantime, there are now extensive articles explaining the advantage of fractional
order models for studying real mathematical models in various fields [9]. The variable-
order fractional derivatives (VOFDs) can describe the effects of the long variable memory
of a time-dependent system. In [10], Samko et al. proposed this interesting extension of the
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classical calculation of fractions. In the concept of fractional derivative with variable order,
the order may vary either as a function of the independent differentiation variable (t) or
as a function of another (possibly spatial) variable (x), or both. Therefore, the derivative
models described using variable-order fractional derivatives are useful and appropriate for
the epidemic models. We can obtain the results of fractional order and integer order as a
special case from variable-order mathematical models [11–18].

In this article, we will present the theta finite different method with the discretization
of new hybrid fractional operator. This operator is called the constant proportional Caputo
variable-order fractional derivative (CPC-Θ FDM) and is used to study the proposed
model numerically. In the literature, the theta finite differences method (ΘFDM) method,
also called the weighted average finite differences method (WAFDM), is one of the finite
difference methods [19,20]. This method could be an explicit method or an implicit method
(more stable and efficient), depending on the weight factor Θ ∈ [0, 1]. Using Caputo and
Riesz–Feller derivatives, this method was developed for a nonstandard finite difference
method [21,22].

The goal of this work is to present and analyze a hybrid variable-order fractional
model of multi-vaccination for COVID-19. The new variable-order hybrid derivatives are
defined as the linear combination of the variable-order Riemann–Liouville integral and the
variable-order derivative of Caputo. This is one of the most effective and reliable of these
operators; it is more general than the Caputo fractional operator. Positivity, boundedness
and stability will be proved in the current model.

Moreover, one of the aims of this article is developing CPC-Θ FDM for solving the
variable-order fractional differential equations numerically and we will compare the ob-
tained results with the results obtained with the fourth order generalized Runge–Kutta
method (GRK4M) [23] and the method in [24]. Moreover, we extended the method in [24]
to variable order. The analysis of stability and convergence of the proposed method
will be studied. Numerical simulations will be given to confirm the efficiency and wide
applicability of the proposed method.

To our knowledge, no numerical investigations of a hybrid variable-order fractional
for multi-vaccination for a COVID-19 mathematical model utilizing CPC-Θ FDM have
been conducted.

This paper is organized as follows: Some notations and definitions of variable-order
fractional derivatives are introduced in Section 2. In Section 3, the model with a hybrid
variable order is presented; moreover, the positivity, boundedness, existence and unique-
ness of the solutions and the stability of the present model are discussed. In Section 4, the
numerical methods GRK4M and CPC-Θ SFDM are studied; moreover, stability analyses
for these methods are proved. In Section 5, numerical simulations are presented. The
conclusions are ultimately outlined in Section 6.

2. Notations and Preliminaries

In this section, we review several key definitions of variable-order calculus that will
be utilized throughout the remainder of this article.

Definition 1. Caputo’s derivatives (right–left side variable-order fractional α(t)) are defined,
respectively, as follows [25]:

(CDα(t)
b− f )(x) = (C

t Dα(t)
b f )(t) =

(−1)n

Γ(n− α(t))

∫ b

t

f (n)(s)
(s− t)−n+α(t)+1

ds, b > t, (1)

(CDα(t)
a+ f )(t) = (C

a Dα(t)
t f )(t) =

1
Γ(n− α(t))

∫ t

a

f (n)(s)
(t− ξ)−n+α(t)+1

ds, t > a, (2)

f (t) ∈ ACn[a, b], n = 1 + [<(α(t))], <(α(t)) /∈ N0.
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Definition 2. Let 1 > α(t) > 0, −∞ < a < b < +∞; the right–left side variable-order fractional
Riemann–Liouville’s integral and f (t) ∈ ACn[a, b] are given as follows [25]:

t I
α(t)

b f (t) =

[ ∫ b

t
f (s)(t− s)α(t)−1ds

]
1

Γ(α(t))
, t < b, (3)

a I
α(t)

t f (t) =

[ ∫ t

a
f (s)(t− s)α(t)−1ds

]
1

Γ(α(t))
, t > a. (4)

α(t) ∈ C.

Definition 3 ([26]). The variable-order fractional Caputo proportional operator (CP) is given as
follows:

CP
0 Dα(t)

t y(t) =
∫ t

0
(Γ(1− α(t)))−1(t− s)−α(t)(y′(s)K0(s, α(t)) + y(s)K1(s, α(t)))ds,

=

(
Γ(1− α(t))−1

tα(t)

)
(y′(t)K0(t, α(t)) + y(t)K1(t, α(t))). (5)

K1(α(t), t) = (−α(t) + 1)tα(t), K0(α(t), t) = t(1−α(t))α(t), 1 > α(t) > 0.
Alternatively, the constant proportional Caputo (CPC) variable-order fractional hybrid
operator can be formulated as follows [26]:

CPC
0 Dα(t)

t y(t) =

( ∫ t

0
(t− s)−α(t) 1

Γ(1− α(t))
(K1(α(t))y(s) + y′(s)K0(α(t)))ds

)
= K1(α(t))RL

0 I1−α(t)
t y(t) + K0(α(t))C

0 Dα(t)
t y(t), (6)

K0(α(t)) = Q(−α(t)+1)α(t), K1(α(t)) = Qα(t)(−α(t) + 1), where Q is a constant.

Definition 4. Moreover, its inverse operator is [26]:

CPC
0 Iα(t)

t y(t) =

( ∫ t

0
exp

[
K1(α(t))
K0(α(t))

(t− s)

]
RL
0 D1−α(t)

t y(s)ds

)
1

K0(α(t))
. (7)

3. A Hybrid Variable-Order Mathematical Model

A variable-order multiple vaccination model for COVID-19 is presented below; it is an
extension of the model given in [24]. To satisfy the dimensional fit between the two sides
of the resulting variable-order fraction equations, the variable-order operator is modified
by an auxiliary parameter σ. As a result, the dimension of the left side is (day)−1 [27]. The
following is the updated variable-order nonlinear fractional mathematical model:

1
σ1−α(t)

CPC
0 Dα(t)

t S =Λ− ν1S− ν2S− ν3S− λS− µS,

1
σ1−α(t)

CPC
0 Dα(t)

t V1 =ν1S− (1− ξ1)λV1 − µV1,

1
σ1−α(t)

CPC
0 Dα(t)

t V2 =ν2S− (1− ξ2)λV2 − µV2,

1
σ1−α(t)

CPC
0 Dα(t)

t V3 =ν3S− (1− ξ3)λV3 − µV3,

1
σ1−α(t)

