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Abstract: This study follows the line of research that by employing the monomiality principle, new
outcomes are produced. Thus, in line with prior facts, our aim is to introduce the ∆h multi-variate
Hermite Appell polynomials ∆hHA

[r]
m (q1, q2, · · · , qr; h). Further, we obtain their recurrence sort of

relations by using difference operators. Furthermore, symmetric identities satisfied by these polyno-
mials are established. The operational rules are helpful in demonstrating the novel characteristics of
the polynomial families and thus operational principle satisfied by these polynomials is derived and
will prove beneficial for future observations. Further, a few members of the ∆h Appell polynomial
family are considered and their corresponding results are derived accordingly.

Keywords: ∆h Appell sequences; ∆h multivariate Hermite polynomials; symmetric identities; mono-
miality principle; operational formalism

MSC: 26A33; 33E20; 33B10; 33E30; 33C45

1. Introduction

The Hermite polynomial sequences [1] is one of the important classes of polynomial
sequences, and they arise in many issues in applied mathematics, theoretical physics,
approximation theory, and other branches of mathematics. Particularly in recent years, a
number of extensions of special functions in mathematical physics have seen significant
evolution. The bulk of precisely solved problems in mathematical physics and engineering,
which have several broad applications, now have an analytical foundation thanks to this
new discovery. A notable development in the theory of generalized special functions is the
introduction of multitudinous-index and variable special functions. Both in pure mathe-
matics and practical situations, the importance of these functions has been recognized. It is
recognized that these polynomials with multitudinous variables and multitudinous indices
are necessary to address the problems that are being raised in a variety of mathematical
fields, from the theory of partial differential equations to abstract group theory. Hermite
polynomials with multiple indices and variables were initially proposed by Hermite him-
self. The Hermite polynomials may be found in physics, numerical analysis, the quantum
harmonic oscillator, and Schrödinger’s equation, as well as in Gaussian quadrature.

A large number of authors are taking interest in introducing and finding several char-
acteristics of ∆h special polynomials, see for example [2–6]. Recently, Shahid Wani et al.,
established various doped polynomials of a special type and derived their numerous char-
acteristics and properties, which are important from an engineering point of view, see
e.g., [7–11]. These properties include summation formulae, determinant forms, approxima-
tion properties, explicit and implicit formulae, generating expressions, etc.
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Let g : I ⊂ R→ R and h ∈ R+, then the forward difference operator represented by
∆h ([12] p. 2) is given by

∆h[g](u) = g(u + h)− g(u). (1)

Thus, for finite difference of order i ∈ N, it follows

∆i
h[g](u) = ∆h

(
∆i−1

h [g](u)
)
=

i

∑
l=0

(−1)i−l
(

i
l

)
g(u + lh), (2)

where ∆0
h = I and ∆1

h = ∆h, with I as the identity operator.
Costabile et al. [3,13,14] recently made the first attempt to introduce ∆h polynomial se-

quences, namely ∆h Appell polynomials, and they explored their many features, including
generating function, differential equation, determinant form, etc.

Further, in [3], ∆h Appell sequences Qm(q), m ∈ N were defined by the power series
of the product of two functions γ(t)(1 + hξ)

q1
h by

η(ξ)(1 + hξ)
q1
h = Q0(q; h) +Q1(q; h)

ξ

1!
+Q2(q; h)

ξ2

2!
+ · · · Qm(q; h)

ξm

m!
+ · · · , (3)

where

η(ξ) = η0,h + η1,h
ξ

1!
+ η2,h

ξ2

2!
+ · · ·+ ηm,h

ξm

m!
· · · . (4)

∆h Appell sequences transform into popular sequences and polynomials such as
extended falling factorials (q)hm ≡ (q)m [12], Bernoulli sequence of the second kind
bm(q) [12], Boole sequence Blm(q; λ) [12], and Poisson–Charlier sequence Cm(q; γ)([12]
p. 2).

