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Abstract: In this article, suitable estimates for a class of rough generalized Marcinkiewicz integrals
on product spaces are established. By these estimates, together with employing Yano’s extrapola-
tion technique, we obtain the boundedness of the aforementioned integral operators under weak
conditions on singular kernels. A number of known previous results on Marcinkiewicz as well as
generalized Marcinkiewicz operators over a symmetric space are essentially improved or extended.
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1. Introduction

Throughout this article, we let d ≥ 2 (d = n or m) and Rd be a Euclidean space
of dimensions d. Furthermore, we let Sd−1 be the unit sphere in Rd equipped with the
normalized Lebesgue surface measure dµd(·) ≡ dµ.

For λ1 = τ1 + iν1, λ2 = τ2 + iν2 (τ1, τ2, ν1, ν2 ∈ R with τ1, τ2 > 0), we assume that

KΩ,h(ω, υ) =
Ω(ω, υ)h(|ω|, |υ|)
|ω|n−λ1 |υ|m−λ2

,

where h is a measurable function defined on R+ × R+ and Ω is a measurable function
defined on Rn ×Rm which satisfies the following properties:

Ω(rω, sυ) = Ω(ω, υ), ∀r, s > 0, (1)

∫
Sn−1

Ω(ω, .)dµ(ω) =
∫
Sm−1

Ω(., υ)dµ(υ) = 0, (2)

and

Ω ∈ L1(Sn−1 × Sm−1). (3)

For α > 1 and f ∈ S(Rn×Rm), we consider the generalized parametric Marcinkiewicz
integral over the symmetric space Rn ×Rm

M
(α)
Ω,h( f )(x, y) =

(∫∫
R+×R+

|Fr,s( f )(x, y)|α drds
rs

)1/α

, (4)

where
Fr,s( f )(x, y) =

1
rλ1 sλ2

∫
|ω|≤r

∫
|υ|≤s

KΩ,h(ω, υ) f (x−ω, y− υ)dωdυ.
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When α = 2, h ≡ 1, and λ1 = 1 = λ2, we denote the operator M(α)
Ω,h byMΩ. In this

case,MΩ is essentially the classical Marcinkiewicz integral on product spaces. The study
of the Lp boundedness of the operatorMΩ was started by Ding in [1], in which he estab-
lished the L2 boundedness ofMΩ whenever Ω lies in the space L(log L)2(Sn−1 × Sm−1).
Thereafter, the boundedness of MΩ has been studied by many researchers. For ex-
ample, Choi in [2] proved the L2 boundeness of MΩ if Ω satisfies the weaker condi-
tion Ω ∈ L(log L)(Sn−1 × Sm−1). In [3], the authors proved that MΩ is bounded on
Lp(Rn ×Rm) for all p ∈ (1, ∞) if Ω ∈ L(log L)2(Sn−1 × Sm−1). Later on, the authors
of [4] improved and extended the above results. In fact, they showed that the operator
MΩ is of type (p, p) for all 1 < p < ∞, provided that Ω ∈ L(log L)(Sn−1 × Sm−1). Fur-
thermore, they found that by adapting the technique employed in [5] to the product space
setting, the condition Ω ∈ L(log L)(Sn−1 × Sm−1) is optimal in the sense that it cannot
be replaced by a weaker condition Ω ∈ L(log L)1−ε(Sn−1 × Sm−1) for some ε ∈ (0, 1).
On the other hand, Al-Qassem in [6] showed thatMΩ is bounded on Lp(Rn ×Rm) for
all 1 < p < ∞ if Ω ∈ B(0,0)

q (Sn−1 × Sm−1) with q > 1. Moreover, he showed that the

condition Ω ∈ B(0,0)
q (Sn−1 × Sm−1) is optimal in the sense that we cannot replace it by

Ω ∈ B(0,ε)
q (Sn−1 × Sm−1) for any ε ∈ (−1, 0). Here, B(0,ν)

q (Sn−1 × Sm−1) is a special class of
block spaces introduced in [7].