CPC
0 Dα(t)

t A = f3(1− ξ3)λV3 + f2(1− ξ2)λV2 + f1(1− ξ1)λV1 − (γA + µ)A + pλS,
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1
σ1−α(t)

CPC
0 Dα(t)

t IU =(1− p)λS− (γIU + dIU + α1µ)IU ,

1
σ1−α(t)

CPC
0 Dα(t)

t IV =(1− f2)(1− ξ2)λV2 + (1− f3)(1− ξ3) + (1− f1)(1− ξ1)λV1λV3

− (γIV + (1− φ)αµ + dIV)IV ,

1
σ1−α(t)

CPC
0 Dα(t)

t IS =α1(1− φ)IV − (dIS + µ + γIS)IS + α1 IU ,

1
σ1−α(t)

CPC
0 Dα(t)

t R =γA A + γIU IU + γIV IV + γIS IS − µR. (8)

λ = βN−1
H

(
IU + θA + ηv Iv

)
,

S + V1 + V2 + V3 + A + IU + IV + IS + R = NH(t),

with the initial conditions

S(0) = s0 ≥ 0, V1(0) = v10 ≥ 0, V2 = v20 ≥ 0, V3 = v30 ≥ 0, A = a0 ≥ 0, IU = iu0 ≥ 0,

IV = iv0 ≥ 0, IS = is0, R(0) = r0 ≥ 0. (9)

Figure 1 shows the flowchart of the model (8). Table 1 shows the definitions of variables
for system (8). The hypotheses of the model for the rate of each type of vaccination are the
same as in [24], as follows:

1 NH(t) = S + V1 + V2 + V3 + A + Iu + Iv + Is + R.
2 Vaccination simulations of the proposed model in the strategy implementing only the

Pfizer vaccine ( f1 6= 0, ξ1 6= 0, φ1 6= 0, v1 6= 0), where these parameters are defined
as in Table 2.

3 Vaccination simulations of the proposed model in the strategy implementing only
Moderna vaccine (ξ2 6= 0, f2 6= 0, v2 6= 0, φ2 6= 0).

4 Vaccination simulations of the proposed model in the strategy implementing only
Janssen vaccine (ξ3 6= 0, f3 6= 0, v3 6= 0, φ3 6= 0).

We can verify the boundedness of the solution for the suggested model (8) as follows:

1
σ1−α(t)

(CPC
0 Dα(t)

t S +CPC
0 Dα(t)

t R +CPC
0 Dα(t)

t V3 +
CPC
0 Dα(t)

t V2 +
CtV
1 +

CPC
0 Dα(t)

t A +CPC
0 Dα(t)

t S +CPC
0 Dα(t)

t Is +
CPC
0 Dα(t)

t IV +CPC
0 Dα(t)

t IU) = σ−1+α(t)CPC
0 Dα(t)

t NH(t),

1
σ1−α(t)

CPC
0 Dα(t)

t NH(t) = Λ− µNH(t)− [dIV IV + dIU IU + dIS IS], NH(0) = A ≥ 0, (10)

Λ− (µ + 3δ)NH ≤
dNH

dt
< Λ− µNH , δ = min{dIV , dIU , dIS}.

Therefore, we have NH(t) ≤ Λµ−1, at t −→ ∞. The feasible region
Ω = {S, A, IU , IV , IS, R, V3, V1, V2 ∈ R9, NH(t) ≤ Λµ−1}.

System (8) has a solution in Ω. This verifies the boundedness of the solution.
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Table 1. Variables of system (8).

Variable Interpretation
R Humans who have recovered
S Unvaccinated susceptible individuals
V3 Vaccinated using vaccination number three (Oxford Johnson & Johnson)
V2 Vaccinated using vaccination number two (Moderna)
V1 Vaccinated using vaccination number one (Pfizer)
IS Individuals with severe sickness and hospitalization who are symptomatic

(vaccinated and unvaccinated) (under complete isolation)
IV Symptomatic people who have been vaccinated
IU Symptomatic people who have not been immunized
A Asymptomatic individuals (vaccinated and unvaccinated)

Figure 1. Flowchart for system (8).

Theorem 1. Using (9), for t ≥ 0 solutions of (8) are still nonnegative.

Proof. Using (9), we obtain [28]:
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1
σ1−α(t)

CPC
0 Dα(t)

t S |S=0 =Λ ≥ 0,

1
σ1−α(t)

CPC
0 Dα(t)

t V1 |V1=0 =V1S ≥ 0,

1
σ1−α(t)

CPC
0 Dα(t)

t V2 |V2=0 =V2S ≥ 0,

1
σ1−α(t)

CPC
0 Dα(t)

t V3 |V3=0 =V3S ≥ 0,

1
σ1−α(t)

CPC
0 Dα(t)

t A |A=0 =(1− ξ2) f2λV2 + (1− ξ3) f3λV3 + pλS + (1− ξ1) f1λV1 ≥ 0,

1
σ1−α(t)

CPC
0 Dα(t)

t IU |IU=0 =(1− p)λS ≥ 0,

1
σ1−α(t)

CPC
0 Dα(t)

t IV |IV=0 =(1− ξ2)λ(1− f2)V2 + (1− ξ3)λV3(1− f3) + (1− ξ1)λV1(1− f1) ≥ 0,

1
σ1−α(t)

CPC
0 Dα(t)

t IS |IS=0 =α1 IU + (1− φ)α1 IV ≥ 0,

1
σ−α(t)+1

CPC
0 Dα(t)

t R |R=0 =γA A + γIU IU + γIV IV + γIS IS ≥ 0. (11)

3.1. Uniqueness and Existence

The existence and uniqueness of the solutions of the proposed model will be estab-
lished using Banach fixed point theorem. Let system (8) be written as follows [4]:

CPC
0 Dα(t)

t ε(t) = v(ε(t), t), ε(0) = ε0 ≥ 0, (12)

ε(t) =

(
S, A, IU , IV , IS, R, V3, V1, V2

)T

represents the variables of the proposed system (8)

and v is a vector that represents the equations in the right of the system (8).



v1
v2
v3
v4
v5
v6
v7
v8
v9


=



σ1−α(t)(Λ− ν1S− ν2S− ν3S− λS− µS)

σ1−α(t)(ν1S− (1− ξ1)λV1 − µV1)

σ1−α(t)(ν1S− (1− ξ2)λV2 − µV2)

σ1−α(t)(ν1S− (1− ξ3)λV3 − µV3)

