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Abstract: Circulant networks are a very important and widely studied class of graphs due to their
interesting and diverse applications in networking, facility location problems, and their symmetric
properties. The structure of the graph ensures that it is symmetric about any line that cuts the graph
into two equal parts. Due to this symmetric behavior, the resolvability of these graph becomes
interning. Subdividing an edge means inserting a new vertex on the edge that divides it into two
edges. The subdivision graph G is a graph formed by a series of edge subdivisions. In a graph, a
resolving set is a set that uniquely identifies each vertex of the graph by its distance from the other
vertices. A metric basis is a resolving set of minimum cardinality, and the number of elements in the
metric basis is referred to as the metric dimension. This paper determines the minimum resolving set
for the graphs Hl [1, k] constructed from the circulant graph Cl [1, k] by subdividing its edges. We also
proved that, for k = 2, 3, this graph class has a constant metric dimension.

Keywords: metric dimension; subdivision; circulant graph

MSC: 05C22; 05C12

1. Introduction and Preliminary Results

Metric dimension is a significant parameter in metric graph theory that has been
employed in a wide range of graph theory applications, including facility location prob-
lems, pharmaceutical chemistry [1,2], long-range navigation aids, robot navigation in
networks [3], combinatorial optimization [4], and sonar and coast guard Loran [5]. The met-
ric dimension is the extension of affine dimension to any metric space (assuming a resolving
set exists).

The distance d(x, y) between two vertices u, v ∈ V(G) in a connected graph G is the length
of the shortest path between them. Let W = {x1, x2, x3, . . . , xk} represent an ordered set of G
vertices and v represent an arbitrary G vertex. If each vertex of G can be uniquely identified
by its distance from the vertices of W, the k-tuple (d(v, x1), d(v, x2), d(v, x3), . . . , d(v, xk)) is
the r(v|W) representation of v with respect to W. If different vertices of G have different
representations with respect to W, then W is known as a resolving set [1] or a locating set [5].
A basis for G is a resolving set of minimal cardinality, where cardinality is the metric dimension
of G.

In response to the problem of uniquely identifying an intruder in a network, Slater [5,6]
introduced the concept of metric dimension. Harary and Melter conducted independent
research on the same concept in [7]. This invariant is discussed in [3] for network robot navi-
gation, ref. [1] for chemistry, and [8] for pattern recognition and image processing problems,
some of which involve the use of hierarchical data structures.

Symmetry 2023, 15, 867. https://doi.org/10.3390/sym15040867 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15040867
https://doi.org/10.3390/sym15040867
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym15040867
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15040867?type=check_update&version=2


Symmetry 2023, 15, 867 2 of 9

If all of the graphs in F have the same metric dimension (which is separate to l), F is
identified as a family with a constant metric dimension.

Whenever the graph is a path, the metric dimension is one, and the metric dimension
is two if the graph is cycle Cl . In [9–11], the metric dimension of some classes of regular
graphs with constant metric dimensions is investigated.

Inserting a new vertex on an edge splits it in half. In the graph, this is referred to as
subdivision. A subdivision graph G has edges that are subdivided. Subdivision is a method
for reducing a complicated graph to a simple graph. A barycentric graph subdivision is
one where every vertex is subdivided. A planar graph is one with no intersecting edges
that can be drawn in a plane. Planar graphs require graph subdivision to be described.
A planar graph G has only planar subdivisions.

The subdivision operation in planar graphs is demonstrated in the following theorem.

Theorem 1 ([12]). A graph is planar if and only if it does not have a K5 or K3,3 subdivision.

In [9,13], the subdivision graphs are constructed from the circulant graph Cl [1, k] and
it is shown that this subdivision graph has a constant metric dimension for some values
of l and k. In this paper, a new subdivision graph is constructed from the circulant graph
Cl [1, k] for k ≥ 2. It is demonstrated that this subdivision graph has a constant metric
dimension when k = 2.