By using an extrapolation argument, the authors of [8] proved that the Lp boundedness
of M(2)

Ω,h for all |1/2− 1/p| < min{1/γ′, 1/2} whenever h ∈ ∆γ(R+ ×R+) for some γ > 1

and Ω lies in either the space L(log L)(Sn−1 × Sm−1) or in the space B(0,0)
q (Sm−1 × Sn−1)

with q > 1. Here, ∆γ(R+ ×R+) (for γ > 1) indicates the class of measurable functions h
which are defined on R+ ×R+ and satisfy

‖h‖∆γ(R+×R+)
= sup

j,k∈Z

(∫ 2j+1

2j

∫ 2k+1

2k
|h(r, s)|

γ drds
rs

)1/γ

< ∞.

Recently, the authors of [9] established that if h ≡ 1 and Ω ∈ L(log L)2/α(Sn−1×Sm−1)

or Ω ∈ B(0, 2
α−1)

q (Sn−1 × Sm−1), then∥∥∥M(α)
Ω,1( f )

∥∥∥
Lp(Rn×Rm)

≤ Cp‖ f ‖ .
F
−→
0 ,α
p (Rn×Rm)

(5)

for all p ∈ (1, ∞).

It is well known that the Marcinkiewicz integral,MΩ, on product spaces naturally
generalizes the Marcinkiewicz integral in one parameter setting which was introduced by E.
Stein in [10]. The singularity ofMΩ is along the diagonals {x = ω} and {y = υ}. The study
of singular integrals on product spaces and the study ofMΩ as well as its generalizations,
which may have singularities along subvarities, has attracted the attention of many authors
in recent years. One of the principal motivations for the study of such operators is the
requirements of several complex variables and large classes of “subelliptic” equations. For
more background information, readers may refer to Stein’s survey articles [11,12].

Let us recall the definition of Triebel–Lizorkin spaces,
.
F
−→m ,α
p (Rn × Rm). Assume

that −→m = (β, ε) ∈ R× R and α, p ∈ (1, ∞). The homogeneous Triebel–Lizorkin space
.
F
−→m ,α
p (Rn × Rm) is defined to be the class of all tempered distributions f on Rn × Rm

such that

‖ f ‖ .
F
−→m ,α
p (Rn×Rm)

=

∥∥∥∥∥∥
(

∑
j,k∈Z

2kβα2jεα
∣∣(φk ⊗ ψj) ∗ f

∣∣α)1/α
∥∥∥∥∥∥

Lp(Rn×Rm)

< ∞,
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where φ̂k(x) = 2−knE(2−kx) for k ∈ Z, ψ̂j(y) = 2−jm J(2−jy) for j ∈ Z, and the functions
E ∈ C∞

0 (Rn) and J ∈ C∞
0 (Rm) are radial functions satisfying the following proprieties:

(i) E, J ∈ [0, 1];

(ii) supp (E) ⊂
{

x : |x| ∈ [ 1
2 , 2]

}
, supp (J) ⊂

{
y : |y| ∈ [ 1

2 , 2]
}

;

(iii) E(x), J(y) ≥ T > 0 if |x|, |y| ∈ [ 3
5 , 5

3 ] for some constant T;
(iv) ∑

k∈Z
E(2−kx) = ∑

j∈Z
J(2−jy) = 1 with x 6= 0 6= y.