σ1−α(t)((1− ξ2)λ f2V2 + (1− ξ1)λ f1V1 + (1− ξ3)λ f3V3 − (γA + µ)A) + pλS

σ1−α(t)((1− p)λS− (γIU + dIU + α1µ)IU )

σ1−α(t)((1− ξ2)λ(1− f2)V2 + (1− ξ3)λ(1− f3)V3 + (1− ξ1)λ(1− f1)V1 − (dIV + α(1− φ)µ)IV + γIV )

σ1−α(t)(α1 IU − (dIS + µ + γIS)IS) + α1(1− φ)IV

σ1−α(t)(γIU IU + γIV IV + γIS IS − µR + γA A)


,

with an initial condition ε0. Furthermore, Lipschitz requirements as in [4] are satisfied:

‖v(ε1(t), t)−v(ε2(t), t)‖ ≤W0‖ε1(t)− ε2(t)‖, W0 ∈ R. (13)

Theorem 2. If the following conditions are met:

W0zα(t)
maxXα(t)

max
Γ(α(t)− 1)K0(α(t))

< 1, (14)

the hybrid variable-order fractional model (8) has a unique solution.

Proof. Applying (6) in (12), we have:

ε(t) = ε(t0) +
1

K0(α(t))

∫ t

0
exp(−K1(α(t))

K0(α(t))
(t− s))RL

0 D1−α(t)
t v(ε(s), s)ds. (15)
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Let B : C(K,R9) −→ C(K,R9) and K = (0, T); then:

B[ε(t)] = ε(t0) +
1

K0(α(t))

∫ t

0
exp(−K1(α(t))

K0(α(t))
(t− s))RL

0 D1−α(t)
t v(ε(s), s)ds. (16)

We have:
B[ε(t)] = ε(t).

The supremum norm on K is represented by ‖.‖K. Thus
‖ε(t)‖K = sup

t∈K
‖ε(t)‖, ε(t) ∈ C(K,R9).

So, ‖.‖K with C(K,R9) is a Banach space. Then, the following relation holds:

Λ‖ϕ(s, t)‖K‖ε(s)‖K≥ ‖
∫ t

0
ϕ(s, t)ε(s)ds‖, 0 < t < Λ < ∞

with ϕ(s, t) ∈ C(K2,R9) ε(t) ∈ C(K,R9),
then supt,s∈K |ϕ(s, t)| = ‖ϕ(s, t)‖K.
Relation (16) can be written as:

‖B[ε1(t)]− B[ε2(t)]‖K ≤ ‖
1

K0(α(t))

∫ t

0
exp(−K1(α(t))

K0(α(t))
(t− s))(RL

0 D1−α(t)
t v(ε1(s), s)

−RL
0 D1−α(t)

t v(ε2(s), s))ds‖K.

≤ zα(t)
max

K0(α(t))Γ(α(t)− 1)
‖
∫ t

0
(t− s)α(t)−2(v(ε1(s), s)−v(ε2(s), s))ds‖K,

≤ zα(t)
maxXα(t)

max
K0(α(t))Γ(α(t)− 1)

‖v(ε1(t), t)−v(ε2(t), t)‖K,

≤ W0zα(t)
maxXα(t)

max
K0(α(t))Γ(α(t)− 1)

‖ε1(t)− ε2(t)‖K. (17)

Then
‖B[ε1(t)]− B[ε2(t)]‖K≤ L‖ε1(t)− ε2(t)‖K, (18)

where

L =
W0zα(t)

maxXα(t)
max

K0(α(t))Γ(α(t)− 1)
.

B is a contraction operator if 1 > L. So (8) has a unique solution.

Table 2. The definition of all parameters of system (8).

Parameter Interpretation Baseline Value (per day−1) Reference

Λ Recruitment rate 29,200,000
75 × 365 day−1 [29]

β Rate of effective transmission 0.00016708 [24]
µ Natural death rate 1

75 × 365 day−1 [29]
ξ3 Efficacy of the Janssen vaccine 0.67 [1]
ξ2 Efficacy of the Moderena vaccine 0.945 [30]
ξ1 Efficacy of the Pfizer vaccine 0.95 [31]
ν3 Rate of Janssen vaccination 0.00053 day−1 [24]
ν2 Rate of Moderena vaccination 0.0042 day−1 [24]
ν1 Rate of Pfizer vaccination 0.0059 day−1 [24]
p Unvaccinated susceptibles who move to the asymptomatic stage are a small percentage of the total 0.5 [24]
θ A parameter was changed to limit the transmissibility of asymptomatic people 0.7 [32]
φ Vaccine effectiveness against severe COVID-19 sickness 0.8 [2]
fi The percentage of susceptibles who received the vaccine and went on to develop subclinical disease 0.5 [24]

γA , γIU , γIV , γIS Individuals in A, IU , IV and IS classes, respectively; the programme has a high rate of recovery 0.13978 day−1 [24]
dIU , dIV , dIS Death rates from disease for people in the IU , IV and IS groups, respectively 0.015 [32]

α1 The rate at which severe COVID-19 sickness develops 0.3 [32]
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3.2. Local Stability

The basic reproduction number is calculated in this section. The next generation
operator method is used to investigate the local stability of the disease-free equilibrium
(DFE), which is given by solving 1

σ1−α(t)
CPC
0 Dα(t)

t (.) = 0 of model (8) and considering
IU = IV = IS = 0. Then, we obtained D0, where D0 is the DFE and is given by [33]:

D0 = (S̃, Ṽ3, Ṽ2, Ṽ1, Ã, ĨV , ĨS, ĨU , R̃) =

(
Λ

(ν3 + ν2 + ν1 + µ)
,

ν3Λ
(ν3 + ν2 + ν1 + µ)

,
ν2Λ

(ν3 + ν2 + ν1 + µ)
,

ν1Λ
(ν1 + ν2 + ν3 + µ)

,

Λ
(ν1 + νλ2 + ν3 + µ)

, 0, 0, 0, 0).

As a result, the matrix V of the transfer of individuals between compartments and the
matrix F of new infection terms are provided by

F = σ1−α(t)


βθQ̃
ÑH

βQ̃
ÑH

βηV Q̃
ÑH

0

(1− p) βθS̃
ÑH

(1− p) βS̃
ÑH

(1− p) βηV S̃
ÑH

0
βθν̃

ÑH

βν̃

ÑH

βηV ν̃

ÑH
0

0 0 0 0

,

with ν̃ = (1− ξ3)(1− f3)Ṽ3 + (1− ξ2)(1− f2)Ṽ2 + (1− ξ1)(1− f1)Ṽ1,
Q̃ = (1− ξ3) f3Ṽ3 + (1− ξ1) f1Ṽ1 + (1− ξ2) f2Ṽ2 + pS̃.

