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Abstract: A novel kernel recursive second-order sine adaptive (KRSOSA) algorithm was devised for
identifying non-linear systems, which was constructed using a symmetry squared sine function to
develop a novel kernel loss function and recursive scheme. In the proposed KRSOSA algorithm, the
squared sine function provides resistance to impulsive noise due to the sine operation, which was
well-derived and investigated in the framework of kernel adaptive filtering (KAF). The behavior of
the proposed KRSOSA algorithm was investigated and analyzed using computer simulations, which
provided good performance for identifying non-linear systems under impulsive noises.

Keywords: kernel adaptive filter; second-order sine cost function; non-Gaussian noise environments;
non-linear system identifications

1. Introduction

Adaptive algorithms (AAs) are popular and useful for various signal processing,
including linear and non-linear channel equalizers, DOA estimation, beamforming, noise
reduction [1–5] , and so on. For these targets, many simple and effective algorithms have
been presented, well-modeled, derived, analyzed, investigated, and discussed for system
identifications, beamforming, DOA estimations, and channel estimations [1–16], which
include the least mean square (LMS) [5–10], maximum correntropy criterion (MCC) [13–15],
least mean fourth (LMF) [11,12], and so on. Although these algorithms achieve good
performance to meet different applications in practical engineering, they might work
poorly when there is a non-linear system with impulsive noise. Thus, it is necessary to
develop non-linear AAs.

The kernel adaptive algorithm (KAA) has been developed for several years based
on the least-mean-squares scheme and has been used for non-linear channel equaliza-
tion [17–23] and tree pest prediction. The kernel adaptive filter (KAF) has had much more
attention paid to it, which is always presented for non-linear predictions [24–26]. As we
know, the KAF is famous for its online learning ability derived in the reproducing ker-
nel Hilbert space (RKHS) [17–27]. Recently, many KAF algorithms have been presented
for non-linear signal processing [28,29], including the kernel-driven least mean squares
(KLMS) [21], kernel-driven least mean fourth (KLMF) [27], and kernel-driven recursive
least squares (KRLS) [28] based on the symmetry squared error function. Subsequently,
several variants of these methods have improved the performance and expanded the appli-
cations. Though these mentioned kernel-driven algorithms can achieve good performance
for estimating non-linear systems, they still face performance degradation when the system
is working in non-Gaussian environments, as the statistic second-order error scheme in
these algorithms cannot provide resistance to pulse interference.

To improve the performance of these kernel-driven algorithms for non-Gaussian envi-
ronment applications, the sign function and different error-criteria-promoted kernel adap-
tive filter (KAF) methods have been reported, including the high-order error scheme [27],
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correntropy error scheme [29], and mixture error scheme [30]. Considering the KAF theory,
the kernel-driven least mean mixed norm (KLMMN) [17,18] and kernel-driven least mean
fourth (KLMF) [27] have been presented. Compared with the KLMS, these algorithms re-
duce the estimation error and accelerate the convergence. Additionally, this theory has also
been integrated into the correntropy error scheme to obtain the kernel-driven maximum
correntropy criterion (KMCC) [29], and the kernel-driven recursive generalization mixed
norm (KRGMN) [31] has also been presented for non-linear system identification when the
system comes acrossnon-Gaussian noises.

This paper presents a novel kernel recursive second-order sine adaptive (KRSOSA) al-
gorithm for non-linear system identification, where the KRSOSA algorithm is implemented
using a squared sine to construct a new kernel cost function. In the KRSOSA algorithm,
the squared sine function provides resistance to impulsive noise, and it is well-derived
and investigated within the frame of the KAF. The behavior of the proposed KRSOSA
was studied and analyzed using computer simulations, and it provided better perfor-
mance for identifying non-linear systems under impulsive noise compared with popular
kernel-driven algorithms, including the KLMS, KLMF, KLMMN, KMCC, and KRGMN.
The contribution of the KRSOSA is a new cost function constructed by the squared sine
and logarithmic functions, which provides a new iteration equation within the KAA.

