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Abstract: Fractional calculus is at this time an area where many models are still being developed,
explored, and used in real-world applications in many branches of science and engineering where
non-locality plays a key role. Although many wonderful discoveries have already been reported
by researchers in important monographs and review articles, there is still a great deal of non-local
phenomena that have not been studied and are only waiting to be explored. As a result, we can
continually learn about new applications and aspects of fractional modelling. In this study, a precise
and analytical method with non-singular kernel derivatives is used to solve the Caudrey–Dodd–
Gibbon (CDG) model, a modification of the fifth-order KdV equation (fKdV). The fractional derivative
is taken into account by the Caputo–Fabrizio (CF) derivative and the Atangana–Baleanu derivative in
the Caputo sense (ABC). This model illustrates the propagation of magneto-acoustic, shallow-water,
and gravity–capillary waves in a plasma medium. The dynamic behaviour of the acquired solutions
has been represented in a number of two- and three-dimensional figures. A number of simulations
are also performed to demonstrate how the resulting solutions physically behave with respect to
fractional order. The significance of the current research is that new solutions are obtained by using a
strong analytical approach. Utilizing a fractional derivative operator to solve equivalent models is
another benefit of this approach. The results of the present work have similar aspects to the symmetry
of partial differential equations.

Keywords: fractional Caudrey–Dodd–Gibbon equation; analytical technique; Atangana–Baleanu
and Caputo–Fabrizio operator

1. Introduction

When dealing with the integer order of derivative, which depends on the behaviour
of the function, the fractional derivative yields the entire history of this function, which
is the supremacy of using fractional calculus to solve physical problems. Studying the
behaviour of the function fractionally, hence, is frequently referred to as the memory effect.
The non-locality of the fractional operators is used to demonstrate the classical derivatives
in a progressive manner. Obviously, complex memory and a variety of other objects that can
be investigated using conventional mathematical techniques, such as classical differential
calculus, are defined using fractional operators. However, the implementation of the FC
concept across different study fields is still in its early stages. Due to its wider applicability
in the dynamics of complicated nonlinear events, FC is currently a very promising tool [1–3].

Leibnitz was the first to introduce the idea of a fractional derivative. It was also
demonstrated that FC is far more effective than classical calculus at handling the majority
of complicated real-world problems. The scope of the applied studies using fractional cal-
culus has increased over time. Recent work has shown and predicted fractional operators
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with non-locality in the absence of a unique kernel. Additionally, there are some derivatives
that can effectively explain the model among the many definitions of fractional derivatives
in the local and non-local categories. The memory and heritability characteristics of many
materials and processes are among the most notable benefits of fractional derivatives.
Non-local fractional derivatives could be used to simply describe these characteristics of
the various processes. Hence, from a physical and practical standpoint, non-local fractional
derivatives have a specific preference over local ones. Actually, there are advantages and
disadvantages to every fractional derivative. One weakness in the well-known Riemann–
Liouville, and the Caputo derivative is the singularity of the kernel. A non-local derivative
created by Caputo and Fabrizio eliminates this weakness [4]. This indicates that the Caputo–
Fabrizio derivative has a non-singular exponential kernel. The fractional derviative kernel
is chosen by Atangana and Baleanu [5] as the Mittag–Leffler non-singular function, which
is important in the theory of fractional calculus. This fractional operator is described in
terms of both Riemann and Caputo. In fact, this derivative can also be thought of as a
filter regulator in addition to being a differential operator. An additional advantage of this
intriguing derivative is the explanation of some materials’ macroscopic behaviour. In re-
cent years, numerous scientists have paid close attention to these derivatives’ motivating
behaviours [6–12].

A number of differential equation classes can be studied and illustrated using an
analysis of symmetry, which is a transformation for the differential equation that retains
the invariance of its family of solutions [13–16]. The study of fractional calculus in relation
to symmetry has recently attracted many researchers from different domains to present
their research and investigate real problems. Fractional differential equations (FDEs) have
a crucial role in the recent development of the real world, which cannot be disputed. There
are models that use fractional differential equations to manage systems more effectively.
These equations may appear in biology, engineering, physics, electronic circuits, and other
fields [17–23]. In order to handle clients in better-suited and inexpensive packages for
dealing with financial crises, finance additionally deals with fractional-order differential
equations [24,25]. Signal processing and image processing are two further differential
equation (DE) applications [26,27]. Depending on the geometry of the issue, these equations
may be linear or nonlinear. Ordinary differential equations (ODEs) can illustrate simple
problems, while partial differential equations can illustrate complex situations (PDEs). Most
linear problems have an exact solution, while complex nonlinear issues are challenging to
solve precisely. Researchers have approximated such a nonlinear problem using numerical,
analytical, and some homotopy-based methods [28–34]. Some well-known techniques
for dealing with DEs of fractional and integer order are the Adomian decomposition
method [35], residual power series method [36], reduced differential transform method [37],
homotopy perturbation method [38], variational iteration method [39], and homotopy
analysis method [40], among many others [41–43].