V = σ1−α(t)


µ + γA 0 0 0

0 γIU + dIU + α1 + µ 0 0
0 0 γIV + dIV + (1− φ)α1 + µ 0
0 −α1 −(1− φ)α1 γIU + dIU + µ

.

The model’s basic reproduction number, denoted by R0, is given by [34,35]:

ρ(FV−1) = R0 = σ1−α(t)β
( (1− p)E1E3µ + E1E2ηVY1 + E2E3ηAθY2

µ(ν1 + ν2 + ν3)E1E2E3

)
. (19)

with E1 = (γA + µ),
E2 = (γIU + dIU + α1 + µ),
E3 = (α1(1− φ) + dIV + µ + γIV),
Y1 = (1− ξ3)(1− f3)ν3 + (1− ξ1)(1− f1)ν1 + (1− ξ2)(1− f2)ν2,
Y2 = (1− ξ3) f3ν3 + (1− ξ2) f2ν2 + µp(1− ξ1) f1ν1.

Theorem 3. The disease-free equilibrium point D0 of model (8) is locally asymptotically stable
(LAS) if R0 < 1 and unstable if R0 > 1.

Proof. The Jacobian matrix of the system (8) at the DFE is used to investigate the local
stability of model (8) [33,36].

J(D0) = σ1−α(t)



X 0 0 0 A1 A2 A3 0 0
ν1 −µ 0 0 B1 B2 B3 0 0
ν2 0 −µ 0 F1 F2 F3 0 0
ν3 0 0 −µ G1 G2 G3 0 0
0 0 0 0 M1 M2 M3 0 0
0 0 0 0 N1 N2 N3 0 0
0 0 0 0 Z1 Z2 Z3 0 0
0 0 0 0 0 α1 (1− φ)α1 −E4 0
0 0 0 0 γA γIU γIV γIS −µ


,
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where X = −(ν1 + ν2 + ν3 + µ), A1 = − βθS̃H
ÑH

, A2 = − βS̃H
ÑH

, A3 = − βηV S̃H
ÑH

,

B1 = −(1− ξ1)
βθṼ1
ÑH

, B2 = −(1− ξ1)
βṼ1
ÑH

, B3 = −(1− ξ1)
βηV Ṽ1

ÑH
,

F1 = −(1− ξ2)
βθṼ2
ÑH

, F2 = −(1− ξ2)
βṼ2
ÑH

, F3 = −(1− ξ2)
βηV Ṽ2

ÑH
,

G1 = −(1− ξ3)
βθṼ3
ÑH

, G2 = −(1− ξ3)
βṼ3
ÑH

, G3 = −(1− ξ3)
βηV Ṽ3

ÑH
,

M1 = βθQ̃
ÑH
− E1, M2 = βQ̃

ÑH
, M3 = βηV Q̃

ÑH
,

N1 = βθ(1−p)S̃H
ÑH

, N2 = β(1−p)S̃H
ÑH

− E2, N3 = β(1−p)ηV S̃H
ÑH

,

Z1 = βθν̃

ÑH
, Z2 = βν̃

ÑH
, Z3 = βηV ν̃

ÑH
− E3,

E4 = (γIS + dIS + µ).
The characteristic equation:

(ν3 + ν1 + ν2 + µ + λ)(λ3 + (E1 + E2 + E3 − (1−p)S̃+ηV ν̃+ηV θQ̃
ÑH

β)λ2

+ (E1E2 + E1E3 + E2E3 − β[(E1 + E3)(1− p)S̃ + (E1 + E2)ηV ν̃
+ (E2 + E3)ηAθQ̃])λ + E1E2E3(1− R0))(µ + λ)4(λ + E4) = 0.
Then, we have
(λ + µ) = 0, (λ + E4) = 0, (λ + ν1 + ν2 + ν3 + µ) = 0;
the arguments are arg(λk) >

π
a > k 2π

a > π
M > π

2M , where k = 0, 1, 2, 3, ..., a− 1.

(λ3 + (E1 + E2 + E3 − β
(1−p)S̃+ηV ν̃+ηV θQ̃

Ñ )λ2 + (E1E2 + E1E3 + E2E3 −
β[(E1 + E3)(1− p)S̃ + (E1 + E2)ηV ν̃ + (E2 + E3)ηAθQ̃])λ + E1E2E3(1− R0)) = 0.

We can rewrite the above equation as:

λ3 + aλ2 + bλ + c = 0, (20)

where

a = (E1 + E2 + E3 − β
(1− p)S̃ + ηV ν̃ + ηVθQ̃

Ñ
),

b = (E1E2 + E1E3 + E2E3 − β[(E1 + E3)(1− p)S̃ + (E1 + E2)ηV ν̃ + (E2 + E3)ηAθQ̃]),

c = E1E2E3(1− R0).

λ3 + aλ2 + bλ + c = 0, (21)

We obtain
λ3 + aλ2 + bλ + c = (λ− ζ11)(λ

2 − τλ + ζ11), (22)

τ = −(a + ζ11), (23)

ζ11 = b + ζ11(a + ζ11), (24)

c = −ζ11δ11, (25)

Hence, the other two roots are given by

ζ11,2,3 =
1
2
(τ ±

√
4), (26)

4 = τ2 − 4δ11 = a2 − 2aζ11 − (3ζ2
11 + 4b). (27)
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These two roots are complex conjugate when4 < 0, real and distinct when4 > 0,
and real and conincident when4 = 0.

Considering that4 = 0 occurs a = ζ11 ± 2
√

ζ2
11 + b, we have that if ζ2

11 + b < 0, then
4 > 0 and two distinct real roots given by

ζ11,2,3 =
1
2
(τ ±

√
4).

If ζ2
11 + b = 0 then 4 = (a− ζ11)

2 and two distinct real roots exist given by

ζ11,2,3 =
1
2
(τ ± |a− ζ11|).

So that ζ11,2 = −ζ11,1 and ζ11,3 = −a, if ζ2
11,1 + b > 0 and (ζ11 − 2

√
ζ2

11 + b) < a <

(ζ11 + 2
√

ζ2
11 + b), then 4 < 0 and two complex conjugate roots exist, given by ζ11,2,3 =

α11 ± iB11 where α22 = τ
2 , B11 =

√
4δ11−τ2

2 =
√

δ11 − α2
11. a = (ζ11 − 2

√
(ζ2

11) + b)

or a = (ζ11 − 2
√
(ζ2

11) + a2), then (4 = 0) and two concident real roots exist given by

ζ11,2 = ζ11,3 = τ
2 = a+ζ11

2 a < (ζ11− 2
√
(ζ2

11) + a2) or a1 > (ζ11− 2
√
(ζ2

11) + b). Then,
4 = 0 and two distinct real roots exists given by

ζ11,2,3 =
1
2
(τ ±

√
4).

