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Abstract: In this article, we use the applications of special functions in the form of Chebyshev
polynomials to find the approximate solution of hyperbolic partial differential equations (PDEs)
arising in the mathematical modeling of transmission line subject to appropriate symmetric Dirichlet
and Neumann boundary conditions. The special part of the model equation is discretized using a
Chebyshev differentiation matrix, which is centro-asymmetric using the symmetric collocation points
as grid points, while the time derivative is discretized using the standard central finite difference
scheme. One of the disadvantages of the Chebyshev differentiation matrix is that the resultant
matrix, which is obtained after replacing the special coordinates with the derivative of Chebyshev
polynomials, is dense and, therefore, needs more computational time to evaluate the resultant
algebraic equation. To overcome this difficulty, an algorithm consisting of fast Fourier transformation
is used. The main advantage of this transformation is that it significantly reduces the computational
cost needed for N collocation points. It is shown that the proposed scheme converges exponentially,
provided the data are smooth in the given equations. A number of numerical experiments are
performed for different time steps and compared with the analytical solution, which further validates
the accuracy of our proposed scheme.

Keywords: special functions; symmetric collocation points; centro-asymmetric differentiation matrix;
two-dimensional telegraph equation; numerical simulations

1. Introduction

Special functions play a key role in solving and providing the inside details in theories
of differential equations. They are most commonly used to solve partial and ordinary
differential equations (ODEs). In recent years, the application of these functions has
been extended for the solution of fractional, integro-differential and stochastic differential
equations arising during the mathematical modeling of many real word problems in science
and engineering. These special functions especially arise while solving partial differential
equations; when it is reduced, the set of equations consists of ODEs by the separation
of variables with partial derivatives. The most common special functions are Gamma,
Zeta, Bessel, Legendre, Laguerre, Hermite, Chebyshev polynomials, hypergeometric and
many more functions. Orthogonal polynomials and their sophisticated properties are
considered to be the backbone of the solution of differential equations. They are used
to solve these differential equations more accurately and with high precision of accuracy.
Their orthogonal properties are used with respect to some weight functions and are used
for some choices of parameters involved in these differential equations to investigate their
accuracy and stability region, especially in the investigation of approximate solutions
for PDEs, which are time-dependent [1]. Many numerical methods for the approximate
solution of differential equations use polynomials as an approximation to the unknown
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function. One such method that uses orthogonal polynomials as a basis function is known
as a spectral method.

Spectral methods use the global approach during the approximation of any unknown
function. In this approach, the computation depends at any point on the entire domain
in addition to the neighboring points opposite the local approaches, where the compu-
tation only depends on the neighboring points. These methods are mostly used for the
discretization of special coordinates. Their formulation mainly depends on the approx-
imation and test functions, also called the trail and weight functions, respectively. The
linear combination of these trail functions is used as an approximating function to get the
approximate solution of differential equations. To ensure that the differential equations
are subject to appropriate conditions, either initial or boundaries, are satisfied, the test
function’s truncated series expansion is used. A suitable norm is used to achieve this by
minimizing the error instead of the exact solution using the solution of truncated series and
receiving the implicit or explicit residual counts. This is one of the reasons that spectral
methods were treated as a special case of the method of residuals, which is equivalent
to a suitable orthogonality condition being satisfied by the residual subject to some test
functions. The feature that distinguishes the early version of the spectral method from its
finite element and finite difference counterpart is the choice of a trial function. The earliest
three types of spectral methods that distinguish them from each other is the choice of the
test function, that is Galerkin, Tau and collocation methods. For the periodic function,
Fourier spectral methods are used for discrete data, while for the non-periodic domain,
the theory of orthogonal polynomials, such as Legendre or Chebyshev polynomials, basis
functions are the best choice [2,3]. In this research work, we will use the applications of
Chebyshev polynomials together with the FFT to solve the hyperbolic PDEs of telegraph
type. High-order methods and their analysis based on the polynomial approximation and
their properties are studied in detail [4–13].