The origins of monomiality can be traced to 1941 when Steffenson developed the
poweroid notion [15], which was later refined by Dattoli [16]. The M̂ and D̂ operators exist
and function as multiplicative and derivative operators for a polynomial set {bm(u)}m∈N,
which means that they satisfy the following expressions:

bm+1(u) = M̂{bm(u)} (5)

and
m bm−1(u) = D̂{bm(u)}. (6)

Then, the set {bm(q)}m∈N manipulated by multiplicative and derivative operators is re-
ferred to as a quasi-monomial and is required to obey the formula:

[D̂,M̂] = D̂M̂ − M̂D̂ = 1̂, (7)

thus displays a Weyl group structure as a result.
The properties of the operators M̂ and D̂ can be used to determine the properties

of the underlying set {bm(q)}m∈N when it is quasi-monomial. Thus, the following traits
are accurate:

(i) bm(q) demonstrate the differential equation

M̂D̂{bm(q)} = m bm(q), (8)

if M̂ and D̂ possesses differential realizations.
(ii) The explicit form of bm(u), can be cast in the form as listed:

bm(q) = M̂m {1}, (9)

while taking, b0(q) = 1.
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(iii) Furthermore, generating relation in exponential form for bm(q) can be cast in the form

etM̂{1} =
∞

∑
m=0

bm(q)
tm

m!
, |t| < ∞ , (10)

by usage of identity (9).

These operational approaches are still used today in many areas of mathematical
physics, quantum mechanics, and classical optics. Therefore, these techniques provide
effective and potent tools of research, see for example [17–19].

Motivated by the work of Costabile and Longo [3], who introduced ∆h Appell se-
quences and established their several characterizations including generating relation, series
expansion, and determinant form. Here, we are introducing the ∆h multi-variate Hermite
Appell polynomial sequence, which contains the whole Appell family and multivariate
Hermite polynomials and thus contains a larger family of polynomial sequences and es-
tablishes their several characterizations, which will prove beneficial and significant in the
long run of ∆h polynomial sequences. The introduction of ∆h multi-variate Hermite Appell
polynomials will pay a way to introduce different hybrid and doped ∆h special polyno-
mials, being important in the field of engineering and mathematical sciences. Therefore,
considering the importance of the above-mentioned class of polynomials, we give the
generating expression for these ∆h multi-variate Hermite Appell polynomials as listed:

η(ξ) (1 + hξ)
q1
h (1 + hξ2)

q2
h (1 + hξ3)

q3
h · · · (1 + hξr)

qr
h =

∞

∑
m=0

∆hHA
[r]
m (q1, q2, · · · , qr; h)

ξm

m!
(11)

and derive their several properties. The rest of the manuscript is written as follows:
multi-variate ∆h Hermite Appell polynomials are introduced in Section 2 along with
some of their specific features. In Section 3, symmetric identities for these polynomials
are established. Quasi-monomial characteristics for these polynomials are established in
Section 4. Corresponding results for certain members are given by taking an appropriate
choice of ∆h Appell polynomial family. A conclusion part is added in the last section.

2. ∆h Multi-Variate Hermite Appell Polynomials

In this section, we offer an alternative generic technique for identifying multivariate
∆h Hermite Appell sequences. In actuality, we have

Theorem 1. Since, we observe ∆h multi-variate Hermite Appell sequences are given by (11);
therefore, we have

q1 ∆h[∆hHA
[r]
m (q1, q2, · · · , qr; h)] = mh ∆hHA[r]

m−1(q1, q2, · · · , qr; h)

q2 ∆h[∆hHA
[r]
m (q1, q2, · · · , qr; h)] = m(m− 1)h ∆hHA

[r]
m−2(q1, q2, · · · , qr; h)

q3 ∆h[∆hHA
[r]
m (q1, q2, · · · , qr; h)] = m(m− 1)(m− 2)h ∆hHA

[r]
m−3(q1, q2, · · · , qr; h)

...

