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Abstract: The research described in this paper follows the hypothesis that the monomiality principle
leads to novel results that are consistent with past knowledge. Thus, in line with prior facts, our
aim is to introduce the ∆h multi-variate Hermite polynomials ∆hHm(q1, q2, · · · , qr; h). We obtain their
recurrence relations by using difference operators. Furthermore, symmetric identities satisfied by
these polynomials are established. The operational rules are helpful in demonstrating the novel
characteristics of the polynomial families, and thus the operational principles satisfied by these
polynomials are derived and will prove beneficial for future observations.

Keywords: ∆h Hermite polynomials; symmetric identities; monomiality principle; operational
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1. Introduction

One of the most significant families of polynomial sequences is the Hermite family,
the Hermite polynomials are a sequence of polynomials that are widely used in mathematics
and physics, particularly in the study of quantum mechanics. They are named after
Charles Hermite, a French mathematician who first studied them in the late 19th century.
The Hermite polynomials are a family of orthogonal polynomials that satisfy a specific
differential equation known as the Hermite differential equation.

Many issues in applied mathematics, theoretical physics, approximation theory, and
other branches of mathematics regularly include Hermite polynomial sequences [1], which
have many applications in mathematical analysis, numerical analysis, statistics, physics,
and other fields of mathematics. Particularly in recent years, several extensions of special
functions in mathematical physics have seen significant progress. The majority of precisely
resolved problems in mathematical physics and engineering that have a variety of broad
applications have an analytical foundation due to this groundbreaking discovery.

Gaussian quadrature, numerical analysis, the quantum harmonic oscillator, and
Schrondinger’s equation all contain the Hermite polynomials. A notable development
in the theory of generalized special functions is the addition of multitudinous-index and
variable special functions. Both in the context of pure mathematics and in real-world
applications, these functions have been recognized for their importance. It is recognized to
address the problems that appear in a variety of mathematical fields, from the theory of
partial differential equations to abstract group theory, complex polynomials with many vari-
ables and indices are necessary. Hermite polynomials with multiple indexes and variables
were initially proposed by Hermite himself.

Gaussian quadrature, numerical analysis, the quantum harmonic oscillator, and
Schrondinger’s equation all contain Hermite polynomials. A large number of authors have
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taken interest in introducing and finding several characteristics of ∆h special polynomials;
see, for example, refs. [2–6]. Wani and colleagues recently developed a number of doped
polynomials of a certain kind and deduced their numerous features and attributes, which
are significant from an engineering perspective; see, for example, refs. [7–11]. Summa-
tion formulas, determinant forms, approximation qualities, explicit and implicit formulae,
generating expressions, etc. are a few examples of these features.

In the event when g : I ⊂ R→ R and h ∈ R+, the forward difference operator denoted
by ∆h is provided by [12] (p. 2):

x(u + h)− x(u) = ∆h[x](u). (1)

As a result, it follows for finite differences of degree i ∈ N.

∆h
(
∆i−1

h [x](u)
)
=

i

∑
l=0

(−1)i−l
(

i
l

)
x(u + lh) = ∆i

h[x](u), (2)

where ∆1
h = ∆h and ∆0

h = I , with I as the identity operator.
Costabile et al. [3,13,14] recently made the first attempt to introduce ∆h polynomial se-

quences, namely ∆h Appell polynomials, and they explored their many features, including
generating functions, differential equations, and determinant forms.

Further, in [3], ∆h Appell sequences Qm(q), m ∈ N were defined by the power series
of the product of two functions γ(t)(1 + hξ)

q1
h by

γ(t)(1 + hξ)
q1
h = Q0(q; h) +Q1(q; h)

t
1!

+Q2(q; h)
t2

2!
+ · · · Qm(q; h)

tm

m!
· · · , (3)

where

γ(t) = γ0,h + γ1,h
t
1!