1.1. Metric Dimension of Subdivision of Circulant Graph Cl [1, 2]

Circulant graphs are a popular type of graph in local area networks. Circulant
graphs are defined as follows:

Let n, m be natural numbers and x1, x2, ..., xm be positive integers, with 1 ≤ xp ≤ b l
2c

and xp 6= xq for all 1 ≤ p < q ≤ m. The circulant graph is an undirected graph with the
vertices V = {v1, . . . , vl} and the edge set E = {vp+xq : 1 ≤ p ≤ l, 1 ≤ q ≤ m (the indices
are taken modulo l) and is denoted by Cl [x1, x2..., xm]. The numbers (x1, x2, . . . , xm) are
known as generators. It is critical to observe that the circulant graphs are regular.

The graph Hl [1, k] is formed by subdividing edges of the type vpvp+1. Let up be the
additional vertex in each edge vpvp+k. As a result, the graph Hl [1, k] contains 2l vertices
and 3l edges.
If xp and xq are two vertices of Hl [1, k], then the distance between them is defined as |p− q|,
where 1 ≤ p < q ≤ l. The vertices of the graph can be divided into two groups: U and V,
where U is the set of added vertices and V is the set of vertices of type vp.

The first theorem establishes that the metric dimension of the graph Hl [1, 2] is constant.
The following lemma offer a choice of the resolving set and will be useful in proving

the main result of this section Figure 1.
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Figure 1. Graph H11[1, 2].
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Lemma 1. If W is a resolving set of the graph Hl [1, 2], then at least one vertex from each of the set
{v1, v3, v5, . . . , vl} and {v2, v4, v6, . . . , vl−1} must belong to W.

Proof. Assume, for the sake of argument, that l is odd. Now, if none of the vertexes in the
set {v2, v4, v6, . . . , vl−1} belongs to W, then the representation of the following vertices will
be the same: {

r(ul) = r(vl−1) if v2, v4, v6, . . . , vd l
2−1e 6∈W

r(ud l
2 e−1) = r(vd l

2 e−2) if vd l
2 e

, . . . , vl−1 6∈W

If none of the vertices in the set {v1, v3, v5, . . . , vl} belongs to W, then the representation
of the following vertices will be the same:{

r(u1) = r(vl) if v1, v3, v5, . . . , vd l−1
2 e
6∈W

r(u1) = r(v3) if vd l+1
2 e

, . . . , vl−1

The proof is now complete.

Theorem 2. For l ≤ 3,

dim(Hl [1, 2]) =

 3 if n = 4t− 1; t ∈ N

4 otherwise

Proof. Case 1: l ≡ 3(mod 4).
Let W = {u1, u2, ud l+1

2 e
} be subset of the V(Hl(1, 2)). A representation of the vertices

of Hl(1, 2) concerning W is given below:
r(v1) = (1, 2, 4), r(v2) = (1, 1, 3), r(u1) = (0, 2, 3) , r(u2) = (2, 0, 3).

r(vp|W) =



(d p+1
2 e, d

p−1
2 e, d

l−2p+5
4 e) for 3 ≤ p ≤ d l+1

2 e and p = 2t− 1; t ∈ N

(d p
2 e, d

p
2 e, d

l−2p+5
4 e) for 3 ≤ p ≤ d l+1

2 e and p = 2t; t ∈ N

(d l+5
4 e, d

l+1
4 e, 1) for p = d l+1

2 e+ 1

(d l−p+3
2 e, d l−p+4

2 e, d 2p−l+1
4 e) for d l+1

2 e+ 3 ≤ p ≤ l

r(up|W) =


(d p+2

2 e, d
p+1

2 e, d
p+1

2 e) for 3 ≤ p ≤ d l+1
2 e

(d l+2
4 e, d

l+2
4 e, d

l−p−2
4 e) for p = d l+1

2 e+ 1

(d l−p+4
2 e, d l−p+5

2 e, d 2p−l+5
4 e) for d l+1

2 e+ 2 ≤ p ≤ l

The above representations demonstrate that each vertex has a distinct representation.
As a result, W must be a resolving set. and that dim(Hl [1, 2]) = 3. To demonstrate that
dim(Hl [1, 2]) ≥ 3, it is sufficient to demonstrate that there is no resolving set with cardinal-
ity two.