...

qr ∆h[∆hHA
[r]
m (q1, q2, · · · , qr; h)] = m(m− 1)(m− 2) · · · (m− r + 1)h

× ∆hHA
[r]
m−r(q1, q2, · · · , qr; h).

(12)

Proof. Differentiating Equation (11) with regard to q1 via difference operators, we have

q1 ∆h

{ ∞

∑
m=0

∆hHA
[r]
m (q1, q2, · · · , qr; h)

ξm

m!

}
= q1 ∆h

{
η(ξ)(1 + hξ)

q1
h (1 + hξ2)

q2
h (1 + hξ3)

q3
h · · ·

× (1 + hξr)
qr
h

}
thus, in view of difference operators given by Equations (1) and (2), it follows that
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q1 ∆h

{ ∞

∑
m=0

∆hHA
[r]
m (q1, q2, · · · , qr; h)

ξm

m!

}
= η(ξ)(1 + hξ)

q1+h
h

× (1 + hξ2)
q2
h · · · (1 + hξr)

qr
h − η(ξ)(1 + hξ)

q1
h (1 + hξ2)

q2
h · · · (1 + hξr)

qr
h

=
(

1 + hξ − 1
)

η(ξ)(1 + hξ)
q1
h (1 + hξ2)

q2
h (1 + hξ3)

q3
h · · · (1 + hξr)

qr
h

=
(

hξ
)

η(ξ)(1 + hξ)
q1
h (1 + hξ2)

q2
h (1 + hξ3)

q3
h · · · (1 + hξr)

qr
h

= h
∞

∑
m=0

∆hHA
[r]
m (q1, q2, · · · , qr; h)

tm+1

m!
.

Replace m with m− 1, and then equalize the coefficients of the same powers of ξ in the
resultant expression, we have

q1 ∆h

{
∞

∑
m=0

∆hHA
[r]
m (q1, q2, · · · , qr; h)

ξm

m!

}
=

∞

∑
m=0

m

{
∞

∑
m=0

∆hHA
[r]
m−1(q1, q2, · · · , qr; h)

ξm

m!

}
,

the proof of the first equation of the system of Equation (12) is obtained by comparing the
coefficients of the same powers of ξ on b/s of the previous equation.

Next, differentiating Equation (11) with regard to q2 via difference operators, we have

q2 ∆h

{ ∞

∑
m=0

∆hHA
[r]
m (q1, q2, · · · , qr; h)

ξm

m!

}
= q2 ∆h

{
η(ξ)(1 + hξ)

q1
h (1 + hξ2)

q2
h (1 + hξ3)

q3
h · · ·

× (1 + hξr)
qr
h

}
thus, in view of difference operators given by Equations (1) and (2), it follows that

q2 ∆h

{
∞

∑
m=0

∆hHA
[r]
m (q1, q2, · · · , qr; h)

ξm

m!

}
= η(ξ)(1 + hξ)

q1
h

× (1 + hξ2)
q2+h

h · · · (1 + hξr)
qr
h − η(ξ)(1 + hξ)

q1
h (1 + hξ2)

q2
h · · · (1 + hξr)

qr
h

=
(

1 + hξ2 − 1
)

η(ξ)(1 + hξ)
q1
h (1 + hξ2)

q2
h (1 + hξ3)

q3
h · · · (1 + hξr)

qr
h

=
(

hξ2
)

η(ξ)(1 + hξ)
q1
h (1 + hξ2)

q2
h (1 + hξ3)

q3
h · · · (1 + hξr)

qr
h

= h
∞

∑
m=0

∆hHA
[r]
m (q1, q2, · · · , qr; h)

tm+2

m!
.

Replace m with m− 2, and then equalize the coefficients of the same powers of ξ in the
resultant expression, we have

q1 ∆h

{ ∞

∑
m=0

∆hHA
[r]
m (q1, q2, · · · , qr; h)

ξm

m!