A confined domain is a rather uncommon property of a wave field in nature. In other
words, seismic waves should only be considered in relation to the Earth’s centre and
surface; they can be disregarded elsewhere. To study physical waves in restricted domains,
mathematicians study waves in an unlimited background that permeates all of space.
A disruption that travels in a straight line with no desired direction is referred to as
a plane wave. Sinusoidal plane waves with modest harmonic motion and a distinct
occurrence [44] are the simplest mathematical waves. Dependent on their occurrence
and/or the path of their propagation, complex waves in a linear medium may be converted
into extra apparent sinusoidal plane waves. A trajectory vertical to propagation describes a
ground perturbation at one point, whereas a vector transverse to propagation describes
a field perturbation at a different position [45]. Mechanical sound waves do not travel
vertically to the medium, whereas electromagnetic plane waves do. The physical alignment
of a fluctuating ground with regard to the direction of propagation is known as wave
polarization [46].
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The most popular equation for the propagation of shallow-water waves is the fifth-
order KdV equation, which is given by [47]

Kψ + ηKζζζζζ + aKKζζζ + bKζKζζ + cK2Kζ = 0 (1)

where η, a, b, and c are arbitrary positive parameters. Moreover, K = K(ζ, ψ) demon-
strates the way in which long waves move in shallow water under gravity and in a
one-dimensional nonlinear lattice, as well as their numerous practical applications in a
variety of domains, such as quantum mechanics and nonlinear optics. The characteristics of
the equation are greatly influenced by these factors. For instance, Equation (1) becomes the
CDG equation for the given values of η = 1, a = 30, b = 30, and c = 180 [48], as follows:

Kψ +Kζζζζζ + 30KKζζζ + 30KζKζζ + 180K2Kζ = 0 (2)

Equation (2) is an integrable model with numerous solutions [49]. This equation is
utilised to resolve complex problems in kink dynamics, fluid dynamics, chemical kinetics,
plasma physics, quantum field theory, crystal dislocations, and nonlinear optics [50]. Many
computational techniques have been effectively used to achieve a variety of distinctive
soliton wave solutions that offer an additional detailed definition of the shallow-water
wave [51,52]. The fractional CDG equation of the following form is taken into consideration
in the current framework.

D$
ψK+Kζζζζζ + 30KKζζζ + 30KζKζζ + 180K2Kζ = 0 (3)

where the order time-fractional derivative is represented by D$
ψ. In order to incorporate

memory effects and genetic consequences into the phenomena, the fractional order is
introduced, and these attributes help us to obtain essential physical characteristics of
the nonlinear issues. Several mathematicians have proposed a wide variety of solutions
to the CDG equations. In [53], Jagdev Singh et al. applied a novel technique, namely
the homotopy analysis Sumudu transform method, to solve a fractional CDG equation.
P. Veeresha et al. implemented the q-homotopy analysis transform method to find the
solution for a fractional CDG equation [54]. In [55], Wazwaz used the tanh approach to
construct explicit solutions for travelling waves, and, in [56], Hirota’s direct method in
association with the simplified Hereman method provided multiple-soliton solutions.

In this study, we present a novel approximation technique called the natural transform
decomposition method (NTDM) for resolving fractional CDG problems. It is important to
note that the suggested approach is a powerful combination of the natural transform and
decomposition method. It offers the results as convergent series with parts that are simple
to compute. The rest of the text is structured as follows: Section 2 provides the fundamental
definitions. Section 3 presents the fundamental idea of NTDM. Section 4 presents the
convergence analysis of the proposed method. In Section 5, two fractional-order CDG
equations are subjected to the NTDM. The method applications are concluded, and the
bibliography is provided at the end.

2. Preliminaries

Here, we give some basic definitions of the fractional calculus related to our study.

Definition 1. The Riemann–Liouville fractional integral is stated as in [57]:

I$ j(ϕ) =
1

Γ($)

∫ ϕ

0
(ϕ− ν)$−1 j(ν)dν, $ > 0, ϕ > 0.

and I0 j(ϕ) =j(ϕ)

(4)
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Definition 2. The Caputo fractional derivative is as in [57]:

D$
ϕ j(ϕ) = Im−$Dm j(ϕ) =

1
m− $

∫ 0

ϕ
(ϕ− ν)m−$−1 jm(ν)dν (5)

for m− 1 < $ ≤ m, m ∈ N, ϕ > 0, j ∈ Cm
v , v ≥ −1.

Definition 3. The fractional derivative in terms of Caputo–Fabrizio is as in [57].

D$
ϕ j(ϕ) =

1
1− $

∫ ϕ

0
exp

(
−$(ϕ− ν)

1− $

)
D(j(ν))dν (6)

with 0 < $ < 1.