+ γ2,h
t2

2!
+ · · ·+ γm,h

tm

m!
· · · . (4)

∆h Appell sequences transform into popular sequences and polynomials, such as
extended falling factorials (q)hm ≡ (q)m [12], Bernoulli sequences of the second kind
bm(q) [12], Boole sequences Blm(q; λ) [12], and Poisson–Charlier sequences Cm(q; γ) [12]
(p. 2).

It is possible to trace the beginnings of monomiality back to 1941 when Steffenson
created the poweroid concept [15], which was subsequently improved by Dattoli [16].
The multiplicative and derivative operations for a polynomial set {bm(u)}m∈N are called
the M̂ and D̂ operators, and they fulfill the following expressions:

bm+1(u) = M̂{bm(u)} (5)

and
m bm−1(u) = D̂{bm(u)}. (6)

When multiplicative and derivative operators are used to alter a set {bm(q)}m∈N, it is
referred to as a quasi-monomial and must adhere to the following formula:

[D̂,M̂] = D̂M̂ − M̂D̂ = 1̂, (7)

and the result shows a Weyl group structure.
When the underlying set is quasi-monomial, the characteristics of the operators M̂

and D̂ can be utilized to ascertain the characteristics of the set. Hence, the following
characteristics apply:

(i) bm(q) demonstrates the differential equation

M̂D̂{bm(q)} = m bm(q), (8)
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if M̂ and D̂ possesses differential realizations.
(ii) The following forms can be used to cast the explicit form of bm(u):

bm(q) = M̂m {1}, (9)

while taking b0(q) = 1.
(iii) Moreover, the following may be used to cast a relation in exponential form for bm(q):

etM̂{1} =
∞

∑
m=0

bm(q)
tm

m!
, |t| < ∞ , (10)

by the usage of identity (9).

Numerous branches of mathematical physics, quantum mechanics, and classical optics
still employ these operational methods. Hence, these methods offer powerful and efficient
research tools; for instance, see [17–19].

Motivated by the work of Costabile and Longo [3], we introduce ∆h multi-variate
Hermite polynomials, which can be represented by the generating expression:

(1 + hξ)
q1
h (1 + hξ2)

q2
h (1 + hξ3)

q3
h · · · (1 + hξr)

qr
h =

∞

∑
m=0

∆hH
[r]
m (q1, q2, · · · , qr; h)

ξm

m!
(11)

We derive several of their properties, and the rest of the manuscript is written as
follows: multi-variate ∆h Hermite polynomials are introduced in Section 2 along with
some of their specific features. In Section 3, symmetric identities for these polynomials
are established. Quasi-monomial characteristics for these polynomials are established in
Section 4. A conclusion is added in the last section.

2. ∆h Multi-Variate Hermite Polynomials

In this section, we offer an alternative generic technique for identifying multivariate
∆h Hermite sequences. In actuality, we have

Theorem 1. Since, we observe ∆h multi-variate Hermite are given by (11); therefore, we have

q1 ∆h[∆hH
[r]
m (q1, q2, · · · , qr; h)] = mh ∆hH

[r]
m−1(q1, q2, · · · , qr; h)

q2 ∆h[∆hH
[r]
m (q1, q2, · · · , qr; h)] = m(m− 1)h ∆hH

[r]
m−2(q1, q2, · · · , qr; h)

q3 ∆h[∆hH
[r]
m (q1, q2, · · · , qr; h)] = m(m− 1)(m− 2)h ∆hH

[r]
m−3(q1, q2, · · · , qr; h)

...

...

qr ∆h[∆hH
[r]
m (q1, q2, · · · , qr; h)] = m(m− 1)(m− 2) · · · (m− r + 1)h ∆hH

[r]
m−r(q1, q2, · · · , qr; h).

(12)

Proof. Differentiating Equation (11) w.r.t. q1 via difference operators, we have

q1 ∆h

{ ∞

∑
m=0

∆hHm(q1, q2, · · · , qr; h)
ξm

m!