It was shown in [13] that the space
.
F
−→m ,α
p (Rn ×Rm) satisfies the following:

(a) The Schwartz space S(Rn ×Rm) is dense in
.
F
−→m ,α
p (Rn ×Rm);

(b)
.
F

0,
−→
2

p (Rn ×Rm) = Lp(Rn ×Rm) for 1 < p < ∞;

(c)
.
F
−→m ,α1
p (Rn ×Rm) ⊆

.
F
−→m ,α2
p (Rn ×Rm) if α1 ≤ α2;

(d)
(

.
F
−→m ,α
p (Rn ×Rm)

)∗
=

.
F
−−→m ,α′

p′ (Rn ×Rm),

where p′ denotes the exponent conjugate to p, that is, 1/p + 1/p′ = 1 whenever 1 < p < ∞
and p′ := 1 or p′ := +∞ for p := +∞ or p := 1, respectively.

In light of the results in [8] concerning the boundedness of the operator M(2)
Ω,h and of

the results in [9] concerning the boundedness of the generalized operator M(α)
Ω,1, a natural

questions arises in the following:
Question: Is the operator M(α)

Ω,h bounded under the same assumptions in [8] with replacing
α = 2 by α > 1?

The main purpose of this work is to answer the above question affirmatively. Precisely,
we have the following:

Theorem 1. Let h ∈ ∆γ(R+ ×R+) for some γ ∈ (1, 2] and Ω ∈ Lq(Sn−1 × Sm−1) for some
q ∈ (1, 2]. Then, there is a constant Cp,Ω,h such that

∥∥∥M(α)
Ω,h( f )

∥∥∥
Lp(Rn×Rm)

≤ Cp,Ω,h

(
1

(q− 1)(γ− 1)

)2/α

‖ f ‖ .
F
−→
0 ,α
p (Rn×Rm)

for all p ∈ ( αγ′

α+γ′−1 , α′γ
α′−γ ) if α ≤ γ′, and

∥∥∥M(α)
Ω,h( f )

∥∥∥
Lp(Rn×Rm)

≤ Cp,Ω,h

(
1

(γ− 1)(q− 1)

)2/α

‖ f ‖ .
F
−→
0 ,α
p (Rn×Rm)

for all γ′ < p < ∞ if α ≥ γ′, where Cp,Ω,h = Cp‖h‖∆γ(R+×R+)
‖Ω‖Lq(Sn−1×Sm−1).

Theorem 2. Assume that h ∈ ∆γ(R+×R+) with γ ∈ (2, ∞) and that Ω lies in Lq(Sn−1 × Sm−1)
with q ∈ (1, 2]. Then, we have

∥∥∥M(α)
Ω,h( f )

∥∥∥
Lp(Rn×Rm)

≤ Cp,Ω,h

(
γ

q− 1

)2/α

‖ f ‖ .
F
−→
0 ,α
p (Rn×Rm)

for all p ∈ (1, α) if α ≤ γ′, and

∥∥∥M(α)
Ω,h( f )

∥∥∥
Lp(Rn×Rm)

≤ Cp,Ω,h

(
γ

q− 1

)2/α

‖ f ‖ .
F
−→
0 ,α
p (Rn×Rm)

for all p ∈ (γ′, ∞) if α ≥ γ′.
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By employing the estimates in Theorems 1 and 2 and employing an extrapolation
argument as in [14] (see also [15,16]), we obtain the following:

Theorem 3. Let h be given as in Theorem 1.
(i) If Ω ∈ L(log L)2/α(Sn−1 × Sm−1), then the inequality∥∥∥M(α)

Ω,h( f )
∥∥∥

Lp(Rn×Rm)
≤ Cp

(
1 + ‖Ω‖L(logL)2/α(Sn−1×Sm−1)

)
‖h‖∆γ(R+×R+)

‖ f ‖ .
F
−→
0 ,α
p (Rn×Rm)

holds for p ∈ ( αγ′

α+γ′−1 , α′γ
α′−γ ) if α ≤ γ′, and for γ′ < p < ∞ if α ≥ γ′.