Definition 4. The fractional derivative in terms of Atangana–Baleanu Caputo is as in [57]:

D$
ϕ j(ϕ) =

D($)

1− $

∫ ϕ

0
E$

(
−$(ϕ− ν)

1− $

)
D(j(ν))dν (7)

where 0 < $ < 1, and D($) represent the normalization function with D(0) = D(1) = 1, and
E$(z) = ∑∞

m=0
zm

Γ($m+1) is the Mittag–Leffler function.

Definition 5. The natural transform (NT) of the function K(ψ) is as follows:

N (K(ψ)) = P(ς, ρ) =
∫ ∞

−∞
e−ςψK(ψ)dψ, ς ∈ (−∞, ∞). (8)

For ψ ∈ (0, ∞), the natural transform of K(ψ) is stated as

N (K(ψ)H(ψ)) = N+K(ψ) = P+(ς, ρ) =
∫ ∞

−∞
e−ςψK(ψ)dψ, ς ∈ (0, ∞). (9)

with H(ψ) representing the Heaviside function.

Definition 6. The function P(ς, ρ)’s natural inverse transform is stated as

N−1[P(ς, ρ)] = K(ψ), ∀ψ ≥ 0 (10)

Lemma 1. (Linearity property). If NT of K1(ψ) is K1(ς, ρ), and K2(ψ) is K2(ς, ρ), then

N [c1K1(ψ) + c2K2(ψ)] = c1N [K1(ψ)] + c2N [K2(ψ)] = c1K1(ς, ρ) + c2K2(ς, ρ), (11)

where c1 and c2 are constants.

Lemma 2. (Inverse linearity property). If the inverse NT of P1(ς, ρ) and P2(ς, ρ) are K1(ψ) and
K2(ψ), respectively, then

N−1[c1P1(ς, ρ) + c2P2(ς, ρ)] = c1N−1[P1(ς, ρ)] + c2N−1[P2(ς, ρ)] = c1K1(ψ) + c2K2(ψ), (12)

where c1 and c2 are constants.

Definition 7. The NT of D$
ψK(ψ) in the Caputo manner is as in [57]:

N [D$
ψ] =

(
ς

ρ

)$(
N [K(ψ)]−

(
1
ς

)
K(0)

)
. (13)
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Definition 8. The NT of D$
ψK(ψ) in the Caputo–Fabrizio manner is as in [57]:

N [D$
ψ] =

1
1− $ + $( ρ

ς )

(
N [K(ψ)]−

(
1
ς

)
K(0)

)
. (14)

Definition 9. The NT of D$
ψK(ψ) in the Atangana–Baleanu Caputo manner is as in [57]:

N [D$
ψ] =

M[$]

1− $ + $( ρ
ς )

$

(
N [K(ψ)]−

(
1
ς

)
K(0)

)
. (15)

3. Methodology

The general methodology of the proposed method is given in this part.

D$
ψK(ζ, ψ) = L(K(ζ, ψ)) +N(K(ζ, ψ)) + h(ζ, ψ), (16)

with the initial guess

K(ζ, 0) = φ(ζ), (17)

where L, N, and h(ζ, ψ) are linear, nonlinear, and the source terms, respectively.

3.1. Case I (NTDMCF)

By employing the NT in Equation (16) in the Caputo–Fabrizio manner, we have

1
p($, ρ, ς)

(
N [K(ζ, ψ)]− φ(ζ)

ς

)
= N [M(ζ, ψ)], (18)

with
p($, ρ, ς) = 1− $ + $(

ρ

ς
), (19)

and
M(ζ, ψ) = L(K(ζ, ψ)) +N(K(ζ, ψ)) + h(ζ, ψ). (20)

By employing the inverse NT in Equation (18), we obtain

K(ζ, ψ) = N−1
(

φ(ζ)

ς
+ p($, ρ, ς)N [M(ζ, ψ)]

)
. (21)

The nonlinear term N(K(ζ, ψ)) is stated as

N(K(ζ, ψ)) =
∞

∑
i=0

Ai. (22)

The solution to K(ζ, ψ) in terms of its series form is

K(ζ, ψ) =
∞

∑
i=0
Ki(ζ, ψ). (23)

Now, by putting Equations (22) and (23) into (21), we have

∞

∑
i=0
Ki(ζ, ψ) =N−1

(
φ(ζ)

ς
+ p($, ρ, ς)N [h(ζ, ψ)]

)

+N−1

(
p($, ρ, ς)N

[
∞

∑
i=0
L(Ki(ζ, ψ)) + Aψ

])
.

(24)
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From the above equation, we obtain

KCF
0 (ζ, ψ) =N−1

(
φ(ζ)

ς
+ p($, ρ, ς)N [h(ζ, ψ)]

)
,

KCF
1 (ζ, ψ) =N−1(p($, ρ, ς)N [L(K0(ζ, ψ)) + A0]),

...

KCF
l+1(ζ, ψ) =N−1(p($, ρ, ς)N [L(Kl(ζ, ψ)) + Al ]), l = 1, 2, 3, . . .