}
=

∞

∑
m=0

m(m− 1)

{ ∞

∑
m=0

∆hHA
[r]
m−2(q1, q2, · · · , qr; h)

ξm

m!

}
,

the proof of the second equation of the system of Equation (12) is obtained by comparing
the coefficients of the same powers of ξ on b/s of the previous equation.

By using a similar fashion, differentiating Equation (11) with regard to qr via difference
operators, we have

qr ∆h

{
∞

∑
m=0

∆hHA
[r]
m (q1, q2, · · · , qr; h)

ξm

m!

}
= qr ∆h

{
η(xi)(1 + hξ)

q1
h (1 + hξ2)

q2
h (1 + hξ3)

q3
h · · ·

× (1 + hξr)
qr
h

}
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thus, in view of difference operators given by Equations (1) and (2), it follows that

qr ∆h

{ ∞

∑
m=0

∆hHA
[r]
m (q1, q2, · · · , qr; h)

ξm

m!

}
= η(ξ)(1 + hξ)

q1
h

× (1 + hξ2)
q2
h · · · (1 + hξr)

qr
h − η(ξ)(1 + hξ)

q1
h (1 + hξ2)

q2
h · · · (1 + hξr)

qr+h
h

=
(

1 + hξr − 1
)

η(ξ)(1 + hξ)
q1
h (1 + hξ2)

q2
h (1 + hξ3)

q3
h · · · (1 + hξr)

qr
h

=
(

hξr
)

η(ξ)(1 + hξ)
q1
h (1 + hξ2)

q2
h (1 + hξ3)

q3
h · · · (1 + hξr)

qr
h

= h
∞

∑
m=0

∆hHA
[r]
m (q1, q2, · · · , qr; h)

tm+r

m!
.

Replace m with m− r, and then equalize the coefficients of the same powers of ξ in the
resultant expression, we have

qr ∆h{
∞

∑
m=0

∆hHA
[r]
m (q1, q2, · · · , qr; h)

ξm

m!
} =

∞

∑
m=0

m(m− 1)(m− 2) · · · (m− r + 1)

×
{

∞

∑
m=0

∆hHA
[r]
m−r(q1, q2, · · · , qr; h)

ξm

m!

}
,

the proof of the rth equation of the system of Equation (12) is obtained by comparing the
coefficients of the same powers of ξ on b/s of the previous equation.

Theorem 2. Further, the ∆h multi-variate Hermite Appell polynomials ∆hHA
[r]
m (q1, q2, · · · , qr; h),

m ∈ N is determined by the power series expansion of the product η(ξ)(1 + hξ)
q1
h (1 + hξ2)

q2
h

(1 + hξ3)
q3
h · · · (1 + hξr)

qr
h , that is

η(ξ)(1 + hξ)
q1
h (1 + hξ2)

q2
h (1 + hξ3)

q3
h = ∆hHA

[r]
0 (q1, q2, · · · , qr; h) + ∆hHA

[r]
1 (q1, q2, · · · , qr; h) ξ

1!

+∆hHA
[r]
2 (q1, q2, · · · , qr; h) ξ2

2! + · · ·+ ∆hHA
[r]
m (q1, q2, · · · , qr; h) ξm

m! + · · · .
(13)

Proof. Expanding η(ξ)(1 + hξ)
q1
h (1 + hξ2)

q2
h (1 + hξ3)

q3
h · · · (1 + hξr)

qr
h by Newton series

for finite differences at q1 = q2 = · · · qr = 0 and order the product of the developments of
functions η(ξ) and (1+ hξ)

q1
h (1+ hξ2)

q2
h (1+ hξ3)

q3
h · · · (1+ hξr)

qr
h with regard to the pow-

ers of ξ, then in view of expression (3), we observe the polynomials ∆hHA
[r]
m (q1, q2, · · · , qr; h)

are expressed in Equation (13) as coefficients of ξm

m! as the generating function of ∆h multi-
variate Hermite Appell polynomials.