On the other hand, suppose there is a resolving set A with cardinality 2. Then, by
Lemma 2, both vertices of A belong to vp. One vertex can be assumed to be v1. Thus, one
can suppose that A = {v1, vp : 2 ≤ p ≤ d l+1

2 e}.
In this case, the vertices that have same representations for every choice of A are

stated below: 
r(u1) = r(vl) for p = 1
r(vl) = r(u2) = (2, p

2 ) p ≥ 2, and p = 2t; t ∈ N
r(u1) = r(ul) = (1, p+1

2 ) p ≥ 2, and p = 2t− 1; t ∈ N

As a result, no resolving set with cardinality two exists, and dim(Hn[1, 2]) ≥ 3.
The result can be obtained by combining the lower and upper bounds.
Case 2: l ≡ 0, 1, 2(mod 4).
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• l ≡ 1, 2(mod 4).

Let W = {v1, v2, u2, v3} be a set of graph vertices. Each vertex’s representation
regarding this set W is as follows:

r(v1) = (0, 2, 2, 2), r(v2) = (2, 0, 1, 2).
For 3 ≤ p ≤ l

r(vp|W) =



(d p−1
2 e, d

p−2
2 e+ 1, d p−2

2 e, d
p−2

2 e) if 3 ≤ p ≤ d l+1
2 e and p = 2t− 1; t ∈ N

(d p+1
2 e, d

p−2
2 e, d

p−1
2 e, d

p−2
2 e) if 3 ≤ p ≤ d l+1

2 e and p = 2t; t ∈ N

(d l−4
4 e, d

l−4
4 e, d

l
4e, d

l−4
4 e) if p = d l+1

2 e+ 1 and p = 2t− 1; t ∈ N

(d l−4
4 e, d

l+4
4 e, d

l
4e, d

l
4e) if p = d l+1

2 e+ 1 and p = 2t; t ∈ N

(d l
4e, d

l
4e − 1, d l

4e, d
l
4e) if p = d l+1

2 e+ 2 and p = 2t− 1; t ∈ N

(d l
4e, d

l−4
4 e, d

l
4e, d

l
4e) if p = d l+1

2 e+ 2 and p = 2t; t ∈ N

(d l−p+1
2 e, d l−p+3

2 e, d l−p+4
2 e, d l−p+4

2 e) if d l+1
2 e+ 3 ≤ p ≤ l and p = 2t− 1; t ∈ N

(d l−p
2 e − 2, d l−p

2 e+ 1, d l−p
2 e+ 2, d l−p

2 e+ 3) if d l+1
2 e+ 3 ≤ p ≤ l and p = 2t; t ∈ N

r(u1) = (1, 1, 2, 3), r(u2) = (2, 1, 0, 2) and r(u3) = (2, 2, 2, 0).
For 4 ≤ p ≤ l

r(up|W) =



(d p+1
2 e, d

p
2 e, d

p+1
2 e, d

p
2 e) if 4 ≤ p ≤ d l

2e

(d l+2
4 e, d

l+2
2 e, d

l+6
4 e, d

l+2
4 e) if p = d l

2e+ 1

(d l−3
4 e, d

l+2
4 e, d

l+6
2 e, d

l+6
2 e) if p = d l

2e+ 2

(d l−p+2
2 e, d l−p+2

2 e, d l−p+5
2 e, d l−p+6

2 e) if d l
2e+ 3 ≤ p ≤ l

The above representations demonstrate that each vertex has a distinct representation.
This can be explained by the existence of a resolving set W and

dim(Hl [1, 2]) ≤ 4 (1)

• l ≡ 0(mod 4).