Applying the Routh–Hurwitz criterion [37], Equation (27) has roots with negative real
parts if and only if R0 < 1. Thus, the DFE is locally asymptotically stable.

4. Numerical Methods for Solving the Proposed Model
4.1. GRK4M

Consider the fractional derivatives with variable order given by the following equation:
C
0 Dα(t)

t ε(t) = f (t, ε(t)), Tf ≥ t > 0, 1 ≥ α(t) > 0, (28)

ε(0) = εo.

Using GRK4M [23], the approximate solution of (28) is:

εn+1 = εn +
1
6
(K1 + 2K2 + 2K3 + K4), (29)

K1 = Υ f (tn, εn),

K2 = Υ f (tn +
1
2

Υ, εn +
1
2

K1),

K3 = Υ f (tn +
1
2

Υ, εn +
1
2

K2),

K4 = Υ f (tn + Υ, εn + K3),

where Υ =
τα(tn)

Γ(α(tn) + 1)
.

4.2. Stability of GRK4M

To investigate the stability of GRK4M, we shall utilize the following test problem of
variable-order linear differential equation for simplicity:

C
0 Dα(t)

t ε(t) = ε(t)υ, Tf ≥ t > 0, υ < 0, 1 ≥ α(t) > 0, (30)

ε(0) = εo.
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As in [23], Equation (30) is written as follows:

ε(ti+1) = ε(ti) +
1
6

υτα(ti)

Γ(1 + α(ti))
ε(ti), i = 0, 1, . . . , n− 1. (31)

Then, we have the following equation [38]:

ε(ti+1) = (1 +
1
6

τα(ti)υ

Γ(1 + α(ti))
)iε0. (32)

The condition of stability [38]:

−1 < (
1
6

τα(ti)υ

Γ(1 + α(ti))
+ 1) < 1.

4.3. CPC-ΘFDM

Consider:
CPC
0 Dα(t)

t ε(t) = ξ(t, ε(t)), ε(0) = ε0, 1 ≥ α(t) > 0. (33)

Relationship (6) can be expressed as follows:
CPC
0 Dα(t)

t ε(t) =
1

Γ(1− α(t))

∫ t

0
(t− s)−α(t)(K1(α(t))ε(s) + K0(α(t))ε′(s))ds,

= K1(α)
RL
0 I1−α(t)

t ε(t) + K0(α(t))C
0 Dα(t)

t ε(t),

= K1(α)
RL
0 Dα(t)−1

t ε(t) + K0(α(t))C
0 Dα(t)

t ε(t), (34)

Using ΘFDM and GL-approximation, we can discretize (34) as shown below:

CPC
0 Dα(t)

t ε(t)|t=tn =
K1(α(tn))

τα(tn)−1

(
εn+1 +

n+1

∑
i=1

ωiεn+1−i

)

+
K0(α(tn))

ταn

(
εn+1 −

n+1

∑
i=1

$iεn+1−i − ςn+1ε0

)
, (35)

K1(α(tn))

τα(tn)−1

(
εn+1 +

n+1

∑
i=1

ωiεn+1−i

)
+

K0(α(tn))

τα(tn)

(
εn+1 −

n+1

∑
i=1

$iεn+1−i − ςn+1ε0

)
= (Θ)ξ(ε(tn), tn) + (1−Θ)ξ(ε(tn+1), tn+1), (36)

where, ω0 = 1, ωi = (1 − α(tn)
i )ωi−1, tn = nτ, τ =

Tf
N , N is a natural number, $i =

(−1)i−1
(

α(tn)
i

)
, $1 = α(tn), ςi =

iα(tn)
Γ(1−α(tn))

. Moreover, consider that [39]:

0 < $i+1 < $i < ... < $1 = α(tn) < 1,

0 < ςi+1 < ςi < ... < ς1 =
1

Γ(−α(tn) + 1)
, i = 1, 2, ..., n + 1.

Remark 1. If K1(α(t)) = 0 and K0(α(t)) = 1 in (36), we can obtain the discretization of Caputo
operator with theta finite difference technique (C-Θ FDM).

4.4. CPC-ΘFDM Stability Analysis

The stability of method (36) will be considered here. We shall utilize the test problem
of variable-order linear differential equation, for simplicity:

(CPC
0 Dα(t)

t )ε(t) = Aε(t), t > 0, A < 0, 0 < α(t) ≤ 1. (37)
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By (34) and GL-approximation, we can discretize (37) as shown below:

K1(α(tn))

τα(tn)−1

(
εn+1 +

n+1

∑
i=1

ωiεn+1−i

)
+

K0(α(tn))

τα(tn)

(
εn+1 −

n+1

∑
i=1

$iεn+1−i − ςn+1ε0

)
= ΘAεn + (1−Θ)Aεn+1; (38)

put C = K1(α(tn))

τα(tn)−1 , B = K0(α(tn))

τα(tn) . Then, from boundness theorem [40], we have:

εn+1 =
1

C + B

(
Aεn − C

n+1

∑
i=1

ωiεn+1−i + B

(
n+1

∑
i=1

$iεn+1−i + ςn+1ε0

))
≤ εn, (39)

This means ε0 ≥ ε1 ≥ ... ≥ εn−1 ≥ εn ≥ εn+1. Then, method (36) is stable.

4.5. Convergence of the Method

Equation (34) can be discretized as shown below:

CPC
0 Dα(t)

t ε(t)|t=tn =
K1(α(tn))

τα(tn)−1

(
εn+1 +

n+1

∑
i=1

ωiεn+1−i

)

+
K0(α(tn))

ταn

(
εn+1 −

n+1

∑
i=1

$iεn+1−i − ςn+1ε0

)
, (40)

K1(α(tn))

τα(tn)−1

(
εn+1 +

n+1

∑
i=1

ωiεn+1−i

)
+

K0(α(tn))

τα(tn)

(
εn+1 −

n+1

∑
i=1

$iεn+1−i − ςn+1ε0

)
−Θξ(ε(tn), tn)− (1−Θ)ξ(ε(tn+1), tn+1) = TRn, (41)

where
‖TRn‖∞ < W, W = C max

0≤i≤n+1
|εi+1|,

C = (τα(ti)−1 + τα(ti)).