}
= q1 ∆h

{
(1 + hξ)

q1
h (1 + hξ2)

q2
h (1 + hξ3)

q3
h · · ·

× (1 + hξr)
qr
h

}
Thus, in view of difference operators given by Equations (1) and (2), it follows that
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q1 ∆h

{ ∞

∑
m=0

∆hHm(q1, q2, · · · , qr; h)
ξm

m!

}
= (1 + hξ)

q1+h
h

× (1 + hξ2)
q2
h · · · (1 + hξr)

qr
h − (1 + hξ)

q1
h (1 + hξ2)

q2
h · · · (1 + hξr)

qr
h

=
(

1 + hξ − 1
)
(1 + hξ)

q1
h (1 + hξ2)

q2
h (1 + hξ3)

q3
h · · · (1 + hξr)

qr
h

=
(

hξ
)
(1 + hξ)

q1
h (1 + hξ2)

q2
h (1 + hξ3)

q3
h · · · (1 + hξr)

qr
h

= h
∞

∑
m=0

∆hHm(q1, q2, · · · , qr; h)
tm+1

m!

Replace m with m− 1, then equalize the coefficients of the same powers of ξ in the resultant
expression, and we have

q1 ∆h{
∞

∑
m=0

∆hHm(q1, q2, · · · , qr; h)
ξm

m!
} =

∞

∑
m=0

m{
∞

∑
m=0

∆hHm−1(q1, q2, · · · , qr; h)
ξm

m!
}.

The proof of the first equation of the system of Equation (12) is obtained by comparing
the coefficients of the same powers of ξ on b/s of the previous equation.

Next, differentiating Equation (11) w.r.t. q2 via difference operators, we have

q2 ∆h

{ ∞

∑
m=0

∆hHm(q1, q2, · · · , qr; h)
ξm

m!

}
= q2 ∆h

{
(1 + hξ)

q1
h (1 + hξ2)

q2
h (1 + hξ3)

q3
h · · ·

× (1 + hξr)
qr
h

}
Thus, in view of the difference operators given by Equations (1) and (2), it follows that

q2 ∆h

{ ∞

∑
m=0

∆hHm(q1, q2, · · · , qr; h)
ξm

m!

}
= (1 + hξ)

q1
h

× (1 + hξ2)
q2+h

h · · · (1 + hξr)
qr
h − (1 + hξ)

q1
h (1 + hξ2)

q2
h · · · (1 + hξr)

qr
h

=
(

1 + hξ2 − 1
)
(1 + hξ)

q1
h (1 + hξ2)

q2
h (1 + hξ3)

q3
h · · · (1 + hξr)

qr
h

=
(

hξ2
)
(1 + hξ)

q1
h (1 + hξ2)

q2
h (1 + hξ3)

q3
h · · · (1 + hξr)

qr
h

= h
∞

∑
m=0

∆hHm(q1, q2, · · · , qr; h)
tm+2

m!
.

Replace m with m− 2, then equalize the coefficients of the same powers of ξ in the resultant
expression, and we have

q1 ∆h{
∞

∑
m=0

∆hHm(q1, q2, · · · , qr; h)
ξm

m!
} =

∞

∑
m=0

m(m− 1){
∞

∑
m=0

∆hHm−2(q1, q2, · · · , qr; h)
ξm

m!
},

the proof of the second equation of the system of Equation (12) is obtained by comparing
the coefficients of the same powers of ξ on b/s of the previous equation.

In a similar fashion, differentiating Equation (11) w.r.t. qr via difference operators,
we have
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qr ∆h

{ ∞

∑
m=0

∆hHm(q1, q2, · · · , qr; h)
ξm

m!

}
= qr ∆h

{
(1 + hξ)

q1
h (1 + hξ2)

q2
h (1 + hξ3)

q3
h · · ·

× (1 + hξr)
qr
h

}
Thus, in view of the difference operators given by Equations (1) and (2), it follows that

qr ∆h

{ ∞

∑
m=0

∆hHm(q1, q2, · · · , qr; h)
ξm

m!