(25)

At the end, the NTDMCF solution to (16) is obtained by substituting (25) into (23)
as follows:

KCF(ζ, ψ) = KCF
0 (ζ, ψ) +KCF

1 (ζ, ψ) +KCF
2 (ζ, ψ) + . . . (26)

3.2. Case II (NTDMABC)

By employing the NT in Equation (16) in the Atangana–Baleanu Caputo manner,
we have

1
q($, ρ, ς)

(
N [K(ζ, ψ)]− φ(ζ)

ς

)
= N [M(ζ, ψ)], (27)

with

q($, ρ, ς) =
1− $ + $( ρ

ς )
$

B($)
. (28)

By employing the inverse NT in Equation (27), we obtain

K(ζ, ψ) = N−1
(

φ(ζ)

ς
+ q($, ρ, ς)N [M(ζ, ψ)]

)
. (29)

The nonlinear term N(K(ζ, ψ)) is stated as

N(K(ζ, ψ)) =
∞

∑
i=0

Ai, (30)

where Ai represents the Adomian polynomials [58,59]. The solution to K(ζ, ψ), in terms of
the series form, is as follows:

K(ζ, ψ) =
∞

∑
i=0
Ki(ζ, ψ). (31)

Now, by putting Equations (30) and (31) into (29), we have

∞

∑
i=0
Ki(ζ, ψ) =N−1

(
φ(ζ)

ς
+ q($, ρ, ς)N [h(ζ, ψ)]

)

+N−1

(
q($, ρ, ς)N

[
∞

∑
i=0
L(Ki(ζ, ψ)) + Aψ

])
.

(32)
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From the above equation, we obtain

KABC
0 (ζ, ψ) =N−1

(
φ(ζ)

ς
+ q($, ρ, ς)N [h(ζ, ψ)]

)
,

KABC
1 (ζ, ψ) =N−1(q($, ρ, ς)N [L(K0(ζ, ψ)) + A0]),

...

KABC
l+1 (ζ, ψ) =N−1(q($, ρ, ς)N [L(Kl(ζ, ψ)) + Al ]), l = 1, 2, 3, . . .

(33)

At the end, the NTDMABC solution to (16) is obtained by substituting (33) into (31)
as follows:

KABC(ζ, ψ) = KABC
0 (ζ, ψ) +KABC

1 (ζ, ψ) +KABC
2 (ζ, ψ) + . . . (34)

4. Convergence Analysis

The proposed method’s uniqueness and convergence analysis for NTDMCF and
NTDMABC are presented here.

Theorem 1. The NTDMCF result for (16) is unique when 0 < (λ1 + λ2)(1− $ + $ψ) < 1.

Proof. Let H = (C[J], ||.||) where the norm ||φ(ψ)|| = maxψ∈J |φ(ψ)| is the Banach space,
and ∀ is a continuous function on J. Let I : H → H be a nonlinear mapping, where

KC
l+1 = KC

0 +N−1[p($, ρ, ς)N [L(Kl(ζ, ψ)) +N(Kl(ζ, ψ))]], l ≥ 0.

Suppose that |L(K) − L(K∗)| < λ1|K − K∗| and |N(K) − N(K∗)| < λ2|K − K∗|,
where K := K(ζ, ψ) and K∗ := K∗(ζ, ψ) are are two different function values and λ1,λ2
are Lipschitz constants.

||IK− IK∗|| ≤ maxt∈J |N−1
[

p($, ρ, ς)N [L(K)−L(K∗)]

+ p($, ρ, ς)N [N(K)−N(K∗)]|
]

≤ maxψ∈J

[
λ1N−1[p($, ρ, ς)N [|K −K∗|]]

+ λ2N−1[p($, ρ, ς)N [|K −K∗|]]
]

≤ maxt∈J(λ1 + λ2)
[
N−1[p($, ρ, ς)N |K −K∗|]

]
≤ (λ1 + λ2)

[
N−1[p($, ρ, ς)N ||K −K∗||]

]
= (λ1 + λ2)(1− $ + $ψ)||K −K∗||

(35)

I is the contraction as 0 < (λ1 + λ2)(1− $ + $ψ) < 1. From Banach’s fixed-point
theorem, the result of (16) is unique.

Theorem 2. The NTDMABC result for (16) is unique when 0 < (λ1 + λ2)
(

1− $ + $ψ$

Γ($+1)

)
< 1.

Proof. This proof was omitted because it is equivalent to that of Theorem 1.

Theorem 3. The NTDMCF result of (16) is convergent.
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Proof. Let Km = ∑m
r=0Kr(ϕ, ψ). To prove that Km is a Cauchy sequence in H, let

||Km −Kn || = maxψ∈J |
m

∑
r=n+1

Kr |, n = 1, 2, 3, . . .