2. The KRSOSA Algorithm

The mentioned kernel-like methods and their variant give the idea to convert the
input data to a higher-dimensional featurespace via a non-linear mapping technique that
is always described using ϕ : U→ F [18–27]. For the KAF methods, U is the input and F
is the operating space using the RKHS. In this way, the training data such as tree pest
data can be described as {u(m), d(m)}N

m=1, where N is the number of elements, d(m) is
the expected signal in the estimation system, and u(m) is the system input. For the KAF
methods, u(m) is transformed into ϕ(u(m)) [23]. On the basis of Mercer’s theorem [18],
a general kernel-driven function is

κ
(
u, u′

)
= ϕT(u)ϕ(u) = exp

(
−‖u− u′‖

σ2

)
. (1)

In this case, σ describes the kernel width used in the kernel-driven functions given in
Equation (1). From the aforementioned fundamentals, the KRSOSA was derived, analyzed,
and discussed within the frame of KAFs. A logarithmic and a sine-weighted second-order
method are illustrated to obtain a solution of the new combined cost function (CCF), which
was used to create the KRSOSA method, and the CCF is

J(Ω) =
m

∑
n=1

γm−n

{
ω

2
log

(
1 +

∣∣d(n)−ΩT ϕ(m)
∣∣2

2ξ2

)

+
(1−ω)

2
×4sin2

(∣∣d(n)−ΩT ϕ(n)
∣∣

2c

)}
+

1
2

γmλ‖Ω‖2.

(2)

E[·] is the expectation operation, while ξ is a constant, c is a small constant of a second-
order sine function, and γ, a forgetting factor, strengthens the weights. λ and ω are the
regularization and mixture parameters, respectively. For regularization, the implementation
is realized via a norm constraint to make the inverse auto-correlation matrix. Then, we
obtain the gradient of Equation (2):

∂J(Ω)
∂Ω = −

m
∑

n=1
γm−n ϕ(n)z(n)d(n) +

(
m
∑

n=1
γm−n ϕ(n)z(n)ϕT(n) + γmλ

)
Ω , (3)
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where z(n) is written as

z(n) =


ω

|d(n)−ΩT ϕ(n)|2 + 2ξ2
+

(1−ω) sin
(
|d(n)−ΩT ϕ(n)|

c

)
c|d(n)−ΩT ϕ(n)|

. (4)

Let Equation (3) be zero, and consider Ω:

Ω =

(
m

∑
n=1

γm−n ϕ(n)z(n)ϕT(n) + γmλ

)−1 m

∑
n=1

γm−n ϕ(n)z(n)d(n). (5)

By considering

d(m) =
[

d(1), . . . d(m− 1), d(m)
]T , (6)

Φ(m) =
[

ϕ(1), . . . ϕ(m− 1), ϕ(m)
]
, (7)

Ψ(m) = diag[γm−1


ω

|d(1)−ΩTϕ(1)|2 + 2ξ2
+

(1−ω) sin
(
|d(1)−ΩTϕ(1)|

c

)
c|d(1)−ΩTϕ(1)|

,

γm−2


ω

|d(2)−ΩTϕ(2)|2 + 2ξ2
+

(1−ω) sin
(
|d(2)−ΩTϕ(2)|

c

)
c|d(2)−ΩTϕ(2)|

, ...,


ω

|d(m)−ΩTϕ(m)|2 + 2ξ2
+

(1−ω) sin
(
|d(m)−ΩTϕ(m)|

c

)
c|d(m)−ΩTϕ(m)|


,

(8)

Then Equation (5) is rewritten in matrix form:

Ω(m) =
(

Φ(m)Ψ(m)ΦT(m) + γmλI
)−1

Φ(m)Ψ(m)d(m). (9)