}
= (1 + hξ)

q1
h

× (1 + hξ2)
q2
h · · · (1 + hξr)

qr
h − (1 + hξ)

q1
h (1 + hξ2)

q2
h · · · (1 + hξr)

qr+h
h

=
(

1 + hξr − 1
)
(1 + hξ)

q1
h (1 + hξ2)

q2
h (1 + hξ3)

q3
h · · · (1 + hξr)

qr
h

=
(

hξr
)
(1 + hξ)

q1
h (1 + hξ2)

q2
h (1 + hξ3)

q3
h · · · (1 + hξr)

qr
h

= h
∞

∑
m=0

∆hHm(q1, q2, · · · , qr; h)
tm+r

m!
.

Replace m with m− r, then equalize the coefficients of the same powers of ξ in the resultant
expression, and we have

qr ∆h{
∞

∑
m=0

∆hHm(q1, q2, · · · , qr; h)
ξm

m!
} =

∞

∑
m=0

m(m− 1)(m− 2) · · · (m− r + 1)

×
{

∞

∑
m=0

∆hHm−r(q1, q2, · · · , qr; h)
ξm

m!

}
,

the proof of the rth equation of the system of Equation (12) is obtained by comparing the
coefficients of the same powers of ξ on b/s of the previous equation.

Theorem 2. Further, the ∆h multi-variate Hermite polynomials ∆hHm(q1, q2, · · · , qr; h), m ∈ N
are determined by the power series expansion of the product (1 + hξ)

q1
h (1 + hξ2)

q2
h

(1 + hξ3)
q3
h · · · (1 + hξr)

qr
h , that is

(1 + hξ)
q1
h (1 + hξ2)

q2
h (1 + hξ3)

q3
h = ∆hH0(q1, q2, · · · , qr; h) + ∆hH1(q1, q2, · · · , qr; h) ξ

1!

+∆hH2(q1, q2, · · · , qr; h) ξ2

2! + · · ·+ ∆hHm(q1, q2, · · · , qr; h) ξm

m! + · · · .
(13)

Proof. Expanding (1+ hξ)
q1
h (1+ hξ2)

q2
h (1+ hξ3)

q3
h · · · (1+ hξr)

qr
h by a Newton series for

finite differences at q1 = q2 = · · · qr = 0 and the order the product of the developments of
function (1 + hξ)

q1
h (1 + hξ2)

q2
h (1 + hξ3)

q3
h · · · (1 + hξr)

qr
h w.r.t. the powers of ξ, then, in

view of expression (3) with γ(t) = 1, we observe the polynomials ∆hHm(q1, q2, · · · , qr; h)
expressed in Equation (13) as coefficients of ξm

m! as the generating function of ∆h multi-
variate Hermite polynomials.

Next, we establish the quasi-monomial properties satisfied by ∆h multi-variate Her-
mite polynomials by proving the following results:

Theorem 3. The ∆h multi-variate Hermite polynomials satisfy the following multiplicative and
derivative operators:
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∆hHm+1(q1, q2, · · · , qr; h) = M̂∆h{∆hHm(q1, q2, · · · , qr; h)} =(
q1

1
1+q1 ∆h

+ 2q2
q1 ∆h

h+q1 ∆h
2 + 3q3

q1 ∆h

h2+q1 ∆h
3 + · · ·+ rqr

q1 ∆h
r−1

hr−1+q1 ∆h
r

)
{∆hHm(q1, q2, · · · , qr; h)} (14)

and
∆hHm−1(q1, q2, · · · , qr; h) = ˆD∆h

{
∆hHm(q1, q2, · · · , qr; h)

}
=

log(1+q1 ∆h)

mh

{
∆hHm(q1, q2, · · · , qr; h)

}
,

(15)

respectively.