≤ maxψ∈J

∣∣∣∣∣N−1

[
p($, ρ, ς)N

[
m

∑
r=n+1

(L(Kr−1) +N(Kr−1))

]]∣∣∣∣∣
= maxψ∈J

∣∣∣∣∣N−1

[
p($, ρ, ς)N

[
m−1

∑
r=n+1

(L(Kr) +N(Kr))

]]∣∣∣∣∣
≤ maxψ∈J |N−1[p($, ρ, ς)N [(L(Km−1)−L(Kn−1) +N(Km−1)−N(Kn−1))]]|

≤ λ1maxψ∈J |N −1[p($, ρ, ς)N [(L(Km−1)−L(Kn−1))]]|

+ λ2maxψ∈J |N−1[p($, ρ, ς)N [(N(Km−1)−N(Kn−1))]]|

= (λ1 + λ2)(1− $ + $ψ)||Km−1 −Kn−1||

(36)

Let m = n + 1; then,

||Kn+1 −Kn|| ≤ λ||Kn −Kn−1|| ≤ λ2||Kn−1Kn−2|| ≤ · · · ≤ λn||K1 −K0||, (37)

where λ = (λ1 + λ2)(1− $ + $ψ). Similarly, we have

||Km −Kn|| ≤ ||Kn+1 −Kn||+ ||Kn+2Kn+1||+ · · ·+ ||Km −Km−1||,
(λn + λn+1 + · · ·+ λm−1)||K1 −K0||

≤ λn
(

1− λm−n

1− λ

)
||K1||,

(38)

As 0 < λ < 1, we obtain 1− λm−n < 1. Therefore,

||Km −Kn|| ≤
λn

1− λ
maxψ∈J ||K1||. (39)

Since ||K1|| < ∞, ||Km − Kn|| → 0 when n → ∞. As a result, Km is a Cauchy
sequence in H, implying that the series Km is convergent.

Theorem 4. The NTDMABC solution to (16) is convergent.

Proof. This proof was omitted because it is equivalent to that of Theorem 3.

5. Applications

Here, we implemented the given technique to solve the fractional CDG equation.

Example 1. Let us assume a Caudrey–Dodd–Gibbon equation of the form:

D$
ψK(ζ, ψ) +Kζζζζζ (ζ, ψ) + 30K(ζ, ψ)Kζζζ (ζ, ψ) + 30Kζ (ζ, ψ)Kζζ (ζ, ψ) + 180K2(ζ, ψ)Kζ (ζ, ψ) = 0,

0 < $ ≤ 1,
(40)

with an initial guess

K(ζ, 0) =
15 +

√
105

30
− tanh2(ζ). (41)

By employing the NT in Equation (54), we have

N [D$
ψK(ζ, ψ)] = −N

{
Kζζζζζ (ζ, ψ)

}
−N

{
30K(ζ, ψ)Kζζζ (ζ, ψ)

}
−N

{
30Kζ (ζ, ψ)Kζζ (ζ, ψ)

}
−

N
{

180K2(ζ, ψ)Kζ (ζ, ψ)

}
.

(42)
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By means of the transform property

1
ς$N [K(ζ, ψ)]− ς2−$K(ζ, 0) = N

[
−Kζζζζζ (ζ, ψ)− 30K(ζ, ψ)Kζζζ (ζ, ψ)− 30Kζ (ζ, ψ)Kζζ (ζ, ψ)−

180K2(ζ, ψ)Kζ (ζ, ψ)

]
.

(43)

Now, by employing the inverse NT, we obtain

K(ζ, ψ) =

[
15 +

√
105

30
− tanh2(ζ)

]
−N−1

[
$(ς− $(ς− $))

ς2 N
{
Kζζζζζ(ζ, ψ)+

30K(ζ, ψ)Kζζζ(ζ, ψ) + 30Kζ(ζ, ψ)Kζζ(ζ, ψ) + 180K2(ζ, ψ)Kζ(ζ, ψ)

}]
.

(44)

Solution in Terms of NTDMCF

The solution to K(ζ, ψ) in terms of the series form is as follows:

K(ζ, ψ) =
∞

∑
l=0
Kl(ζ, ψ) (45)

The nonlinear terms by means of the Adomian polynomials are stated as KKζζζ = ∑∞
l=0Al ,

KζKζζ = ∑∞
l=0 Bl , and K2Kζ = ∑∞

l=0 Cl . Hence, Equation (44) is rewritten as

∞

∑
l=0
Kl+1(ζ, ψ) =

[
15 +

√
105

30
− tanh2(ζ)

]

−N−1

[
$(ς− $(ς− $))

ς2 N
{
Kζζζζζ(ζ, ψ) + 30

∞

∑
l=0
Al + 30

∞

∑
l=0
Bl + 180

∞

∑
l=0
Cl

}]
.

(46)

By equating both sides of Equation (46), we have

K0(ζ, ψ) =
15 +

√
105

30
− tanh2(ζ),

K1(ζ, ψ) = 4(11−
√

105) sech2(ζ) tanh(ζ)($(ψ− 1) + 1), (47)

The series form NTDMCF solution is as follows:

K(ζ, ψ) =
∞

∑
l=0
Kl(ζ, ψ) = K0(ζ, ψ) +K1(ζ, ψ) + . . . ,

K(ζ, ψ) =
15 +

√
105

30
− tanh2(ζ) + 4(11−

√
105) sech2(ζ) tanh(ζ)($(ψ− 1) + 1) + . . . .