The proposed method is convergent because it is stable and consistent [41], then (41)
is convergent.

5. Numerical Results

In the following, we solved (8) numerically using GRK4M (29) and CPC-ΘFDM (36).
Using CPC-Θ FDM for solving (8), we obtained (9N + 9) of the nonlinear algebraic system
with (9N + 9) unknown. (

S, V1, V2, V3, A, IU , IV , IS, R

)
can be solved using an appropriate iterative method based on the assumed beginning
conditions. For the real data, we use [24]; the authors in this reference used the literature
to obtain some parameter values and the remaining values were fitted to the data for the
state of Texas, USA. They fitted the data of (8) solutions with the data for the state of
Texas from 13 March to 29 June 2021 [29,42]. The model was fitted with three datasets,
Moderna, Janssen, and Pfizer, with immunization data for Texas state. The three vaccination
rates υ1, υ2 and υ3 corresponding to each vaccine as well as the effective contact rate for
COVID-19 transmission, β, are estimated. According to publicly available data, the total
population of the state of Texas, USA, for the year 2021 was 29,200,000 [1]. Let R(0) = 5000,
V2(0) = 4,016,005, A(0) = 50,000, V3(0) = 129,859, S(0) = 24,000,000, IU(0) = 17,000,
IV(0) = 15,000, V1(0) = 4,115,127 and IS(0) = 10,000. The parameter values are given in
Table 2. To show that the proposed scheme is efficient, we compare the results that we
obtained in this paper with the results that were found in reference [24], which are given
in Figure 2 in constant fractional order. Figure 3 shows the behavior of the approximate
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solution of (8) (using the method in [24]) with different values of α(t). As can be seen from
this figure, when the value of the fractional derivative changes over time, the results are
different and this can dramatically affect the behavior of the model. This confirms the
generality of the variable-order derivatives. Unfortunately, this method gives us unstable
solutions, as in Figure 4a, when the value of the step size equals one. Moreover, we obtained
the stable solutions using the proposed method CPC-ΘFDM and Θ = 0, in the fully implicit
case given in this paper. This confirms that the method in [24] is stable only when the step
size is very small, while our used method is stable regardless of the value of the step size.
Figure 5 shows the behavior of the approximate solution of (8) (using CPC-ΘFDM and
Θ = 0.5, Q = 0.00025) with different values of α(t). The approximate solution behavior
of (8) is shown in Figure 6 (Θ = 1 and using CPC-ΘFDM) with different values of α(t),
Q = 0.00025. The approximate solution behavior of (8) (using GRK4M with different values
of α(t)) is shown in Figure 7. Figure 8 shows the behavior of the approximate solution
of (8) (using CPC-Θ FDM when K0(α(t)) = 1, K1(α(t)) = 0 and Θ = 0) with different
values of α(t). We noted that by comparing our results with different variable orders and
constant orders as given in [24] and Figure 5, the result in the case of constant order is
agreement. Moreover, by compering the results given in Figures 7 and 8, the result given
using CPC-ΘFDM (fully implicit case) is convergent, better than the results given using
GRK4 when we use nonlinear α(t). Figure 9 shows the relation between R and Iv, Iu, Is, A
using CPC-ΘFDM (fully implicit case) and nonlinear α(t). Furthermore, we found that
the variable-order derivative order model is a more general model than the fractional
order model given in [24] and integer order; a new behavior of the solution appears by
using different values of α(t). Moreover, we can obtain the fractional Caputo operator
as a special case from the CPC operator when K0(α(t)) = 1, K1(α(t)) = 0. Moreover,
we can obtain the fractional Caputo operator as a special case from the CPC operator if
K0(α(t)) = 1, K1(α(t)) = 0. The solutions obtained using the new method CPC-ΘFDM
can be explicit (Θ = 1) or implicit (0 ≤ Θ ≤ 1,) and fully implicit with accurate solution
when (Θ = 0).

Figure 2. Real data [24] versus fitting model (8).
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Figure 3. The solution behavior using the method in [24] with different values of α(t).

(a)

(b)

Figure 4. The solution behavior using the method [24] in (a) and using CPC-ΘFDM and Θ = 0, in (b).

Figure 5. Cont.
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Figure 5. The solution behavior acquired via CPC-ΘFDM and Θ = 0.5, of (8).

Figure 6. Cont.
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Figure 6. The solution behavior acquired via CPC-ΘFDM and Θ = 1 of (8).

Figure 7. The solution behavior acquired via GRK4M of (8).

Figure 8. The solution behavior acquired via CPC-ΘFDM and Θ = 0 of (8).



Symmetry 2023, 15, 869 17 of 19

Figure 9. The relation between the variables concerning nonlinear α(t) using CPC-ΘFDM and Θ = 0.

6. Conclusions

A novel hybrid variable-order fractional multi-vaccination model for COVID-19 is
presented in this paper in order to further explore the spread of COVID-19. The main
advantage of the hybrid variable-order fractional operator is that it can be defined as a linear
combination of the variable-order integral of Riemann–Liouville and the variable-order
Caputo derivative; it is one of the most effective and reliable operators and it is more general
than the Caputo fractional operator. The proposed model’s dynamics are improved and its
complexity is increased by employing variable-order fractional derivatives. Furthermore,
the variable-order fractional Caputo operator can be derived as a special case from the
CPC operator. Existence, boundedness, uniqueness, positivity and stability of the proposed
model are established for the model. To be compatible with the physical model, a new
parameter σ is added. The proposed model is numerically studied using CPC-ΘFDM and
GRK4M. CPC-ΘFDM depends on the values of the factor Θ. It can be explicit (Θ = 1) or
fully implicit (Θ = 0) with a large stability region. We compared our results with the real
data from the state of Texas in the United States. Moreover, the results obtained from the
CPC-ΘFDM are more stable than the results obtained from the proposed method in [24].
As a result, some graphs are provided for various linear and non-linear variable-order
derivatives. In the future, the presented study can be extended to optimal control and to
examine the impact of multiple vaccination strategies on the dynamics of COVID-19 in
a population.

Author Contributions: Conceptualization, T.A.A.; Methodology, N.S. and S.M.A.-M.; Software,
S.M.A.-M. and R.G.S.; Formal analysis, N.S.; Investigation, R.G.S. and T.A.A.; Resources, S.M.A.-M.;
Writing—original draft, T.A.A.; Writing —review and editing, N.S. and R.G.S. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Symmetry 2023, 15, 869 18 of 19

References
1. United States Food and Drug Administration. FDA Takes Key Action in Fight Against COVID-19 By Issuing Emergency Use

Authorization for First COVID-19 Vaccine. 2020. Available online: https://www.fda.gov/news-events/press-announcements/
fda-takes-key-action-fight-against-COVID-19-issuing-emergency-use-authorization-first-COVID-19 (accessed on 17 June 2021).