Let W = {v1, v2, u2, v3} be a set of graph vertices of Hl [1, 2]. It will be shown that
this set is a resolving set by proving that the representation of each vertex is unique.
The representations of each vertex are shown below:

r(v1) = (0, 2, 2, 1), r(v2) = (2, 0, 1, 2).
For 3 ≤ p ≤ l, we have

r(vp|W) =



(d p−1
2 e, d

p−2
2 e+ 2, d p−1

2 e, d
p−3

2 e) if 3 ≤ p ≤ d l+1
2 e and p = 2t− 1; t ∈ N

(d p−1
2 e, d

p−3
2 e, d

p
2 e, d

p
2 e) if 3 ≤ p ≤ d l+1

2 e and p = 2t; t ∈ N

(d l+4
4 e, d

l
4e, d

l+4
4 e, d

l+4
4 e) if p = d l+1

2 e+ 1 and p = 2t; t ∈ N

(d l−4
4 e, d

l+1
4 e, d

l+1
4 e, d

l
4e) if p = d l+1

2 e+ 1 i and p = 2t− 1; t ∈ N

(d l−p
2 e+ 2, d l−p

2 e+ 1, d l−p
2 e+ 2, d l−p

2 e+ 3) if d l+1
2 e+ 2 ≤ p ≤ l and p = 2t; t ∈ N

(d l−p+1
2 e, d l−p+4

2 e, d l−p+4
2 e, d l−p+3

2 e) if d l+1
2 e+ 2 ≤ p ≤ l and p = 2t− 1; t ∈ N

u1(1, 1, 2, 2), u2(2, 1, 0, 1) and u3(2, 2, 2, 1).
For 4 ≤ p ≤ l, we have
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r(up|W) =


(d p+1

2 e, d
p
2 e, d

p+1
2 e, d

p−1
2 e) if 4 ≤ p ≤ d l

2e

(d l+2
4 e, d

l+2
4 e, d

l+2
4 e, d

l
4e) if p = d l

2e+ 1

(d l−p+2
2 e, d l−p+3

2 e, d l−p+5
2 e, d l−p+4

2 e) if d l
2e+ 2 ≤ p ≤ l

The above representations show that each vertex has a unique representation. As a
result, W is a resolving set. Hence,

dim(Hl [1, 2]) ≤ 4 (2)

To prove the other bound, it is sufficient to demonstrate that the resolving set has
at least four elements. Assume, on the other hand, that W is a resolving set of Hn[1, 2]
such that |W| = 3. According to the Lemma 2, W must have two vertices vp and vq with
different parities. Because the third vertex of W belongs to either vp or up, we consider the
following possibilities:

• If all the vertices of W belong to vp.

In this case, without loss of generality, suppose that W = {v1, vp, vq : 1 ≤ p < q ≤
d l+1

2 e}. The vertices that have a representation for each choice of i and j are listed below:
r(uq−2) = r(vq+1) if p = 2t− 1; t ∈ N and q = 2t; t ∈ N

r(ud l
2 e−2) = r(vd l

2 e+1) if p, q = 2t; t ∈ N

r(uq+11) = r(vq+9) if p = 2t− 1; t ∈ N and q = 2t; t ∈ N

• If W contain one vertex from up. Assume, without being too specific, that W =

{v1, vp, uq : 1 ≤ p ≤ q ≤ d l+1
2 e}. The vertices that have representation for each choice

of i and j are listed below: r(up) = r(vp+2) = ( p+2
2 , p

2 − d
q
2e+ 2, 1) if 1 ≤ q ≤ p ≤ d l−1

2 e

r(up−1) = r(vp−2) = ( p
2 , 1, d q

2e −
p
2 + 2) if 1 ≤ p ≤ q ≤ d l+1

2 e

Thus, Hl [1, 2] does not contain any resolving set of cardinality 3 for l ≡ 0, 1, 2 (mod 4).
This implies that

dim(Hl [1, 2]) ≥ 4 (3)

From Equations (1)–(3), we can obtain

dim(Hl [1, 2]) = 4.