Next, we establish the quasi-monomial properties satisfied by ∆h multi-variate Her-
mite Appell polynomials, by proving the following results:

Theorem 3. The ∆h multi-variate Hermite Appell polynomials satisfy the following multiplicative
and derivative operators:

∆hHA
[r]
m+1(q1, q2, · · · , qr; h) = M̂∆h{∆hHA

[r]
m (q1, q2, · · · , qr; h)} =

(
η(

q1 ∆h
h ) + q1

1
1+q1 ∆h

+2q2
q1 ∆h

h+q1 ∆h
2 + 3q3

q1 ∆h

h2+q1 ∆h
3 + · · ·+ rqr

q1 ∆h
r−1

hr−1+q1 ∆h
r

)
{∆hHA

[r]
m (q1, q2, · · · , qr; h)}

(14)

and
∆hHA

[r]
m−1(q1, q2, · · · , qr; h) = ˆD∆h

{
∆hHA

[r]
m (q1, q2, · · · , qr; h)

}
=

log(1+q1 ∆h)

mh

{
∆hHA

[r]
m (q1, q2, · · · , qr; h)

}
,

(15)
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respectively.

Proof. In view of finite difference operator ∆h, we have

q1 ∆h

[
∆hHA

[r]
m (q1, q2, · · · , qr; h)

]
= h ξ

[
∆hHA

[r]
m−1(q1, q2, · · · , qr; h)

]
, (16)

or
q1 ∆h

h

[
∆hHA

[r]
m (q1, q2, · · · , qr; h)

]
= ξ

[
∆hHA

[r]
m−1(q1, q2, · · · , qr; h)

]
. (17)

Differentiating (11) with regard to ξ and q1, separately, we find

∆hHA
[r]
m+1(q1, q2, · · · , qr; h) = M̂∆h

{
∆hHA

[r]
m (q1, q2, · · · , qr; h)

}
=(

η′(ξ)
η(ξ)

+ q1
1+hξ + 2 q2ξ

1+hξ2 +
3 q3ξ2

1+hξ3 + · · ·+
r qrξr−1

1+hξr

){
∆hHA

[r]
m (q1, q2, · · · , qr; h)

} (18)

and
∆hHA

[r]
m (q1, q2, · · · , qr; h) = ˆD∆h

{
∆hHA

[r]
m (q1, q2, · · · , qr; h)

}
=

log(1+hξ)
mh

{
∆hHA

[r]
m (q1, q2, · · · , qr; h)

}
.

(19)

Using identity (17) in view of (5) and (6) in above Equations (18) and (19), we are lead to
assertions (14) and (15).

Theorem 4. The ∆h multi-variate Hermite polynomials satisfy the differential equation listed as:(
η′(

q1 ∆h
h )

η(
q1 ∆h

h )
+ q1

1
1+q1 ∆h

+ 2q2
q1 ∆h

h+q1 ∆h
2 + 3q3

q1 ∆h

h2+q1 ∆h
3 + · · ·+ rqr

q1 ∆h
r−1

hr−1+q1 ∆h
r − m2h

log(1+q1 ∆h)

)
× ∆hHA

[r]
m (q1, q2, · · · , qr; h) = 0.

(20)

Proof. Making use of expressions (14) and (15) in (8), we are lead to assertion (20).

3. Symmetric Identities

We provide symmetric identities for the multivariate Hermite Kampé de Fériet Appell
polynomials in this section. Furthermore, we learn some of the multi-variate Hermite
Kampé de Fériet Appell polynomials’ formulae and characteristics.