Oliver Heaviside was the first person who worked on telegraph equations and studied,
in detail, the second-order hyperbolic PDEs that arise from the mathematical modeling
of the voltage and current on an electrical transmission line with distance. This model
explains that the wave sequence that can form with the line and the electromagnetic waves
can be reflected on the wire. Recently, it has been discovered that the telegraph equation is
the best candidate as an alternative to the diffusion equation while investigating turbulence
transport in its early phase. This is because, in early times, the movement of the particles
was ballistic, and they scattered with the passage of time. The coefficient of diffusion
during the running time, was determined numerically for example, for instance, by tracing
the mean square displacement of ensemble particles. The reflection of this behavior is
increasing linearly with respect to ballistic motion. The other problem is that the speed of
the particles is finitely propagated, which is also considered as there is no magnetostatic
turbulence at all or is very limited. Due to the fixed energy of the particles, it cannot have a
finite probability of filling the space when the source is at a large distance. In contrast, the
telegraph equation has great potential to differentiate between the early ballistic motion of
particles and the diffusive transport at a later stage. This is due to the fact that the telegraph
equation consists of an additional scale of time, which produces behavior like a wave.
For this reason, the telegraph equation is used for the mathematical description of pulse
propagation along a wire. At the beginning, at least, this behavior looks to have a very good
agreement with the propagation of particle speed charged by the available energy [14]. The
telegraph equation is most commonly used for the transmission of electrical signals and
their propagation in signal analysis. In biological sciences, the telegraph equation can be
used for the linearization of neurons of nerves and in muscle cells, the telegraph equations
lead to how the pressure waves of pulsating blood flow in the arteries are reproduced.
The movement of an insect through a fence in one dimension can also be studied by the
telegraphic equation [15].

Unlike the other PDEs, such as parabolic and elliptic, the hyperbolic PDEs are con-
sidered to be more useful in many research fields of science and technology, especially
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in the field of applied sciences, where these equations are used to understand the most
important features of some real-world problems. A numerical algorithm is used to solve
the hyperbolic PDEs of telegraph type in [16,17]. There are numerous areas in which
telegraph equations are being used, and most of them are related to the field of engineer-
ing and sciences. For example, the structure of vibrations, signal analysis in a cable of
transmission line, wave propagation and the theory of random walk [18–20]. To solve
the hyperbolic PDEs based on telegraph equation, analysis is usually difficult, and, there-
fore, numerical methods are the alternate choices. The most common numerical schemes
to solve hyperbolic PDEs are based on the classical finite difference, finite elements and
spectral schemes, where the first two use the local approach while the latter one uses the
global approach, which makes it superior compared to other ones. In the past few years,
many mathematicians have worked on the development of numerical schemes to solve
the hyperbolic equation of order two along the constant coefficients. Some scientists have
applied the finite element method for solving non-homogeneous telegraph equations. For
short compact support, the multi-wavelet bases that were explained by Albert are infinitely
differentiable. That means one can use these bases for both finite difference and spectral
methods. Albert multi-wavelet are the bases that can be used to find the solution to the
nonlinear time-dependent partial differential equations [21]. Some other multi-wavelet
methods have been introduced in [22–24].

Various other numerical methods have been used to solve the hyperbolic PDEs; for
example, a mesh-less method using the radial basis function has been used to solve the
Klein–Gordon equation in [25]. The method of finite difference for the approximate solution
of nonlinear obstacles has been used in the two-dimension equation by Ling et al. [26],
while Abbas et al. proposed a numerical scheme using the shifted form of Chebyshev
polynomials and its operational matrices derived from its derivative and integrals [27]. A
numerical approach based on dual reciprocity boundary integral equations (DRBI) was
used in [28], while differential quadrature methods for the proposed model in two dimen-
sions with appropriate boundary and initial conditions were investigated and derived
in [29]. The telegraph equations in two-dimensional initial value problems consisting of
hyperbolic PDEs were solved by the local Petrov Galerkin method [30]. An alternating
direction for implicit schemes consisting of a compact difference scheme of order four for
telegraph equations is used in [31], the mesh-less hybrid method [32] and by mesh-less
collocation method [33]. These equations in early work were solved by the non-polynomial
spline method [34], the discrete eigenfunctions method [35], the differential transform
method [36], Adomian method [37] and the kernel method, which was used to solve
the nonlinear telegraph equations [38], which depends upon the Rothe’s approximation
method. The generalized finite difference scheme is applied in [39], while the multi-wavelet
Galerkin method is discussed by [40].