1.2. Metric Dimension of Subdivision of Circulant Graph Cl [1, 3]

In this section, the metric dimension of the subdivision graph Hl [1, 3] is investigated.
The following lemma gives a choice of the resolving set and will be useful in proving the
main result of this section.

Lemma 2. If W is a resolving set of the graph Hl [1, 3], then at least one vertex from each of the set
U = {up : 1 ≤ p ≤ l} and V = {vp : 1 ≤ p ≤ l} must belong to W.

Proof. The distance of the vertices ul , vl−2, ul−1 and ul−2 from the vertices up and vp for
1 ≤ p ≤ d l

2e are given below:
For l ≡ 0(mod3).

If 1 ≤ p ≤ d l
2e

d(ul , up) = d(ul−1, up) =
p+6

3 , d(ul , vp) = d(ul−1, vp) =
p+3

3 for p = 3t; t ∈ N
d(ul−1, up) = d(ul−2, up) = d p+7

3 e, d(ul−1, vp) = d(ul−2, vp) = d p+4
3 e for p ≡ 1, 2(mod3)
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For l ≡ 1(mod3).

If 1 ≤ p ≤ d l
2e − 2

d(ul−2, up) = d(ul−1, up) =
p+5

2 , d(ul−1, vp) = d(ul−2, vp) =
p+3

2 for p = 2t− 1; t ∈ N
d(ul , up) = d(vl−2, up) =

p+4
2 , d(ul , vp) = d(vl−2, vp) =

p+2
2 for p = 2t; t ∈ N

If p = d l
2e − 1

d(ul , up) = d(ul−1, up) =
p+4

2 , d(ul , vp) = d(ul−1, vp) =
p+2

2 .
If p = d l

2e
d(ul , up) = d(ul−1, up) =

p+1
2 , d(ul−1, vp) = d(ul−2, vp) =

p+1
2 .

For l ≡ 2(mod3).

If 1 ≤ p ≤ d l
2e − 1

d(ul , up) = d(vl−2, up) =
p+6

3 , d(ul , vp) = d(ul−1, vp) =
p+3

3 for p = 3t; t ∈ N
d(ul , up) = d(vl−2, up) =

p+5
3 , d(ul , vp) = d(vl−2, vp) =

p+2
3 for p = 3t− 2; t ∈ N

d(ul , up) = d(ul−1, up) =
p+7

3 , d(ul , vp) = d(vl−2, vp) =
p+7

3 for p = 3t− 1; t ∈ N
If p = d l

2e − 1
d(ul , up) = d(ul−1, up) =

p+7
3 , d(ul , vp) = d(vl−2, vp) =

p+4
3 .

If p = d l
2e

d(ul−1, up) = d(ul−2, up) =
p+3

3 , d(ul , vp) = d(ul−1, vp) =
p+3

3 .

The above distances show that, to resolve the vertices ul , vl−2, ul−1 and ul−2, it is
necessary to include at least one vertex from the set U and V Figure 2.
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Figure 2. The graph Hl [1, 3].

Theorem 3. Let G denote the graph of Hl [1, 3]. Then, for l ≤ 12

dim(G) ≤ 4.