We consider Equation (9) using the matrix inverse lemma to obtain

(A + BCD)−1=A−1 −A−1B(C−1+DA−1B)−1DA−1, (10)

and use
γmλI→ A, Φ(m)→ B, Ψ(m)→ C, ΦT(m)→ D, (11)

to obtain (
Φ(m)Ψ(m)ΦT(m) + γmλI

)−1
Φ(m)Ψ(m)

=Φ(m)
(

ΦT(m)Φ(m) + γmλΨ−1(m)
)−1

.
(12)

Ω(m) is modified to

Ω(m) = Φ(m)
(

ΦT(m)Φ(m) + γmλΨ−1(m)
)−1

d(m), (13)

Then, Ω(m) is discussed using the linear combination of the input data:

Ω(m)=Φ(m)a(m) (14)
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where a(m) is

a(m) =
(

ΦT(m)Φ(m) + γmλΨ−1(m)
)−1

d(m). (15)

Define Q(m) as

Q(m) =
(

ΦT(m)Φ(m) + γmλΨ−1(m)
)−1

, (16)

where Φ(m) =
{

Φ(m− 1), ϕ(m)
}

, and after that, we have Q(m):

Q(m) =

ΦT(m− 1)Φ(m− 1)

+γmλΨ−1(m− 1)
ΦT(m− 1)ϕ(m)

ϕT(m)Φ(m− 1)


ω

|d(m)−ΩTϕ(m)|2 + 2ξ2
+

(1−ω) sin
(
|d(m)−ΩTϕ(m)|

c

)
c|d(m)−ΩTϕ(m)|


−1

×γmλ +ϕT(m)ϕ(m)



−1

.
(17)

Defining δ(m),

δ(m) =


ω∣∣d(m)−ΩTϕ(m)

∣∣2 + 2ξ2
+

(1−ω) sin
(
|d(m)−ΩTϕ(m)|

c

)
c
∣∣d(m)−ΩTϕ(m)

∣∣

−1

(18)

Next, Q(m) is

Q(m) =


ΦT(m− 1)Φ(m− 1)
+γmλΨ(m− 1)−1 ΦT(m− 1)ϕ(m)

ϕT(m)Φ(m− 1)
ϕT(m)ϕ(m)
+γmλδ(m)


−1

. (19)

From the aforementioned analysis, we obtain

Q−1(m) =

[
Q−1(m− 1) b(m)

bT(m) ϕT(m)ϕ(m) + γmλδ(m)

]
(20)

with b(m) = ΦT(m− 1)ϕ(m). In (21), the block matrix inversion operation is[
A B
C D

]−1

=[ (
A− BD−1C

)−1 −A−1B
(
D−CA−1B

)−1

−D−1C
(
A− BD−1C

)−1 (
D−CA−1B

)−1

]
.

(21)

Utilizing the block matrix inversion operation [1–10], Equation (19) is

Q(m) = ε−1(m)

[
Q(m− 1)ε(m) + f(m)fT(m) −f(m)

−fT(m) 1

]
(22)

with f(m) = Q(m− 1)b(m). In (22), ε(m) = γmλδ(m) +ϕT(m)ϕ(m)− fT(m)b(m). Thus,
a(m) is

a(m) = Q(m)d(m)

=

[
Q(m− 1) + f(m)fT(m)ε−1(m) −f(m)ε−1(m)

−fT(m)ε−1(m) ε−1(m)

][
d(m− 1)

d(m)

]
,

=

[
a(m− 1)− f(m)ε−1(m)e(m)

ε−1(m)e(m)

]
.

(23)
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In Equation (23), e(m) = d(m)− bT(m)a(m− 1).