The telegraph equation of fractional order using the analytical approach based on the
Shehu transform was investigated in [41], where the technique was applied to one, two and
three-dimensional equations. A method based on the decomposition method for a multi-
dimensional equation of telegraph type with a fractional order using Elzaki transform has
been studied in [42]. A numerical scheme using radial function as a basis combined with
collocation points for the approximate solution for the hyperbolic equation in one dimen-
sion is used by the authors in [43]. The idea of this technique is similar to a finite difference
scheme. Berna et al. introduced an efficient numerical approximation technique using
Taylor’s polynomial approach to solve the constant coefficients of hyperbolic PDEs [44].
This technique was the improved version of Taylor’s matrix scheme, which is commonly
used for solving ordinary, integral and differential equations. A stable and accurate finite
difference scheme of level three in the compact form of order four is examined in detail
for a second-order, two-dimensional hyperbolic equation in [45]. In recent years, some
numerical techniques that are based on the Bernoulli Collocation method and Chebyshev
collocation in combination with the Runge–Kutta method were investigated in [46,47],
unlike our proposed scheme, which is also based on Chebyshev polynomials in conjunction
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with FFTs in special coordinates, the second-order finite difference scheme was in temporal
one. Recently, these methods have been successfully applied while investigating some real
word problems [48–53]. For more applications of special functions, we refer the reader
to [54–56].

The main purpose of the current paper is to construct an efficient numerical scheme
for solving two-dimensional hyperbolic PDEs based on the telegraph equation with ap-
propriate boundary conditions. For this reason, a spectral collocation method based on a
Chebyshev polynomial in conjunction with fast Fourier transform (FFT) is used in special
coordinates, while the temporal part is evaluated using a second-order finite difference
scheme. The almost antisymmetric Chebyshev differentiation matrix, which results from
discretizing the special part, is evaluated using the symmetric collocation points based on
Gauss–Lobatto points, which are the roots of Chebyshev polynomials with the help of FFT.
Our motivation is further enhanced by the high precision and low phase error of spectral
methods for solving the proposed problem. The main advantage of spectral methods is that
the error decay is exponential; that is, the convergence rate is infinite in space for a very
small number of collocations points. They are very flexible in terms of choosing a basis
function. One can choose any basis function depending on the problem. The disadvantage
is that they are hard to implement, and they use global functions as a basis function. For
this reason, they are not well suited to handle the local features as well as Sharp gradients,
for example, the Gibbs phenomenon.

The remaining structure of the paper includes the method and mathematical formu-
lations in Section 2. Some preliminaries needed for the analysis of the proposed scheme
are introduced in Section 3. Numerical simulations for different time steps to confirm the
exponential convergence are obtained in Section 4, while a conclusion is drawn in Section 5.

2. Mathematical Model and Method Description

In general second-order PDEs of parabolic, elliptic or hyperbolic types, linear or non-
linear plays an essential role in many applications in science and engineering. The telegraph
PDEs which is formulated from a line of telegraph is used for a signal as transmission
medium is one of these applications. Due to the hyperbolic nature of telegraph PDEs,
unlike elliptic and parabolic PDEs, there is no inherited physical dissipation in hyperbolic
PDEs. This means that a very small error for any resolved phenomena under consideration
can cause any numerical scheme to be unstable. This stability issue is more severe in
spectral techniques compared to any other technique used for the approximate solutions of
these hyperbolic PDEs. This is one of the reasons that it does not accept the higher-order
methods, particularly the spectral collocation method for the Gibbs phenomenon appearing
in the solution, which causes discontinuity in the solution during a finite time interval. If
the stability is, however, maintained for a sufficiently long time step, it appears only to be
first-order, which makes the use of high-order methods questionable. All these issues are
very genuine, and careful attention is needed for them. However, if spectral collocation
methods are applied correctly, they are not causing any problems.