Proof. Case 1: l ≡ 0(mod4).
Let W = {v1, v2, v3, u4} be a set of vertices of Hl [1, 3]. It will be shown that this set is a

resolving set by proving that the representation of each vertex is unique. The representa-
tions of each vertex are stated below:

For 1 ≤ p ≤ d l
2e+ 1

r(up|W) =



(1, 1, 3, 3) if p = 1

(d p+2
3 e, d

p+6
3 e, d

p
3 e, d

p+1
3 e) if p = 3t; t ∈ N

(d p+2
3 e, d

p
3 e, d

p+8
3 e, d

p
3 e) if p = 3t− 2; t ∈ N

(d p+7
3 e, d

p
3 e, d

p
3 e, d

p+1
3 e) if p = 3t− 1; t ∈ N
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r(vp|W) =


d p−4

3 e, d
p+3

3 e, d
p−3

3 e, d
p+3

3 e if p = 3t; t ∈ N

d p+4
3 e, d

p−2
3 e, d

p+2
3 e, d

p+3
3 e if p = 3t− 1; t ∈ N

d p−1
3 e, d

p+3
3 e, d

p+2
3 e, d

p+3
3 e if p = 3t− 2; t ∈ N

And for l
2e+ 1 ≤ p ≤ dn

r(up|W) =



(1, 1, 3, 3) if p = 1

(d l−p+3
3 e, d l−p+9

3 e, d l−p+6
3 e, d l−p+9

3 e) if p = 3t; t ∈ N

(d l−p+6
3 e, d l−p+6

3 e, d l−p+6
3 e, d l−p−6

3 e) if p = 3t− 1; t ∈ N

(d l−p+3
3 e, d l−p+6

3 e, d l−p+4
3 e, d l−p+3

3 e) if p = 3t− 2; t ∈ N

r(vp|W) =


(d l−p+6

3 e, d l−p+7
3 e, d l−p+3

3 e, d l−p+12
3 e) if p = 3t; t ∈ N

(d l−p+6
3 e, d l−p−3

3 e, d l−p+1
3 e, d l−p+6

3 e) if p = 3t− 1; t ∈ N

(d l−p+1
3 e, d l−p+7

3 e, d l−p+2
3 e, d l−p+6

3 e) if p = 3t− 2; t ∈ N

The above representations show that each of the vertex has unique representation.
This implies that W is a resolving set and dim(Hl [1, 3]) ≤ 4.

Case 2: l ≡ 1, 2(mod4).
Let W = {u1, u3, u5, v7} be a set of vertices of G. It will be shown that this set is a re-

solving set by proving that the representation of each vertex is unique. The representations
of each vertex are presented below:

For 1 ≤ p ≤ d l+1
2 e

r(up|W) =



(1, 1, 3, 3) if p = 1

(d p+3
3 e, d

p+3
3 e, d

p
3 e, d

p−4
3 e) if p = 3t; t ∈ N

(d p+3
3 e, d

p+3
3 e, d

p+2
3 e, d

p−4
3 e) if p = 3t− 1; t ∈ N

(d p+5
3 e, d

p+2
3 e, d

p+2
3 e, d

p−4
3 e) if p = 3t− 2; t ∈ N

r(vp|W) =


d p

3 e, d
p−2

3 e, d
p−3

3 e, d
p
3 e if p = 3t; t ∈ N

d p+1
3 e, d

p
3 e, d

p−3
3 e, d

p−2
3 e if p = 3t− 1; t ∈ N

d p+1
3 e, d

p−2
3 e, d

p+2
3 e, d

p−7
3 e if p = 3t− 2; t ∈ N

And for l
2e+ 1 ≤ p ≤ dn

r(up|W) =


(d l−p+7

3 e, d l−p+10
3 e, d l−p+10

3 e, d l−p+10
3 e) if p = 3t; t ∈ N

(d l−p+5
3 e, d l−p+8

3 e, d l−p+10
3 e, d l−p+1

3 e) if p = 3t− 1; t ∈ N

(d l−p+7
3 e, d l−p+8

3 e, d l−p+10
3 e, d l−p−4

3 e) if p = 3t− 2; t ∈ N

r(vp|W) =


(d l−p+4

3 e, d l−p+6
3 e, d l−p+13

3 e, d l−p+7
3 e) if p = 3t; t ∈ N

(d l−p+7
3 e, d l−p+6

3 e, d l−p+7
3 e, d l−p+12

3 e) if p = 3t− 1; t ∈ N

(d l−p+5
3 e, d l−p+9

3 e, d l−p+7
3 e, d l−p+14

3 e) if p = 3t− 2; t ∈ N

The above representations show that each of the vertices has a unique representation.
This implies that W is a resolving set and dim(Hl [1, 3]) ≤ 4.