(48)

Solution in Terms of NTDMABC

The solution to K(ζ, ψ) in terms of the series form is as follows:

K(ζ, ψ) =
∞

∑
l=0
Kl(ζ, ψ) (49)
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The nonlinear terms by means of the Adomian polynomials are stated as KKζζζ = ∑∞
l=0Al ,

KζKζζ = ∑∞
l=0 Bl , and K2Kζ = ∑∞

l=0 Cl . Hence, Equation (44) is rewritten as

∞

∑
l=0
Kl+1(ζ, ψ) =

[
15 +

√
105

30
− tanh2(ζ)

]

−N−1

[
ρ$(ς$ + $(ρ$ − ς$))

ς2$
N
{
Kζζζζζ (ζ, ψ) + 30

∞

∑
l=0
Al + 30

∞

∑
l=0
Bl + 180

∞

∑
l=0
Cl

}]
.

(50)

By equating both sides of Equation (50), we have

K0(ζ, ψ) =
15 +

√
105

30
− tanh2(ζ),

K1(ζ, ψ) = 4(11−
√

105) sech2(ζ) tanh(ζ)
(

1− $ +
$ψ$

Γ($ + 1)

)
, (51)

The series form NTDMABC solution is as follows:

K(ζ, ψ) =
∞

∑
l=0
Kl(ζ, ψ) = K0(ζ, ψ) +K1(ζ, ψ) +K2(ζ, ψ) + . . . ,

K(ζ, ψ) =
15 +

√
105

30
− tanh2(ζ) + 4(11−

√
105) sech2(ζ) tanh(ζ)

(
1− $ +

$ψ$

Γ($ + 1)

)
+ . . . .

(52)

For $ = 1, the exact solution is

K(ζ, ψ) =
15 +

√
105

30
− tanh2(ζ − 2(11−

√
105)ψ). (53)

Example 2. Let us assume a Caudrey–Dodd–Gibbon equation of the form:

D$
ψK(ζ, ψ) +Kζζζζζ (ζ, ψ) + 30K(ζ, ψ)Kζζζ (ζ, ψ) + 30Kζ (ζ, ψ)Kζζ (ζ, ψ) + 180K2(ζ, ψ)Kζ (ζ, ψ) = 0,

0 < $ ≤ 1,
(54)

with an initial guess
K(ζ, 0) = µ2 sech2(µζ). (55)

By employing the NT in Equation (54), we have

N [D$
ψK(ζ, ψ)] = −N

{
Kζζζζζ (ζ, ψ)

}
−N

{
30K(ζ, ψ)Kζζζ (ζ, ψ)

}
−N

{
30Kζ (ζ, ψ)Kζζ (ζ, ψ)

}
−

N
{

180K2(ζ, ψ)Kζ (ζ, ψ)

}
.

(56)

By means of the transform property

1
ς$N [K(ζ, ψ)]− ς2−$K(ζ, 0) = N

[
−Kζζζζζ (ζ, ψ)− 30K(ζ, ψ)Kζζζ (ζ, ψ)− 30Kζ (ζ, ψ)Kζζ (ζ, ψ)−

180K2(ζ, ψ)Kζ (ζ, ψ)

]
.

(57)
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Now, by employing the inverse NT, we obtain

K(ζ, ψ) =

[
µ2 sech2(µζ)

]
−N−1

[
$(ς− $(ς− $))

ς2 N
{
Kζζζζζ(ζ, ψ)+

30K(ζ, ψ)Kζζζ(ζ, ψ) + 30Kζ(ζ, ψ)Kζζ(ζ, ψ) + 180K2(ζ, ψ)Kζ(ζ, ψ)

}]
.

(58)

Solution in Terms of NTDMCF

The solution to K(ζ, ψ) in terms of the series form is as follows:

K(ζ, ψ) =
∞

∑
l=0
Kl(ζ, ψ) (59)

The nonlinear terms by means of the Adomian polynomials are stated as KKζζζ = ∑∞
l=0Al ,

KζKζζ = ∑∞
l=0 Bl , and K2Kζ = ∑∞

l=0 Cl . Hence, Equation (58) is rewritten as

∞

∑
l=0
Kl+1(ζ, ψ) =

[
µ2 sech2(µζ)

]

−N−1

[
$(ς− $(ς− $))

ς2 N
{
Kζζζζζ(ζ, ψ) + 30

∞

∑
l=0
Al + 30

∞

∑
l=0
Bl + 180

∞

∑
l=0
Cl

}]
.