3. Simulation Results

Simulation examples were set up to verify the superiority of the devised KRSOSA
algorithm over a non-linear channel estimation (NCE) when the communication envi-
ronments are interfered with by different impulsive noises. A non-linear channel was
modeled with a combination of a memory-less non-linear (MLNL) system and a linear
filter. Here, a Gaussian kernel function, which is presented in Equation (3), was used
to model the NCE channel, and the constructed NCE channel example is described in
Figure 1. In Figure 1, {s(1), s(2), . . . , s(L)} is a binary signal, which was used as the in-
putof the NCE channel. After the signal has passed though a linear system using a signal
transform W(z) = 1− 0.5z−1, we obtain an MLNL signal x(m). At the receiver, we have
{r(1), r(2), . . . , r(L)}, which is obtained in the presence of noise n(m), and its samples are
{([r(m), r(m + 1), . . . , r(m + l)], s(m− D))} with time embedded length l and equilibrium
lag time D. l = 3 and D = 2 were used in all the discussions. The NCE channel was
constructed using the input and the output. In this paper, x(m) = s(m) + 0.5s(m− 1) and
r(m) = x(m)− 0.9x(m)2 + n(m). To obtain complex noise, n(m) was mixed using a combi-
nation of n1(m) and n2(m) [16]. The created KRSOSA was analyzed by the use of Monte
Carlo simulations, and its behaviors were compared with the KLMMN, KLMF, KLMS,
and KRGMN. In the investigations, the related simulation parameters for the aforemen-
tioned algorithms were µKLMS = 0.125, µKLMF = 0.01, µKLMMN = 0.025, µKMCC = 0.0125,
µKLMS = 0.125, and ωKLMMN = ωKRGMN = 0.25, where the parameter for the correspond-
ing algorithms is identified by subscripts, and σ = 1 was used in all the experiments.
The rest of the parameters for the corresponding algorithms are not mentioned here as they
are the same as those in [18,23,26–28].

Non-linear 

   system
+W (z)

s(m) x(m)

n( )

r(m)

m

Figure 1. Non-linear channel used in the experiments.

Firstly, three examples were created to analyze the convergence of the devised KRSOSA
algorithm by considering various mixture noises to model the impulsive noises, which
are given as follows. (1) A Bernoulli distribution noise n1(m) and a Gaussian noise n2(m)
were mixed with powers of 0.45 and 0.08 to model the mixture impulsive noise for the first
example. (2) A Bernoulli distribution noise n1(m) and a Laplace noise n2(m) were mixed
with powers of 0.45 to model the mixture impulsive noise for the second example. (3) A
Bernoulli distribution noise n1(m) and a uniform noise n2(m) were mixed with powers of
0.45 and 1 to model the mixture impulsive noise for the third example.

In all the simulations, δ = 1 and the total mixture noise power was 0.1. We used
1000 iterations to analyze the KRSOSA algorithm’s behaviors, and 100 independent tri-
alswere used to carry out a point. The convergence results for the constructed KRSOSA
algorithm are illustrated in Figures 2–4 compared with the KLMMN, KLMF, KLMS, and
KRGMN. From the convergence results, the KRSOSA algorithm converged the fastest
under various noises. In Figure 2, the proposed KRSOSA algorithm converges faster than
the latestKRGMN with the same MSE. From Figures 3 and 4, we can see that the proposed
KRSOSA not only obtained a faster convergence, but also had a smaller MSE. On the
other hand, the MSE behavior of the KRSOSA algorithm was the best compared with the
KLMMN, KLMF, KLMS, and KRGMN since the KRSOSA algorithm combines the squared
sine and logarithmic errors in the construction of the CCF to resist the impulsive noise.
Finally, single non-Gaussian distribution noises to investigate the KRSOSA algorithm’s per-
formance are analyzed in Figure 5, where we only considered the Laplace distributed noise,
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whose power is 0.45 with parameter β = 0.55. The KRSOSA algorithm still converged the
fastest and possessed the lowest MSE. Thus, we reached the conclusion that the KRSOSA
algorithm is robust and has the best behaviors.
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Figure 2. Bernoulli-Gaussian noise effects on the KRSOSA algorithm.
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Figure 3. Bernoulli-Laplace noise effects on the KRSOSA algorithm.
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Figure 4. Bernoulli-uniform noise effects on the KRSOSA algorithm.
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Figure 5. Only Laplace noise effects on the KRSOSA algorithm.