Theorem 5. For, β 6= α and β, α > 0, we have

αm
∆hHA

[r]
m (βq1, βq2, · · · , βqr; h) = βm

∆hHA
[r]
m (αq1, αq2, · · · , αqr; h). (21)

Proof. Since, β 6= α and β, α.0, we start by writing:

R(ξ; q1, q2, q3, · · · , qr; h) = η(ξ)(1 + hξ)
αβq1

h (1 + hξ2)
α2β2q2

h · · · (1 + hξr)
αr βrqr

h . (22)

Therefore, the above expression R(ξ; q1, q2, q3, · · · , qr; h) is symmetric in α and β.
Further, we can write

R(ξ; q1, q2, q3, · · · , qr; h) = ∆hHA
[r]
m (αq1, α2q2, · · · , αrqr; h) (βξ)m

m! =

βm
∆hHA

[r]
m (αq1, α2q2, · · · , αrqr; h) ξm

m! .
(23)

Thus, it follows that

R(ξ; q1, q2, q3, · · · , qr; h) = ∆hHA
[r]
m (βq1, β2q2, · · · , βrqr; h) (αξ)m

m! =

αm
∆hHA

[r]
m (βq1, β2q2, · · · , βrqr; h) ξm

m! .
. (24)
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The assertion (21) is obtained by equating the coefficients of the similar term of xi in
the final two Equations (23) and (24).

Theorem 6. For, β 6= α β, α > 0 and, it follows that

m

∑
i=0

i

∑
n=0

(
m
i

)(
i
n

)
αiβm+1−i

∆hHA
[r]
m (βq1, β2q2, · · · , βrqr; h)Pm−i(α− 1; h) =

m

∑
i=0

i

∑
n=0

(
m
i

)(
i
n

)
βiαm+1−i

∆hHA
[r]
m (αq1, α2q2, · · · , αrqr; h)Pm−i(β− 1; h). (25)

Proof. Since, β 6= α β, α > 0, we start by writing:

S(ξ; q1, q2, q3, · · · , qr; h) =

αβξ η(ξ)(1 + hξ)
αβq1

h (1 + hξ2)
α2β2q2

h · · · (1 + hξr)
αr βrqr

h

(
(1 + hξ)

αβq1
h −1

)
(
(1 + hξ)

α
h−1
)(

(1 + hξ)
β
h−1
) . (26)

In a similar way to the previous theorem, we obtain statement (25).

Theorem 7. For, β 6= α β, α > 0, we have

m

∑
i=0

i

∑
n=0

(
m
i

)(
i
n

)
αiβm+1−i Bm(h)∆hHA

[r]
i−m(βq1, β2q2, · · · , βrqr; h)Pm−i(α− 1; h) σm−i(α− 1; h) =

m

∑
i=0

i

∑
n=0

(
m
i

)(
i
n

)
βiαm+1−i Bm(h)∆hHA

[r]
i−m(αq1, α2q2, · · · , αrqr; h) σm−i(β− 1; h). (27)

Proof. Since, β 6= α β, α > 0, we start by writing:

T(ξ; q1, q2, q3, · · · , qr; h) =

αβξ η(ξ)(1 + hξ)
αβq1

h (1 + hξ2)
α2β2q2

h · · · (1 + hξr)
αr βrqr

h

(
(1 + hξ)

αβq1
h −1

)
(
(1 + hξ)

α
h−1
)(

(1 + hξ)
β
h−1
) . (28)

The preceding equation may be expressed as

T(ξ; q1, q2, q3, · · · , qr; h) = αβξ(
(1+hξ)

α
h−1

)η(ξ)(1 + hξ)
αβq1

h (1 + hξ2)
α2β2q2

h · · · (1 + hξr)
αr βrqr

h

×

(
(1+hξ)

αβq1
h −1

)
(
(1+hξ)

β
h −1

) .
(29)

Using αβξ(
(1+hξ)

α
h−1

) = α
∞
∑

m=0
Bm(h)

(βξ)m

m! ,

(
(1+hξ)

αβq1
h −1

)
(
(1+hξ)

β
h −1

) = σm−i(α − 1; h) (βξ)m

m! and (11),

we have

T(ξ; q1, q2, q3, · · · , qr; h) = α
∞
∑

m=0
Bm(h)

(βξ)m

m!