(ii) If Ω ∈ B(0, 2
α−1)

q (Sn−1 × Sm−1) for some q > 1, then the inequality

∥∥∥M(α)
Ω,h( f )

∥∥∥
Lp(Rn×Rm)

≤ Cp

(
1 + ‖Ω‖

B
(0, 2

α−1)
q (Sn−1×Sm−1)

)
‖h‖∆γ(R+×R+)

‖ f ‖ .
F
−→
0 ,α
p (Rn×Rm)

holds for p ∈ ( αγ′

α+γ′−1 , α′γ
α′−γ ) if α ≤ γ′, and for γ′ < p < ∞ if α ≥ γ′.

Theorem 4. Let h ∈ ∆γ(R+×R+) for some γ ∈ (2, ∞) and Ω ∈ L(log L)2/α(Sn−1× Sm−1)∪
B(0, 2

α−1)
q (Sn−1 × Sm−1) for some q > 1. Then, the operator M(α)

Ω,h is bounded on Lp(Rn ×Rm) for
p ∈ (1, α) if α ≤ γ′, and for p ∈ (γ′, ∞) if α ≥ γ′.

Remark 1.
(1) The conditions assumed for Ω in Theorems 3 and 4 are the weakest conditions in their

respective classes for the case α = 2 and h ≡ 1 (see [4,6]).
(2) For the special case h ≡ 1, Theorem 4 gives that M(α)

Ω,1 is bounded on Lp(Rn ×Rm) for all

p ∈ (1, ∞), provided that Ω belongs to L(log L)2/α(Sn−1 × Sm−1) or to B(0, 2
α−1)

q

(Sn−1 × Sm−1), which is Theorem 2.7 in [9].
(3) The result in Theorem 3 in the case α = 2 and 1 < γ ≤ 2 essentially improves Theorem 2

in [8], in which the authors proved the Lp boundedness of M(2)
Ω,h for p ∈ ( 2γ′

γ′−2 , 2γ
2−γ ). Hence, the

range of p in Theorem 3 is better than the range of that obtained in [8].
(4) The authors of [17] proved the Lp (γ′ < p < ∞) boundedness of M(α)

Ω,h only for the special
case 1 < γ ≤ 2 and α = γ′. Therefore, the results in Theorem 3 essentially improve the main
results in [17].

(5) For the special case α = γ′ with 2 < γ < ∞, Theorem 4 leads to the boundedness of M(α)
Ω,h

for all p ∈ (1, ∞).

Henceforward, the constant C signifies a positive real number that could be different
at each occurrence but is independent of all essential variables.

2. Auxiliary Lemmas

This section is devoted to introducing some notation and establishing some lemmas
that will be needed to prove the main results of this paper. For θ ≥ 2, consider the family
of measures {µKΩ,h ,r,s := µr,s : r, s ∈ R+} and its corresponding maximal operators µ∗h and
Sh,θ on Rn ×Rm by∫∫

Rn×Rm
f dµr,s =

1
rλ1 sλ2

∫
1/2r≤|ω|≤r

∫
1/2s≤|υ|≤s

f (ω, υ)KΩ,h(ω, υ)dωdυ,

µ∗h( f )(ω, υ) = sup
r,s∈R+

||µr,s| ∗ f (ω, υ)|,
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and

Sh,θ( f )(ω, υ) = sup
j,k∈Z

∫ θ j+1

θ j

∫ θk+1

θk
||µr,s| ∗ f (ω, υ)|drds

rs
,

where |µr,s| is defined in the same way as µr,s but with Ωh replaced by |Ωh| .

Lemma 1. Assume that h ∈ ∆γ(R+ ×R+), with γ > 1 and Ω ∈ L1(Sn−1 × Sm−1). Then, for
any f ∈ Lp(Rn ×Rm) with p ∈ (γ′, ∞), we have

‖µ∗h( f )‖Lp(Rn×Rm) ≤ C̃p,h,Ω‖ f ‖Lp(Rn×Rm) (6)

and
‖Sh,θ( f )‖Lp(Rn×Rm) ≤ C̃p,h,Ω ln2(θ)‖ f ‖Lp(Rn×Rm), (7)

where C̃p,h,Ω = ‖Ω‖L1(Sn−1×Sm−1)‖h‖∆γ(R+×R+)
.