Proof. In view of finite difference operator ∆h, we have

q1 ∆h

[
∆hHm(q1, q2, · · · , qr; h)

]
= h ξ

[
∆hHm−1(q1, q2, · · · , qr; h)

]
, (16)

or
q1 ∆h

h

[
∆hHm(q1, q2, · · · , qr; h)

]
= ξ

[
∆hHm−1(q1, q2, · · · , qr; h)

]
. (17)

Differentiating (11) w.r.t. ξ and q1, separately, we find

∆hHm+1(q1, q2, · · · , qr; h) = M̂∆h

{
∆hHm(q1, q2, · · · , qr; h)

}
=(

q1
1+hξ + 2 q2ξ

1+hξ2 +
3 q3ξ2

1+hξ3 + · · ·+
r qrξr−1

1+hξr

){
∆hHm(q1, q2, · · · , qr; h)

} (18)

and
∆hHm(q1, q2, · · · , qr; h) = ˆD∆h

{
∆hHm(q1, q2, · · · , qr; h)

}
=

log(1+hξ)
mh

{
∆hHm(q1, q2, · · · , qr; h)

}
.

(19)

Using identity (17) in view of (5) and (6) in above Equations (18) and (19), we are led
to assertions (14) and (15).

Theorem 4. The ∆h multi-variate Hermite polynomials satisfy the differential equation listed as:(
q1

1
1+q1 ∆h

+ 2q2
q1 ∆h

h+q1 ∆h
2 + 3q3

q1 ∆h

h2+q1 ∆h
3 + · · ·+ rqr

q1 ∆h
r−1

hr−1+q1 ∆h
r − m2h

log(1+q1 ∆h)

)
× ∆hHm(q1, q2, · · · , qr; h) = 0.

(20)

Proof. Making use of expressions (14) and (15) in (8), we are led to assertion (20).

Since, (1+ hξ)
1
h → eξ as h→ 0 , it is clear that expression (11) reduces to multi-variable

Hermite polynomials.

3. Symmetric Identities

We provide symmetric identities for the multivariate Hermite Kampé de Fériet poly-
nomials in this section. Furthermore, we learn some of the multi-variate Hermite Kampé
de Fériet polynomials’ formulae and characteristics.

Theorem 5. For, β 6= α and β, α.0, we have

αm
∆hHm(βq1, βq2, · · · , βqr; h) = βm

∆hHm(αq1, αq2, · · · , αqr; h). (21)

Proof. Since, β 6= α and β, α.0, we start by writing:

R(ξ; q1, q2, q3, · · · , qr; h) = (1 + hξ)
αβq1

h (1 + hξ2)
α2β2q2

h · · · (1 + hξr)
αr βrqr

h . (22)
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Therefore, the above expression R(ξ; q1, q2, q3, · · · , qr; h) is symmetric in α and β.
Further, we can write

R(ξ; q1, q2, q3, · · · , qr; h) = ∆hHm(αq1, α2q2, · · · , αrqr; h) (βξ)m

m! =

βm
∆hHm(αq1, α2q2, · · · , αrqr; h) ξm

m! .
(23)

Thus, it follows that

R(ξ; q1, q2, q3, · · · , qr; h) = ∆hHm(βq1, β2q2, · · · , βrqr; h) (αξ)m

m! =

αm
∆hHm(βq1, β2q2, · · · , βrqr; h) ξm

m! .
. (24)

The assertion (21) is obtained by equating the coefficients of the like term of xi in the final
two equations (23) and (24).

Theorem 6. For, β 6= α β, α > 0, and it follows that

m

∑
i=0

i

∑
n=0

(
m
i

)(
i
n

)
αiβm+1−i

∆hHm(βq1, β2q2, · · · , βrqr; h)Pm−i(α− 1; h) =

m

∑
i=0

i

∑
n=0

(
m
i

)(
i
n

)
βiαm+1−i

∆hHm(αq1, α2q2, · · · , αrqr; h)Pm−i(β− 1; h). (25)

Proof. Since, β 6= α β, α > 0, we start by writing:

S(ξ; q1, q2, q3, · · · , qr; h) =

αβξ(1 + hξ)
αβq1

h (1 + hξ2)
α2β2q2

h · · · (1 + hξr)
αr βrqr

h

(
(1 + hξ)

αβq1
h −1

)
(
(1 + hξ)

α
h−1
)(

(1 + hξ)
β
h−1
) . (26)

In a similar way to the previous theorem, we obtain statement (25).