The generalized telegraph equation is a non-homogeneous telegraph along the bound-
ary, and the initial conditions are demonstrated as

vtt(x, y, t) + 2ξvt(x, y, t) + η2v(x, y, t) = vxx(x, y, t) + vyy(x, y, t) + g(x, y, t), (1)

where ξ and η are constants that are real along with initial and Dirichlet boundary condi-
tions. Equation (1) becomes the damped wave motion when ξ > 0 and η = 0.

v(x, y, 0) = g0(x, y),
∂v
∂t

(x, y, 0) = g1(x, y), (2)

v(−1, y, t) = f0(y, t), v(1, y, t) = f1(y, t), v(x,−1, t) = f2(x, t), v(x, 1, t) = f3(x, t) (3)
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Chebyshev spectral differentiation via FFT (Fast Fourier transform) is used to approx-
imate the spatial domain in the x and y-directions, and the Finite difference scheme of
order two approximates the time domain. For a unit circle |z| = 1, suppose z is a complex
number. Suppose φ is the argument of z that can be found up to the multiples of 2π.
Suppose x = Real(z) = cos(φ) for every x ∈ [−1, 1], and their two complex conjugates are

x = Real(z) =
1
2
(z + z−1) = cos(φ) ∈ [−1, 1] (4)

The mth Chebyshev polynomial is represented by Tm. Then, generally, Tm+1 can be
defined by

Tm+1(x) =
1
2
(zm+1 − z−m−1) =

1
2
(zm + z−m)(z + z−1)− 1

2
(zm−1 + z1−m) (5)

For recurrence relation

Tm+1(x) = 2xTm(x)− Tm−1(x) (6)

First, the derivatives in the x-direction, with the help of the spectral method, are
iterated by taking the points u0, u1, u2, . . . , uM at Chebyshev points x0 = 1 . . . xM−1 and
expanding these data to the vector Y of length 2N with

Y2M−j = uj (7)

where j = 1, 2, . . . , M− 1.
Now we are using fast Fourier transform to solve the equation.

Yk =
π

N

2M

∑
i=1

exp−ιkφjYj, (8)

k = −M + 1, . . . , M.
At this point, we could define a new assumption as.

S = ιkuk, (9)

rather than YN = 0. Now by using FFT to calculate the derivative of trigonometric inter-
polant P on an equispaced grid.

Sj =
1

2π

M

∑
k=−M+1

expιkφj Sk, (10)

where j = 1, 2, . . . , M. Now for algebraic polynomial interpolant p, compute the derivative
on interior grid points by

sj = −
Zj√

1− x2
j

. (11)

where j = 1, . . . , M− 1, with special endpoint formulas:

sj =
1

2π

M

∑
m=0

m2um, (12)

sM =
1

2π

M

∑
m=0

(−1)m+1m2um, (13)
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and the terms m = 0, . . . , M are multiplied by 1
2 . We can explain the above formulas by

solving discrete inverse Fourier transform at φ.

Q(φ) =
1

2π

M

∑
k=−M+1

expikφuk =
M

∑
m=0

bmcosmφ, (14)

Now the algebraic polynomial interpolant of uj is q(x) = Q(φ), where x = cos(φ),
now by calculating its derivative,

p
′
(x) =

P
′
(φ)
dx
dφ

=
−∑M

m=0 mbmsinmφ

−sinφ
=

∑M
m=0 mbmsinmφ√

1− x2
. (15)

To calculate the value of p
′
(x) at x = ±1, we apply L’Hospital’s rule, which gives

p
′
(1) =

M

∑
m=0

m2bm, p
′
(−1)m+1m2bm, (16)

Similarly, if the second derivative is required

p
′′
(x) =

xP
′
φ

(1− x2)
3
2
+

P′′(φ)
1− x2 , (17)

If Sj and S(2)
j are the first and second derivatives on an equispaced grid, then the

second derivative of the Chebyshev grid is expressed as

s(2)j =
−xSj

(1− x2
j )

3
2
+

S(2)
j

1− x(2)j

, 1 ≤ j ≤ M− 1 (18)

where Sj and S(2)
j are the derivatives of the first and second orders on the equispace grid,

respectively. For simplicity, let us suppose that νxx = s(2)j . Now we have to solve the time
derivative with finite difference method with a central difference.