2. Interim Clinical Considerations for Use of COVID-19 Vaccines Currently Authorized in the United States. Available online:
https://www.cdc.gov/vaccines/COVID-19/clinical-considerations/COVID-19-vaccines-us.html (accessed on 14 July 2021).

3. Machado, J.A.T.; Lope, A.M. Rare and extreme events: The case of COVID-19 pandemic. Nonlinear Dyn. 2020, 100, 2953–2972.
[CrossRef] [PubMed]

4. Bonyah, E.; Sagoe, A.K.; Kumar, D.; Deniz, S. Fractional optimal control dynamics of Coronavirus model with Mittag-Leffler law.
Ecol. Complex. 2020, 45, 100880. [CrossRef]

5. Ali, A.; Alshammari, F.S.; Islam, S.; Khan, M.A.; Ullah, S. Modeling and analysis of the dynamics of novel coronavirus (COVID-19)
with Caputo fractional derivative. Results Phys. 2020, 20, 103669. [CrossRef] [PubMed]

6. Danane, J.; Hammouch, Z.; Allali, K.; Rashid, S.; Singh, J. A fractional-order model ofcoronavirus disease 2019 (COVID-19) with
governmental action and individual reaction. Math. Meth. Appl. Sci. 2021, 1–14. [CrossRef]

7. Yadav, S.; Kumar, D.; Singh, J.; Baleanu, D. Analysis and dynamics of fractional order COVID-19 model with memory effect.
Results Phys. 2021, 24, 104017. [CrossRef]

8. Sinan, M.; Ali, A.; Shah, K.; Assiri, T.; Nofal, T.A. Stability analysis and optimal control of COVID-19 pandemic SEIQR fractional
mathematical model with harmonic mean type incidence rate and treatment. Results Phys. 2021, 22, 103873. [CrossRef]

9. Conejero, J.A.; Franceschi, J.; Picó-Marco, E. Fractional vs. Ordinary Control Systems: What Does the Fractional Derivative
Provide? Mathematics 2022, 10, 2719. [CrossRef]

10. Samko, S.G.; Ross, B. Integration and differentiation to a variable fractional order. Integral Transform. Spec. Funct. 1993, 1, 277–300.
[CrossRef]

11. Solís-Pérez, J.E.; Gómez-Aguilar, J.F. Novel numerical method for solving variable-order fractional differential equations with
power, exponential and Mittag-Leffler laws. Chaos Solitons Fractals 2018, 14, 175–185. [CrossRef]

12. Sun, H.; Chang, A.; Zhang, Y.; Chen, W. A review on variable-order fractional differential equations: Mathematical foundations,
physical models and its applications. Fract. Calc. Appl. Anal. 2019, 22, 27–59. [CrossRef]

13. Sweilam, N.H.; Al-Mekhlafi, S.M. Numerical study for multi-strain tuberculosis(TB) model of variable-order fractional derivatives.
J. Adv. Res. 2016, 7, 271–283. [CrossRef]

14. Sweilam, N.H.; L-Mekhlafi, S.M.A.; Shatta, S.A.; Baleanu, D. Numerical study for two types variable-order Burgers’ equations
with proportional delay. Appl. Numer. Math. 2020, 156, 364–376. [CrossRef]

15. Sweilam, N.H.; Assiri, T.; Hasan, M.A. Numerical solutions of nonlinear fractional Schrödinger equations using nonstandard
discretizations, Numerical Solutions of Nonlinear Fractional Schrödinger Equations. Numer. Methods Partial. Differ. Equ. 2017, 33,
1399–1419. [CrossRef]

16. Sweilam, N.H.; Assiri, T. Numerical scheme for solving the space-time variable order nonlinear fractional wave equation. Prog.
Fract. Differ. Appl. 2015, 1, 269–280. [CrossRef]

17. Bha, I.A.; Mishra, L.N. Numerical solutions of Volterra integral equations of third kind and its convergence analysis. Symmetry
2022, 14, 2600.

18. Pathak, V.K.; Mishra, L.N. Application of Fixed point theorem to solvability for non-linear fractional Hadamard functional
integral e quations. Mathematics 2022, 10, 2400. [CrossRef]

19. Smith, G.D. Numerical solution of partial differential equations: Finite difference methods. In Oxford Applied Mathematics and
Computing Science Series; Oxford University Press: Oxford, UK, 1985.

20. Yuste, S.B. Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 2006, 216, 264–274.
[CrossRef]

21. Sweilam, N.H.; Hasan, M.M.A. An Improved method for nonlinear variable-order Lévy-Feller advection-dispersion equation.
Bull. Malays. Math. Sci. Soc. 2019, 42, 3021–3046. [CrossRef]

22. Sweilam, N.H.; Hasan, M.M.A.; Al-Mekhlafi, S.M.; Al khatib, S. Time fractional of nonlinear heat-wave propagation in a rigid
thermal conductor: Numerical treatment. AEJ—Alex. Eng. J. 2022, 61, 10153–10159. [CrossRef]

23. Milici, C.; Machado, J.T.; Draganescu, G. Application of the Euler and Runge–Kutta generalized methods for FDE and symbolic
packages in the analysis of some fractional attractors. Int. J. Nonlinear Sci. Numer. Simul. 2020, 21, 159–170. [CrossRef]

24. Omame, A.; Okuonghae, D.; Nwajeri, U.K.; Onyenegecha, C.P. A fractional-order multi-vaccination model for COVID-19 with
non-singular kernel. Alex. Eng. J. 2022, 16, 6089–6104. [CrossRef]

25. Sun, H.G.; Chen, W.; Wei, H.; Chen, Y.Q. A comparative study of constant-order and variable-order fractional models in
characterizing memory property of systems. Eur. Phys. J. Spec. Top. 2011, 193, 185–192. [CrossRef]

26. Baleanu, D.; Fernandez, A.; Akgül, A. On a fractional operator combining proportional and classical differintegrals. Mathematics
2020, 8, 360. [CrossRef]

27. Ullah, M.Z.; Baleanu, D. A new fractional SICA model and numerical method for the transmission of HIV/AIDS. Math. Meth.
Appl. Sci. 2021, 44, 4648–4659. [CrossRef]