Theorem 7. For, β 6= α β, α > 0, we have

m

∑
i=0

i

∑
n=0

(
m
i

)(
i
n

)
αiβm+1−i Bm(h)∆hHi−m(βq1, β2q2, · · · , βrqr; h)Pm−i(α− 1; h) σm−i(α− 1; h) =

m

∑
i=0

i

∑
n=0

(
m
i

)(
i
n

)
βiαm+1−i Bm(h)∆hHi−m(αq1, α2q2, · · · , αrqr; h) σm−i(β− 1; h). (27)

Proof. Since, β 6= α β, α > 0, we start by writing:

T(ξ; q1, q2, q3, · · · , qr; h) =

αβξ(1 + hξ)
αβq1

h (1 + hξ2)
α2β2q2

h · · · (1 + hξr)
αr βrqr

h

(
(1 + hξ)

αβq1
h −1

)
(
(1 + hξ)

α
h−1
)(

(1 + hξ)
β
h−1
) . (28)

The preceding equation may be expressed as

T(ξ; q1, q2, q3, · · · , qr; h) = αβξ(
(1+hξ)

α
h−1

) (1 + hξ)
αβq1

h (1 + hξ2)
α2β2q2

h · · · (1 + hξr)
αr βrqr

h

×

(
(1+hξ)

αβq1
h −1

)
(
(1+hξ)

β
h −1

) .
(29)
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Using αβξ(
(1+hξ)

α
h−1

) = α
∞
∑

m=0
Bm(h)

(βξ)m

m! ,

(
(1+hξ)

αβq1
h −1

)
(
(1+hξ)

β
h −1

) = σm−i(α− 1; h) (βξ)m

m! and (11), we

have

T(ξ; q1, q2, q3, · · · , qr; h) = α
∞
∑

m=0
Bm(h)

(βξ)m

m!

∞
∑

m=0
∆hHm(βq1, β2q2, · · · , βrqr; h) (αξ)m

m!

×
∞
∑

m=0
σm−i(α− 1; h) (βξ)m

m!

=
∞
∑

m=0

(
∑m

i=0 ∑i
n=0 (

m
i )(

i
n)α

iβm+1−i Bm(h)∆hHi−m(βq1, β2q2, · · · , βrqr; h)σm−i(α− 1; h)
)

ξm

m! .

(30)

If we proceed in the same way, we have

T(ξ; q1, q2, q3, · · · , qr; h) = ∑∞
m=0

(
∑m

i=0 ∑i
n=0 (

m
i )(

i
n)βiαm+1−i Bm(h)

×∆hHi−m(βq1, β2q2, · · · , βrqr; h) σm−i(β− 1; h)
)

ξm

m! .
(31)

If we compare the coefficients of expressions (30) and (31), we obtain the result (27).

4. Operational Formalism and Identities

The creation of new functional families and the facilitation of the derivation of the at-
tributes associated with regular and generalized special functions are both possible through
the application of operational approaches. Dattoli and their collaborators [15,16,20–23]
are interested in the study of special functions that aim to discover explicit solutions for
families of partial differential equations, such those of the Heat and D’Alembert type,
and their applications have acknowledged the value of using operational processes.