∂v
∂t

(x, t) =
vi+1 − vi−1

2∆t
, (19)

and
∂2v
∂2t

(x, t) =
vi+1 − 2vj + vi−1

(∆t)2 , (20)

Now we are solving the left-hand side of the general equation. We put the values on
the left-hand side of the general equation

vi+1 − 2vi + vi−1

(∆t)2 + 2η(
vi+1 − vi−1

2∆t
) + ξ2vi = νxx + νyy + g, (21)

vi+1 − 2vi + vi−1

(∆t)2 + (
ηvi+1 − ηvi−1

∆t
) + ξ2vi = νxx + νyy + g, (22)

vi+1 − 2vi + vi−1 + η∆tvi+1 − η∆tvi−1 + ∆t2ξ2vi

∆t2 = νxx + νyy + g, (23)

vi+1(1 + η∆t) + vi(∆t2ξ2 − 2) + vi−1(1− η∆t)
∆t2 = νxx + νyy + g, (24)
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vi+1 =
1

1 + η∆t
[∆t2(νxx + νyy

)
+ ∆t2g− vi(∆t2ξ2 − 2)− vi−1(1− η∆t)], (25)

by putting the value of νxx, we receive the resulting equation as

vi+1 = 1
1+η∆t

∆t2

 −xSj(
1−x2

j

) 3
2
+

S(2)
j

1−x2
j

+

 −ySj(
1−y2

j

) 3
2
+

S(2)
j

1−y2
j


+ ∆t2g− vi(∆t2ξ2 − 2

)
− vi−1(1− η∆t).

(26)

Fast Fourier Transformation

In this subsection, we will introduce the Fourier and fast Fourier transformation, in
which the latter one we use together with the Chebyshev polynomials to speed up the
simulations.

The use of Fourier transformation plays a key role in solving differential equations
due to the fact that it converts the equation into a much easier one. Its resultant differential
operator becomes the multiplicative operator and can be used for the derivative elimination
of one independent variable. The use of inverse transformation recovers the original
variable solution. To evaluate the discrete Fourier transform (DFT) and its inverse for a
sequence, an algorithm called the fast Fourier transform is used. The main advantage of
the FFT is that it converts the O(N2) calculations to O(NlogN) calculations, due to which
a significant improvement can be seen while evaluating algebraic equations. The fast
development algorithms for DFT date back to Carl Friedrich Gauss’s unpublished work in
1805, where he wanted it to interpolate the orbit of asteroids Pallas and Juno from pattern
observations. Later on, in 1965, his method turned out to be very similar to the one used by
James Cooley and John Tukey, who were credited commonly for their invention of the FFT
set of rules of the modern day [57]. FFT is the most useful tool in any field of engineering
sciences, especially in signal processing. The convolution of FFT uses the multiplication
principle in the domain of frequency, which corresponds to the convolution in the time
domain. DFT is used to transform the signal into an input in the frequency domain and
then used for the inverse DFT to transform it back to the time domain. Since the days
of Fourier, this technique has been known but was not pointed out by anyone. One of
the reasons for this is that DFT takes a lot of time compared to the time taken for directly
calculating the convolution. The definition of DFT is as follows

Let y0, y1, y2, . . . , yM−1 be complex numbers, then the DFT is defined as

Yk =
M−1

∑
m=0

yme
−2ιπkm

M , (27)

where k = 0, 1, . . . , M− 1 and e
2ιπ
M is elementary mth root of 1.

3. Some Preliminaries and Error Analysis

In this section, before we state some results for the error analysis of the numerical
scheme under consideration, we write some preliminary results, which are necessary for
the theoretical analysis of the model equation and are used in numerical discretization as
well. These results are based on the same theory as in [1–3].

The first kind of Chebyshev polynomial Tm(x) is the solution to a singular S-L bound-
ary value problem of the form

d
dx

(√
1− x2 dTm(x)

dx

)
+

m2
√

1− x2
, (28)

where Tm(x) is bounded for all x ∈ [−1, 1].
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The explicit form of Chebyshev polynomials is given by

Tm(x) = cos
(

narccosx
)

. (29)

Thus, T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x, and so on. . .
The orthogonality condition of Chebyshev polynomials on L2

w(I), I : [−1, 1] implies that:∫ 1

−1
Tm(x)Tn(x) =

π

2
cmδnm, (30)

where

cm =


2 n = 0,

1 otherwise.

For any boundary value problem, the symmetric Chebyshev Gauss–Lobatto quadra-
ture collocation points are:

xk = −cos
π

M
k, (31)

with

wm =


π

2M k = 0, M

π
M k ∈ [1, . . . , M− 1].