∞
∑

m=0
∆hHA

[r]
m (βq1, β2q2, · · · , βrqr; h) (αξ)m

m!

×
∞
∑

m=0
σm−i(α− 1; h) (βξ)m

m!

=
∞
∑

m=0

(
∑m

i=0 ∑i
n=0 (

m
i )(

i
n)α

iβm+1−i Bm(h)∆hHA
[r]
i−m(βq1, β2q2, · · · , βrqr; h)σm−i(α− 1; h)

)
ξm

m! .

(30)
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If we proceed in the same way, we have

T(ξ; q1, q2, q3, · · · , qr; h) = ∑∞
m=0

(
∑m

i=0 ∑i
n=0 (

m
i )(

i
n)βiαm+1−i Bm(h)

×∆hHA
[r]
i−m(βq1, β2q2, · · · , βrqr; h) σm−i(β− 1; h)

)
ξm

m! .
(31)

If we compare the coefficients of expressions (30) and (31), we obtained the result (27).

4. Operational Formalism and Examples

Operational techniques can be used to construct new families of functions and to
make the derivation of the attributes connected to regular and generalized special functions
easier. Dattoli and his coworkers see for example [15,16,20–23] have acknowledged the
significance of the employment of operational approaches in the study of special functions
that attempt to provide explicit solutions for families of partial differential equations,
including those of the Heat and D’Alembert type, and their applications.

Differentiating successively (11) with regard to q1 via forward difference operator
concept by taking into consideration expression (2), we find

q1 ∆h[∆hHA
[r]
m (q1, q2, · · · , qr; h)] = mh ∆hHA

[r]
m−1(q1, q2, · · · , qr; h)

q1 ∆2
h[∆hHA

[r]
m (q1, q2, · · · , qr; h)] = m(m− 1)h ∆hHA

[r]
m−2(q1, q2, · · · , qr; h)

...

q1 ∆r
h[∆hHA

[r]
m (q1, q2, · · · , qr; h)] = m(m− 1)(m− 2) · · · (m− r + 1)h

× ∆hHA
[r]
m−r(q1, q2, · · · , qr; h).

(32)

Next, differentiating (11) with regard to q2, q3, · · · , qr via forward difference operator
concept by taking into consideration expression (2), we find

q2 ∆h[∆hHA
[r]
m (q1, q2, · · · , qr; h)] =m(m− 1)h ∆hHA

[r]
m−2(q1, q2, · · · , qr; h)

q3 ∆h[∆hHA
[r]
m (q1, q2, · · · , qr; h)] =m(m− 1)(m− 2)h ∆hHA

[r]
m−3(q1, q2, · · · , qr; h)

...

...

qr ∆h[∆hHA
[r]
m (q1, q2, · · · , qr; h)] = m(m− 1)(m− 2) · · · (m− r + 1)h

×∆hHA
[r]
m−r(q1, q2, · · · , qr; h).

(33)

In view of system of expressions (32) and (33), we find ∆hHA
[r]
m−r(q1, q2, · · · , qr; h) are solu-

tions of the expressions:

q2 ∆h[∆hHA
[r]
m (q1, q2, · · · , qr; h)] = q1 ∆2

h∆hHA
[r]
m−2(q1, q2, · · · , qr; h)

q3 ∆h[∆hHA
[r]
m (q1, q2, · · · , qr; h)] = q1 ∆3

h ∆hHA
[r]
m−3(q1, q2, · · · , qr; h)

...