Differentiating successively (11) w.r.t. q1 via the forward difference operator concept
by taking into consideration expression (2), we find

q1 ∆h[∆hH
[r]
m (q1, q2, · · · , qr; h)] = mh ∆hH

[r]
m−1(q1, q2, · · · , qr; h)

q1 ∆2
h[∆hH

[r]
m (q1, q2, · · · , qr; h)] = m(m− 1)h ∆hH

[r]
m−2(q1, q2, · · · , qr; h)

...

q1 ∆r
h[∆hH

[r]
m (q1, q2, · · · , qr; h)] = m(m− 1)(m− 2) · · · (m− r + 1)h

× ∆hH
[r]
m−r(q1, q2, · · · , qr; h).

(32)

Next, differentiating (11) w.r.t. q2, q3, · · · , qr via the forward difference operator concept by
taking into consideration expression (2), we find

q2 ∆h[∆hH
[r]
m (q1, q2, · · · , qr; h)] = m(m− 1)h ∆hH

[r]
m−2(q1, q2, · · · , qr; h)

q3 ∆h[∆hH
[r]
m (q1, q2, · · · , qr; h)] = m(m− 1)(m− 2)h ∆hH

[r]
m−3(q1, q2, · · · , qr; h)

...

...

qr ∆h[∆hH
[r]
m (q1, q2, · · · , qr; h)] = m(m− 1)(m− 2) · · · (m− r + 1)h

×∆hH
[r]
m−r(q1, q2, · · · , qr; h).

(33)
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In view of system of expressions (32) and (33), we find that ∆hH
[r]
m−r(q1, q2, · · · , qr; h) are

solutions of the expressions:

q2 ∆h[∆hH
[r]
m (q1, q2, · · · , qr; h)] = q1 ∆2

h∆hH
[r]
m−2(q1, q2, · · · , qr; h)

q3 ∆h[∆hH
[r]
m (q1, q2, · · · , qr; h)] = q1 ∆3

h ∆hH
[r]
m−3(q1, q2, · · · , qr; h)

...

...

qr ∆h[∆hH
[r]
m (q1, q2, · · · , qr; h)] = q1 ∆r

h ∆hH
[r]
m−r(q1, q2, · · · , qr; h),

(34)

under the listed initial condition

∆hH
[r]
m (q1, 0, 0, · · · , 0; h) = ∆hHm(q1; h). (35)

Therefore, from system of expressions (34) and expression (35), we find that

∆hH
[r]
m (q1, q2, · · · , qr; h) = exp

(
q2 q1 ∆2

h + q3 q1 ∆3
h + · · ·+ qr q1 ∆r

h

)
∆hHm(q1; h). (36)

In light of previous mentioned expression, the ∆h multi-variate Hermite polynomials

∆hH
[r]
m (q1, q2, · · · , qr; h) can be constructed from the the ∆h polynomial ∆hHm(q1, ; h) by

applying the operational rule (36).

5. Conclusions

Here, we introduced the ∆h multi-variate Hermite polynomials, and some of their
specific features were presented: Quasi-monomial characteristics for these polynomials
were established in Section 2, and forward difference relations were established in Theorem
1. Furthermore, symmetric identities were given in Section 3, and the operational rule was
established in Section 4.

Many mathematicians and physicists employ the Hermite polynomials, a set of poly-
nomials that is particularly useful for studying quantum mechanics. They are named after
the French mathematician Charles Hermite, who conducted the initial investigation into
them in the late 19th century. A collection of orthogonal polynomials known as the Hermite
polynomials fulfills the Hermite differential equation—a particular type of differential
equation. In addition to Gaussian quadrature, these polynomials may be found in physics,
numerical analysis, the quantum harmonic oscillator, and Schrondinger’s equation. They
also come up often in problems involving theoretical physics, approximation theory, ap-
plied mathematics, and other disciplines of mathematics including biological and medical
science.

The above-mentioned polynomials may also be proven to have extended generalized
forms, integral representations, and other features through further research and observation.
Furthermore, the interpolation form, recurrence relations, shift operators, and summation
formulae can also be a problem for new observations. Moreover, the hybrid forms of these
polynomials can be studied in future investigations, such as when convoluting with ∆h
Bernoulli, Euler, Genocchi, and Tangent polynomials.
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