These are among the most popular collocation points for solving any boundary value
problems, as it includes the end-points. It is, therefore, a clear advantage when one needs
to impose boundary conditions.

The constant of normalization is given by:

γ̂m =


π
2 k ∈ [1, . . . , M− 1]

π k = 0, M.

The resultant discrete expansion coefficients are then given by:

ûm =
1

γ̂m

M

∑
k=0

u(xk)Tm(xk)wk. (32)

The relation given in Equation (30) is the roots of (1− x2)T′M(x), whose corresponding
differentiation matrix entries are given by:

Dik =



−2M2

6 i = k = 0,

ĉi
ĉk

(−1)i+k+m

xi−xk
i 6= k

− xi
2(1−x2

i )
0 < i = k < M

2M2+1
6 i = k = M.

(33)

where ĉ0 = 2 = ˆcM and ĉk = 1, otherwise. One can easily see that this differentiation matrix
is centro asymmetric as a result of the reflection symmetry of the nodal points. That is,
Dik = −DM−i,M−k.



Symmetry 2023, 15, 847 9 of 17

Lemma 1 ([58]). Assume that Fi(t) is the i-th Lagrange interpolation polynomial with the (M + 1)-
point Gauss Chebyshev, or Gauss–Radau Chebyshev, or Gauss–Lobatto Chebyshev points {xk}M

k=0.
Then

max
t∈I

N

∑
i=0
|Fi(t)| ≤ C

√
N.

Lemma 2. Let y ∈ Hm[−1, 1] and denote INy, the polynomial interpolation polynomial with
respect to (M + 1)-Gauss type points {xk}M

k=0. Then

‖y− IMy‖L2(I) ≤ CM−m|y|m,M[−1, 1],

‖y− IMy‖L∞(I) ≤ CM3/4−m|y|m,M(I).

Using Lemmas 1 and 2, one can easily state and prove the following main results.

Theorem 1. Assume that u(x) ∈ Hp
w[−1, 1] with p > 1/2 and 0 < p < q, there exists a positive

constant C, independent of M, such that

‖u− IMu‖Hp
w [−1,1] ≤ CM2p−q|u|Hp

w [−1,1].

Similarly, if we consider the error estimate in L∞, in the discrete version of Chebyshev
expansion, one loses a factor M

1
2 and achieves the following main results.

Theorem 2. Assume that u(x) ∈ Hp
w[−1, 1] with p > 1/2, there exists a positive constant C,

independent of M, such that

‖u− IMu‖Hp
w [−1,1] ≤ CM

1
2−p|u|Hp

w [−1,1].

4. Numerical Examples

Two numerical examples of telegraph-type PDEs are presented in this section for the
confirmation of the efficiency and the convergence rate, which are exponential using the
method under consideration. The numerical solutions obtained were compared with their
analytical counterparts for both lower and higher time steps to confirm the stability and
accuracy. Figures 1–6 show the comparison of the mentioned time steps, for example 1.
Figures 7–12 show the comparison, for example 2, with the exact solution. Tables 1 and 2
represent the error behaviors of the exact and approximate solutions for using different
norms for examples 1 and 2, respectively. From all these figures and tables, one can easily
see the exponential rate of convergence for our scheme, the best possible one, which
confirms the theoretical results given in the form of Theorems 1 and 2.

4.1. Example 1

Consider the following telegraph PDEs of hyperbolic type subject to appropriate initial
and boundary conditions.

vtt + 20vt + 25v = vxx + vyy + ξsec2
(

x+y+t
2

)
+ η2tan

(
x+y+t

2

)
+ sec2

(
x+y+t

2

)
tan
(

x+y+t
2

)
,

(34)

subject to

v(x, y, 0) = tan
(

x+y
2

)
∂v
∂t = 1

2 sec2
(

x+y
2

) (35)
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v(−1, y, t) = tan
(

t+y−1
2

)
,

v(1, y, t) = tan
(

1+y+t
2

)
,

v(x,−1, t) = tan
(

t+x−1
2

)
,

v(x, 1, t) = tan
(

1+x+t
2

)
,

(36)

for ∆t = 0.0024, the exact solution for the corresponding equation is v(x, y, t) = tan
(

x+y+t
2

)
.