...

qr ∆h[∆hHA
[r]
m (q1, q2, · · · , qr; h)] = q1 ∆r

h ∆hHA
[r]
m−r(q1, q2, · · · , qr; h),

(34)

under the listed initial condition

∆hHA
[r]
m (0, 0, 0, · · · , 0; h) = ∆hHA

[r]
m (0; h) = ∆hAm(ξ; h). (35)

Therefore, from system of expressions (34) and expression (35), it states that

∆hHA
[r]
m (q1, q2, · · · , qr; h) = exp

(
q1 + q2 q1 ∆2

h + q3 q1 ∆3
h + · · ·+ qr q1 ∆r

h

)
∆hAm(ξ; h). (36)
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In light of previous mentioned expression, the ∆h multi-variate Hermite Appell polynomials

∆hHA
[r]
m (q1, q2, · · · , qr; h) can be constructed from the the ∆h polynomial ∆hAm(ξ; h) by

applying the operational rule (36).
Numerous applications in number theory, combinatorics, numerical analysis, and

other areas of practical mathematics make use of the Bernoulli, Euler, and Genocchi num-
bers. The Genocchi numbers have significance in graph theory, automata theory, and
counting the number of up-down ascent sequences. The trigonometric and hyperbolic
secant functions’ origins are close to where the Euler numbers enter the Taylor expansion.
Numerous mathematical formulae contain the Bernoulli numbers, including the Taylor
expansion, sums of powers of natural numbers, trigonometric and hyperbolic tangent and
cotangent functions, and many others.

By taking Bernoulli, Euler, and Genocchi polynomials as members of the Appell
family, we obtain different members of ∆h MHAP family as multivariate ∆h Hermite—
Bernoulli polynomials ∆hHB

[r]
m (q1, q2, · · · , qr; h), multivariate ∆h Hermite–Euler polynomi-

als ∆hHE
[r]
m (q1, q2, · · · , qr; h) and multivariate ∆h Hermite-Genocchi polynomials

∆hHG
[r]
m (q1, q2, · · · , qr; h). These polynomials are given by generating expression as listed:

log(1 + hξ)

h(1 + hξ)
1
h − 1

(1 + hξ)
q1
h (1 + hξ2)

q2
h (1 + hξ3)

q3
h =

∞

∑
m=0

∆hHB
[r]
m (q1, q2, · · · , qr; h)

ξm

m!
. (37)

2

(1 + hξ)
1
h + 1

(1 + hξ)
q1
h (1 + hξ2)

q2
h (1 + hξ3)

q3
h =

∞

∑
m=0

∆hHE
[r]
m (q1, q2, · · · , qr; h)

ξm

m!
. (38)

and

2log(1 + hξ)

h(1 + hξ)
1
h + 1

(1 + hξ)
q1
h (1 + hξ2)

q2
h (1 + hξ3)

q3
h =

∞

∑
m=0

∆hHG
[r]
m (q1, q2, · · · , qr; h)

ξm

m!
. (39)

respectively.
Using the results derived for ∆h multivariate Hermite Appell polynomials

∆hHA
[r]
m (q1, q2, · · · , qr; h), we can derive the corresponding results for the ∆h multivari-

ate Hermite Bernoulli, Euler and Genocchi polynomials.

5. Conclusions

Here, we introduced the ∆h multi-variate Hermite Appell polynomials, and some of
their specific features are presented: Quasi-monomial characteristics for these polynomials
are established in Section 2, and forward difference relations are established in Theorem 1.
Furthermore, symmetric identities are given in Section 3 and the operational rule is estab-
lished in Section 4. In addition to Gaussian quadrature, these polynomials may be found
in physics, numerical analysis, the quantum harmonic oscillator, and Schrödinger’s equa-
tion. They also come up often in problems involving theoretical physics, approximation
theory, applied mathematics, and other disciplines of mathematics including Biological
and medical sciences.

Further, future investigations and observations can be used to establish extended,
generalized forms, integral representations, determinant and series representations, and
other properties of the above-mentioned polynomials. Furthermore, the interpolation
form, recurrence relations, shift operators, and summation formulae can also be a problem
for new observations. Moreover, the hybrid form of these polynomials can be taken as a
future investigation.
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