Case 3: l ≡ 3(mod4).
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Let W = {v1, v2, v3, u l−1
2
} be a set of vertices of G. It will be shown that this set is a re-

solving set by proving that the representation of each vertex is unique. The representations
of each vertex are given below:

r(u4) = (2, 1, 3, ) For 1 ≤ p ≤ d l+1
2 e

r(up|W) =



(1, 1, 3, 3) if p = 1

(d p+2
3 e, d

p+6
3 e, d

p
3 e, d

p+1
3 e) if p = 3t; t ∈ N

(d p+2
3 e, d

p
3 e, d

p+8
3 e, d

p
3 e) if p = 3t− 2; t ∈ N

(d p+7
3 e, d

p
3 e, d

p
3 e, d

p+1
3 e) if p = 3t− 1; t ∈ N

r(vp|W) =


d p+4

3 e, d
p+3

3 e, d
p−3

3 e, d
k−p+3

3 e if p = 3t; t ∈ N

d p
3 e, d

p+3
3 e, d

p+2
3 e, d

k−p+8
3 e if p = 3t− 2; t ∈ N

d p+4
3 e, d

p−2
3 e, d

p+2
3 e, d

k−p+3
3 e if p = 3t− 1; t ∈ N

And for l
2e+ 1 ≤ p ≤ dn

r(up|W) =


(d l−p+3

3 e, d l−p+9
3 e, d l−p+6

3 e, d l−p+9
3 e) if p = 3t; t ∈ N

(d l−p+6
3 e, d l−p+6

3 e, d l−p+4
3 e, d l−p+9

3 e) if p = 3t− 2; t ∈ N

(d l−p+6
3 e, d l−p+6

3 e, d l−p+6
3 e, d l−p+9

3 e) if p = 3t− 1; t ∈ N

r(vp|W) =


(d l−p+6

3 e, d l−p
3 e, d

l−p+8
3 e, d p−k+7

3 e) if p = 3t; t ∈ N

(d l−p+6
3 e, d l−p+7

3 e, d l−p+3
3 e, d p−k+1

3 e) if p = 3t− 2; t ∈ N

(d l−p
3 e, d

l−p+7
3 e, d l−p+8

3 e, d p−k+1
3 e) if p = 3t− 1; t ∈ N

The above representations show that each of the vertices has a unique representation.
This concludes that W is a resolving set and dim(Hl [1, 3]) ≤ 4.

2. Conclusions

Circulant graphs are very useful graph and often used in local area networks. Vari-
ous authors [10,11,14,15] had discussed the resolvability of circulant graphs Cl [1, 2, . . . , k].
Subdividing an edge is the process of inserting a new vertex into an existing edge and di-
viding it into two edges. The subdivision graph is a graph comprising edge subdivisions.
Ahmad et al. [9] examined the metric dimension of barycentric subdivisions of circulant
graphs; they proved that some of these families have constant metric dimensions. Later,
Wei et al. [13] computed the metric dimension of a subdivision graph of circulant graphs,
which is denoted by Gl [1, k] for 2 ≤ k ≤ 4. In this article, another subdivision graph of
circulant graph Hl [1, k] was constructed. It was shown that this class of graphs has a constant
metric dimension for k = 2, 3. We also think that the metric dimension will remain constant
with increase in value of k. In this context, the following problem arises.

Open Problem: Calculate the exact metric dimension value for the subdivision of circulant
graphs. Hl [1, k] when k = 4 .
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