Table 1 represents the error calculated with the comparison of analytical solutions at a
different level of time. First, by keeping the time t = 0, no error is computed because of
the given initial conditions, but as the time increases, we find the error values, as shown in
Table 1.

Table 1. Example 1: Exact vs. numerical solution error behavior.

Error t = 0 t = 0.333 t = 0.666 t = 1 t = 20 t = 25

L∞ 0 8.6618× 10−16 4.4409× 10−15 4.2633× 10−14 2.0250× 10−13 4.0523× 10−15

L2 0 1.0671× 10−15 6.0633× 10−15 6.0120× 10−14 2.0852× 10−13 6.9549× 10−15

L1 0 2.9976× 10−15 1.5501× 10−14 1.0356× 10−13 2.5224× 10−13 1.2046× 10−14

Figure 1. Example 1: Analytical (left) vs. approximate solution (right) at time t = 0.

Figure 2. Example 1: Analytical (left) vs. approximate solution (right) at time t = 0.333.
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Figure 3. Example 1: Analytical (left) vs. approximate solution (right) at time t = 0.666.

Figure 4. Example 1: Analytical (left) vs. approximate solution (right) at time t = 1.0.

Figure 5. Example 1: Analytical (left) vs. approximate solution (right) at time t = 20.
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Figure 6. Example 1: Analytical (left) vs. approximate solution (right) at time t = 25.

4.2. Example 2

Consider the following telegraph-type hyperbolic PDEs:

vtt + 20vt + 25v = vxx + vyy + (1 + η2)sin(x + y)cost− 2ξsin(x + y)sint, (37)

subject to
v(x, y, 0) = sin(x + y)

∂v(x,y,0)
∂t = −sin(x + y)sint,

(38)

v(−1, y, t) = sin(y− 1)cost,
v(1, y, t) = sin(1 + y)cost,

v(x,−1, t) = sin(x− 1)cost,
v(x, 1, t) = sin(x + 1)cost,

(39)

for ∆t = 0.0024, the exact solution for the corresponding equation is v(x, y, t) = sin(x + y)cost.
Table 2 represents the error calculated with the comparison of analytical solutions at
different levels of time. First, by keeping the time t = 0, no error is computed because of
the given initial conditions, but as the time increases, we find the error values, as shown in
Table 2.

Table 2. Example 2: Exact and numerical solution error behavior.

Error t = 0 t = 0.333 t = 0.666 t = 1 t = 20 t = 25

L∞ 0 3.2714× 10−12 3.1828× 10−12 8.4134× 10−12 1.4094× 10−13 1.1102× 10−14

L2 0 2.2305× 10−11 4.2154× 10−11 5.7362× 10−11 9.6074× 10−13 7.5708× 10−14

L1 0 1.5915× 10−10 3.0079× 10−10 4.0930× 10−10 6.8553× 10−12 5.4023× 10−13
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Figure 7. Example 2: Analytical (left) vs. approximate solution (right) at time t = 0.

Figure 8. Example 2: Analytical (left) vs. approximate solution (right) at time t = 0.333.

Figure 9. Example 2: Analytical (left) vs. approximate solution (right) at time t = 0.666.
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Figure 10. Example 2: Analytical (left) vs. approximate solution (right) at time t = 1.0.

Figure 11. Example 2: Analytical (left) vs. approximate solution (right) at time t = 20.

Figure 12. Example 2: Analytical (left) vs. approximate solution (right) at time t = 25.

5. Conclusions

Special functions in the form of orthogonal functions based on Chebyshev polynomials
have been used to find a robust and stable approximate solution of hyperbolic PDEs of
telegraph type. The coefficients of a differentiation matrix obtained after discretizing the
special part are efficiently evaluated using FFTs. It is shown that the error behaviors
between the exact and numerical solutions using different norms decay exponentially. This
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means that one can achieve very high accuracy for a small number of collocation points. The
proposed scheme is very simple, where the boundary conditions are automatically adjusted
in the first and last row of the obtained differential matrix of Chebyshev polynomials.
The theoretical justification of the error analysis has been confirmed through numerical
simulations. We found that our numerical scheme has a very good agreement with the
exact solution.
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