The effect of the parameters on the KRSOSA algorithm were studied with the simulation
parameters listed in the former examples. One parameter was changed, while the others were
left unchanged. Various regularization parameters λ, set as (0.45, 0.55, 0.6, 0.75, 0.85, and 0.95),
of the KRSOSA algorithm were analyzed to discuss the convergence, while ω = 0.25, γ = 1,
α = 1, and β = 0.45 for the mentioned algorithms were set to achieve the same MSE level.
Here, the noise was the same as that in Figure 4, and the results are illustrated in Figure 6,
which shows that the KRSOSA algorithm gave the smallest MSE for λ = 0.55, indicating that
λ is vital to control the estimation behavior of the KRSOSA algorithm.

Then, different weights were investigated to analyze the effects on the MSE of the
KRSOSA algorithm, where ω was selected from (0.15, 0.35, 0.55, 0.75, 0.95), and the system
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noise was the same as that in Figure 4. From the MSE behaviors in Figure 7, we found
that ω can also affect the estimation error of the KRSOSA algorithm. When ω = 0.95,
the KRSOSA algorithm had the smallest MSE.

Next, different parameters c, namely c = {0.5, 1, 1.5, 2, 2.5, 3}, can also control the
performance of the KRSOSA algorithm since c can change the shape of the CCF; hence, it
changes the update equation of the KRSOSA algorithm. From the results in Figure 8, we
observed that the KRSOSA algorithm had the smallest MSE for c = 0.5 since the squared
sine function suppresses the magnitude of the large outliers. From Figures 6–8, we can
see that the performance of the proposed KRSOSA algorithm was affected by the different
parameters. Thus, in practical applications, we can adjust the mentioned parameters in
Figures 6–8 to control the performance of the KRSOSA algorithm. In Figure 9, we can see
that the proposed KRSOSA algorithm can track the abrupt changes of the system, which
also shows its robustness.
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Figure 6. Different λ effects on the KRSOSA algorithm.
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Figure 7. Different Ω effects on the KRSOSA algorithm.
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Figure 8. Different c effects on the KRSOSA algorithm.

0 200 400 600 800 1000

Iteration

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

T
es

ti
n

g
 M

S
E

KLMS

KLMF

KLMMN

KMCC

KRGMN

KRSOSA

Figure 9. Abrupt change testing for the KRSOSA algorithm.

Finally, the tracking of the KRSOSA algorithm was investigated, where we used
Laplace uniform mixture noise, and r(i) was the same as the examples above. After 500
iterations, r(i) changed to r(i) = −x(i) + 0.9x2(i− 1) + n(i), and the results are given in
Figure 9. It was found that the KRSOSA algorithm is still superior to the KLMMN, KLMF,
KLMS, and KRGMN. In the future, the annual tree pest data will be collected, for which we
can use the proposed KRSOSA algorithm to predict the tree pests’ trends. Furthermore, we
can also use the proposed KRSOSA algorithm to predict annual sunspots, as the methods
in [18]. Since the parameters for the proposed KRSOSA algorithm still need adjusting, we
will develop a joint parameter optimization for the KRSOSA algorithm.
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4. Conclusions

A kernel recursive second-order sine adaptive (KRSOSA) algorithm was proposed and
verified for non-linear channel equalization under various noises. The KRSOSA algorithm
was realized by using a combination of the squared sine and logarithmic errors to construct
a new cost function. The performance of the KRSOSA algorithm was compared with the
recent kernel adaptive filtering algorithms, and the results confirmed that the KRSOSA
algorithm achieved the best behaviors with respect to the convergence and MSE. In the
future, we will develop a joint parameter optimization for the KRSOSA algorithm since
there are three parameters that should be well selected.
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