(60)

By equating both sides of Equation (60), we have

K0(ζ, ψ) = µ2 sech2(µζ),

K1(ζ, ψ) = −8

[
− 34− 90 tanh(µζ)4 + 75 sech(µζ)2 − 45 sech(µζ)4 + 15(8− 9 sech(µζ)2) tanh(µζ)2

]
× sech(µζ)2 tanh(µζ)µ7($(ψ− 1) + 1),

(61)

The series form NTDMCF solution is as follows:

K(ζ, ψ) =
∞

∑
l=0
Kl(ζ, ψ) = K0(ζ, ψ) +K1(ζ, ψ) + . . . ,

K(ζ, ψ) = µ2 sech2(µζ)− 8

[
− 34− 90 tanh(µζ)4 + 75 sech(µζ)2 − 45 sech(µζ)4 + 15(8− 9 sech(µζ)2)

tanh(µζ)2

]
× sech(µζ)2 tanh(µζ)µ7($(ψ− 1) + 1) + . . . .

(62)

Solution in Terms of NTDMABC

The solution to K(ζ, ψ) in terms of the series form is as follows:

K(ζ, ψ) =
∞

∑
l=0
Kl(ζ, ψ) (63)

The nonlinear terms by means of the Adomian polynomials are stated as KKζζζ = ∑∞
l=0Al ,

KζKζζ = ∑∞
l=0 Bl , and K2Kζ = ∑∞

l=0 Cl . Hence, Equation (58) is rewritten as
∞

∑
l=0
Kl+1(ζ, ψ) =

[
µ2 sech2(µζ)

]

−N−1

[
ρ$(ς$ + $(ρ$ − ς$))

ς2$
N
{
Kζζζζζ (ζ, ψ) + 30

∞

∑
l=0
Al + 30

∞

∑
l=0
Bl + 180

∞

∑
l=0
Cl

}]
.

(64)
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By equating both sides of Equation (64), we have

K0(ζ, ψ) = µ2 sech2(µζ),

K1(ζ, ψ) = −8

[
− 34− 90 tanh(µζ)4 + 75 sech(µζ)2 − 45 sech(µζ)4 + 15(8− 9 sech(µζ)2) tanh(µζ)2

]

× sech(µζ)2 tanh(µζ)µ7
(

1− $ +
$ψ$

Γ($ + 1)

)
,

(65)

The series form NTDMABC solution is as follows:

K(ζ, ψ) =
∞

∑
l=0
Kl(ζ, ψ) = K0(ζ, ψ) +K1(ζ, ψ) +K2(ζ, ψ) + . . . ,

K(ζ, ψ) = µ2 sech2(µζ)− 8

[
− 34− 90 tanh(µζ)4 + 75 sech(µζ)2 − 45 sech(µζ)4 + 15(8− 9 sech(µζ)2)

tanh(µζ)2

]
× sech(µζ)2 tanh(µζ)µ7

(
1− $ +

$ψ$

Γ($ + 1)

)
+ . . . .

(66)

6. Numerical Simulation Studies

Here, using the suggested methodology, we provide the numerical simulations of
the fractional-order CDG problem. To display how the acquired solution behaves, we
use graphs and tables. The behaviour of the exact and suggested approach solutions at
$ = 1 is depicted by the graphs in Figure 1a,b. Figure 2a illustrates the mathematical
representations of K(ζ, ψ) for $ = 0.25, 0.50, 0.75, 1 and Figure 2b, respectively, at ψ = 0.01.
Table 1 displays the exact as well as approximative solutions to the equation K(ζ, ψ) for
various ζ and ψ values. The comparison of the suggested method’s absolute error with
HASTM is presented in Table 2 for Example 1. The graphical representations of K(ζ, ψ)
for $ = 0.7 and 0.9. are shown in Figure 3. The mathematical representations of K(ζ, ψ)
are shown in Figure 4a,b, respectively, for the values of $ = 0.25, 0.50, 0.75, 1, and ψ = 0.01.
Similarly, Table 3 displays an approximation of the solution to the equation K(ζ, ψ) for a
range of variables of ζ and ψ in Example 2. Our approaches converge more fast than other
methods, as shown by the comparison of absolute errors. The graphical representation also
shows that the exact solution and the suggested approach solution are in good agreement.

Figure 1. The graphical illustration of our technique’s solution and the accurate solution at $ = 1.
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Figure 2. The graphical illustration of our technique’s solution to K(ζ, ψ) at different values of $.
(a) 3D View (b) 2D View.

Figure 3. The graphical illustration of our technique’s solution solution at (a) $ = 0.7 and (b) $ = 0.9.

Figure 4. The graphical illustration of the our technique’s solution to K(ζ, ψ) at different values of $.
(a) 3D View (b) 2D View.
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Table 1. Numerical simulation of the accurate and proposed technique’s solution at different orders
of $.