28. Lin, W. Global existence theory and chaos control of fractional differential equations. J. Math. Anal. Appl. 2007, 332, 709–726.
[CrossRef]

https://www.fda.gov/news-events/press-announcements/fda-takes-key-action-fight-against-COVID-19-issuing-emergency-use-authorization-first-COVID-19
https://www.fda.gov/news-events/press-announcements/fda-takes-key-action-fight-against-COVID-19-issuing-emergency-use-authorization-first-COVID-19
https://www.cdc.gov/vaccines/COVID-19/clinical-considerations/COVID-19-vaccines-us.html
http://doi.org/10.1007/s11071-020-05680-w
http://www.ncbi.nlm.nih.gov/pubmed/32427206
http://dx.doi.org/10.1016/j.ecocom.2020.100880
http://dx.doi.org/10.1016/j.rinp.2020.103669
http://www.ncbi.nlm.nih.gov/pubmed/33520621
http://dx.doi.org/10.1002/mma.7759
http://dx.doi.org/10.1016/j.rinp.2021.104017
http://dx.doi.org/10.1016/j.rinp.2021.103873
http://dx.doi.org/10.3390/math10152719
http://dx.doi.org/10.1080/10652469308819027
http://dx.doi.org/10.1016/j.chaos.2018.06.032
http://dx.doi.org/10.1515/fca-2019-0003
http://dx.doi.org/10.1016/j.jare.2015.06.004
http://dx.doi.org/10.1016/j.apnum.2020.05.006
http://dx.doi.org/10.1002/num.22117
http://dx.doi.org/10.18576/pfda/010404
http://dx.doi.org/10.3390/math10142400
http://dx.doi.org/10.1016/j.jcp.2005.12.006
http://dx.doi.org/10.1007/s40840-018-0644-7
http://dx.doi.org/10.1016/j.aej.2022.03.034
http://dx.doi.org/10.1515/ijnsns-2018-0248
http://dx.doi.org/10.1016/j.aej.2021.11.037
http://dx.doi.org/10.1140/epjst/e2011-01390-6
http://dx.doi.org/10.3390/math8030360
http://dx.doi.org/10.1002/mma.7292
http://dx.doi.org/10.1016/j.jmaa.2006.10.040


Symmetry 2023, 15, 869 19 of 19

29. Texas Population, Census Reporter. Available online: https://censusreporter.org/profiles/04000US48-texas/ (accessed on 26
June 2021).

30. United States Food and Drug Administration. FDA Briefing Document Moderna COVID-19 Vaccine. 2020. Available online:
https://www.fda.gov/media/144434/download (accessed on 17 June 2021).

31. United States Food and Drug Administration. FDA Briefing Document Pfizer-BioNTech COVID-19 Vaccine. 2020. Available
online: https://www.fda.gov/media/144245/download (accessed on 17 June 2021).

32. Okuonghae, D.; Omame, A. Analysis of a mathematical model for COVID-19 population dynamics in Lagos, Nigeria. Chaos
Solitons Fractals 2020, 139, 110032. [CrossRef]

33. Chu, Y.-M.; Yassen, M.F.; Ahmad, I.; Sunthrayuth, P.; Khan, M.A. A fractional SARS-COV-2 model with Atangana-Baleanu
derivative: Application to fourth wave. Fractals 2022, 30, 2240210. . [CrossRef]

34. Driessche, P.; Watmough, P. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease
transmission. Math. Biosci. 2002, 180, 29–48. [CrossRef]

35. Fosu, G.O.; Akweittey, E. Albert-adu-sackey, Next-generation matrices and basic reproductive numbers for all phases of the
Coronavirus disease. Open J. Math. Sci. 2020, 4, 261–272. [CrossRef]

36. Sekerci, Y. Climate change forces plankton species to move to get rid of extinction: Mathematical modeling approach. Eur. Phys. J.
Plus 2020, 135, 794. [CrossRef]

37. Al-Mekhlafi, S.M.; Sweilam, N.H. Numerical Studies for Some Tuberculosis Models; LAP LAMBERT Academic Publishing: London,
UK, 2016; 156p.

38. Sweilam, N.H.; L-Mekhlafi, S.M.A.; Alshomrani, A.S.; Baleanu, D. Comparative study for optimal control nonlinear variable-order
fractional tumor model. Chaos Solitons Fractals 2020, 136, 109810. [CrossRef]

39. Scherer, R.; Kalla, S.; Tang, Y.; Huang, J. The Grünwald-Letnikov method for fractional differential equations. Comput. Math. Appl.
2011, 62, 902–917. [CrossRef]

40. Arenas, A.J.; Gonzàlez-Parra, G.; Chen-Charpentierc, B.M. Construction of nonstandard finite difference schemes for the SI and
SIR epidemic models of fractional order. Math. Comput. Simul. 2016, 121, 48–63. [CrossRef]

41. Yuste, S.B.; Quintana-Murillo, J. A finite difference method with non-uniform time steps for fractional diffusion equations.
Comput. Phys. Commun. 2012, 183, 2594–2600. [CrossRef]

42. COVID-19 Vaccinations in the US. Available online: https://data.cdc.gov/Vaccinations/COVID-19-Vaccinations-in-the-United-
States-Jurisdi/uns (accessed on 13 March 2021).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

 https://censusreporter.org/profiles/04000US48-texas/
https://www.fda.gov/ media/144434/download
https://www.fda. gov/media/144245/download
http://dx.doi.org/10.1016/j.chaos.2020.110032
.
http://dx.doi.org/10.1142/S0218348X22402101
http://dx.doi.org/10.1016/S0025-5564(02)00108-6
http://dx.doi.org/10.30538/oms2020.0117
http://dx.doi.org/10.1140/epjp/s13360-020-00800-2
http://dx.doi.org/10.1016/j.chaos.2020.109810
http://dx.doi.org/10.1016/j.camwa.2011.03.054
http://dx.doi.org/10.1016/j.matcom.2015.09.001
http://dx.doi.org/10.1016/j.cpc.2012.07.011
https://data.cdc.gov/Vaccinations/COVID-19-Vaccinations-in-the-United-States-Jurisdi/uns
https://data.cdc.gov/Vaccinations/COVID-19-Vaccinations-in-the-United-States-Jurisdi/uns

	Introduction
	Notations and Preliminaries
	 A Hybrid Variable-Order Mathematical Model 
	 Uniqueness and Existence
	Local Stability 

	Numerical Methods for Solving the Proposed Model
	GRK4M
	Stability of GRK4M
	 CPC-FDM
	 CPC-FDM Stability Analysis
	Convergence of the Method

	Numerical Results
	Conclusions
	References