ψ ζ $ = 0.85 $ = 0.90 $ = 0.95 $ = 1 (appro) $ = 1 (exact)

0.2 0.81468 0.80893 0.80375 0.80317 0.80317
0.4 0.71790 0.70803 0.69916 0.69818 0.69818

0.01 0.6 0.57747 0.56588 0.55545 0.55429 0.55429
0.8 0.42425 0.41299 0.40286 0.40173 0.40173
1 0.28190 0.27220 0.26347 0.26250 0.26250

0.2 0.81531 0.80953 0.80432 0.80374 0.80374
0.4 0.71898 0.70906 0.70015 0.69915 0.69915

0.02 0.6 0.57874 0.56708 0.55660 0.55544 0.55544
0.8 0.42548 0.41416 0.40398 0.40285 0.40285
1 0.28296 0.27321 0.26444 0.26346 0.26346

0.2 0.81593 0.81012 0.80490 0.80430 0.80430
0.4 0.72004 0.71009 0.70113 0.70013 0.70013

0.03 0.6 0.57999 0.56829 0.55776 0.55659 0.55659
0.8 0.42670 0.41533 0.40511 0.40397 0.40397
1 0.28401 0.27421 0.26540 0.26443 0.26443

0.2 0.81655 0.81072 0.80547 0.80486 0.80486
0.4 0.72111 0.71111 0.70211 0.70110 0.70110

0.04 0.6 0.58124 0.56949 0.55892 0.55774 0.55774
0.8 0.42792 0.41650 0.40623 0.40509 0.40509
1 0.28506 0.27522 0.26637 0.26540 0.26540

0.2 0.81717 0.81131 0.80604 0.80541 0.80541
0.4 0.72216 0.71212 0.70310 0.70207 0.70207

0.05 0.6 0.58248 0.57068 0.56007 0.55889 0.55889
0.8 0.42912 0.41766 0.40735 0.40622 0.40622
1 0.28610 0.27622 0.26734 0.26637 0.26637

Table 2. Comparison of proposed method and homotopy analysis Sumudu transform method
(HASTM) in terms of absolute error.

ζ ψ $ = 1 (H AST M) $ = 1 (Our Method)

0.00 0.0000000000 0.0000000000 × 10+00

0.01 0.0000351211 6.6361100000 × 10−06

0.5 0.02 0.0002810211 7.7452360000 × 10−05

0.03 0.0009486029 1.3820520000 × 10−04

0.04 0.0022488807 1.1712320000 × 10−03

0.05 0.0043929376 1.8875059000 × 10−03

0.00 0.0000000000 0.0000000000 × 10+00

0.01 0.0000141429 7.0112118000 × 10−06

1.0 0.02 0.0001130449 2.7878834000 × 10−05

0.03 0.0003811928 1.2331435000 × 10−04

0.04 0.0009027666 1.1006695700 × 10−03

0.05 0.0017616292 1.0116290000 × 10−03
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Table 3. Numerical simulation of our technique’s solution at various orders of $.

ζ ψ $ = 0.98 $ = 0.99 $ = 1

0.2 0.01 1.08932 1.02820 0.96711
0.4 1.07550 0.97075 0.86604
0.6 0.97003 0.84689 0.72380
0.8 0.81012 0.69050 0.57093
1 0.63629 0.53322 0.43020

0.2 0.02 1.09602 1.03458 0.97318
0.4 1.08698 0.98168 0.87644
0.6 0.98352 0.85974 0.73603
0.8 0.82323 0.70298 0.58281
1 0.64758 0.54398 0.44044

0.2 0.03 1.10265 1.04092 0.97925
0.4 1.09834 0.99255 0.88684
0.6 0.99687 0.87252 0.74826
0.8 0.83620 0.71539 0.59469
1 0.65875 0.55467 0.45067

0.2 0.04 1.10923 1.04725 0.98532
0.4 1.10962 1.00338 0.89725
0.6 1.01013 0.88525 0.76049
0.8 0.84908 0.72777 0.60657
1 0.66985 0.56533 0.46091

0.2 0.05 1.11578 1.05355 0.99139
0.4 1.12084 1.01419 0.90765
0.6 1.02333 0.89796 0.77272
0.8 0.86190 0.74011 0.61845
1 0.68090 0.57597 0.47115

7. Conclusions

One of the toughest areas of applied mathematics is the analytical solution to partial
equations. If the derivative is a fractional derivative, the equations will be considerably
harder to solve. This work effectively used natural transformation to explore fractional
CDG equations using CF and ABC derivatives. A two-step technique can be used to find
the terms as series solutions. By using the natural transformation, the targeted issues
are first made simpler, and then the decomposition method is used to find the solutions.
The suggested method has been applied to obtain the solution to the two given problems.
Plots and tables were used to demonstrate the accuracy of the findings obtained utilising
the proposed technique. The graphs and tables show that the acquired approximation
to the problem’s exact solution is the closest. The plots for various values of $ show that
when $ tends towards one, the NTDM solution overlaps the exact solution. As a result
of this discussion, it can be concluded that the NTDM is appropriate for approximating
complicated nonlinear PDEs and ODEs of integer and fractional orders.
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