Proof. Thanks to Hölder’s inequality, we obtain that

||µr,s| ∗ f (x, y)| ≤ C‖Ω‖1/γ

L1(Sn−1×Sm−1)
‖h‖∆γ(R+×R+)

 1
rs

s∫
s
2

r∫
r
2

∫
Sn−1×Sm−1

|Ω(ω, υ)|

× | f (x− rω, y− sυ)|γ
′
dµ(ω)dµ(υ)drds

)1/γ′

.

Therefore, Minkowski’s inequality for the integrals and Corollary 5 in [18] lead to

‖µ∗h( f )‖Lp(Rn×Rm) ≤ C‖Ω‖1/γ

L1(Sn−1×Sm−1)
‖h‖∆γ(R+×R+)

×
( ∫∫

Sn−1×Sm−1
|Ω(ω, υ)|‖µ∗(| f |γ

′
)‖L(p/γ′)(Rn×Rm)

dµ(ω)dµ(υ)

)1/γ′

≤ C‖Ω‖L1(Sn−1×Sm−1)‖h‖∆γ(R+×R+) ‖µ
∗(| f |)‖Lp(Rn×Rm)

≤ CC̃p,h,Ω‖ f ‖Lp(Rn×Rm),

where

µ∗( f )(x, y) = sup
r,s>0

1
rs

∫ s

0

∫ r

0
| f (x− rω, y− sυ)|drds.

Inequality (7) is easily deduced from Inequality (6).

The next lemma is found in [8] with very minor modifications. We omit the proof.

Lemma 2. Let θ ≥ 2, h ∈ ∆γ(R+ ×R+) for some γ > 1 and Ω ∈ Lq(Sn−1 × Sm−1) for some
q > 1. Then, the following estimates hold:

‖µr,s‖ ≤ CΩ,h, (8)

∫ θ j+1

θ j

∫ θk+1

θk
|µ̂r,s(ζ, ξ)|2 dsdt

st
≤ C2

Ω,h ln2(θ)
∣∣∣θkζ

∣∣∣± 2δ
ln(θ)
∣∣∣θ jξ

∣∣∣± 2δ
ln(θ) , (9)

where 2δq′ < 1 and ‖µr,s‖ is the total variation of µr,s.

In order to prove our main results, we need to prove the following lemmas.
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Lemma 3. Suppose that θ ≥ 2, h ∈ ∆γ(R+ ×R+) with 1 < γ ≤ 2 and Ω ∈ Lq(Sn−1 × Sm−1)
with 1 < q ≤ 2. Let α ∈ (1, γ′] and {Gj,k(·, ·), j, k ∈ Z} be arbitrary functions defined on
Rn ×Rm. Then, there exists a positive constant CΩ,h such that the inequality∥∥∥∥∥∥∥∥

 ∑
j,k∈Z

θ j+1∫
θ j

θk+1∫
θk

∣∣∣µr,s ∗ Gj,k

∣∣∣α drds
rs


1/α
∥∥∥∥∥∥∥∥

Lp(Rn×Rm)

≤ CΩ,h ln2/α(θ)

∥∥∥∥∥∥
(

∑
j,k∈Z

∣∣∣Gj,k

∣∣∣α)1/α
∥∥∥∥∥∥

Lp(Rn×Rm)

(10)

holds for all p ∈ ( αγ′

α+γ′−1 , α′γ
α′−γ ).

Proof. We employ a similar argument used in [19]. First, let us consider the case p ∈
(α, α′γ

α′−γ ). By duality, there is a non-negative function ϑ ∈ L(p/α)′(Rn × Rm) such that
‖ϑ‖

L(p/α)′ (Rn×Rm)
≤ 1 and

∥∥∥∥∥∥
(

∑
j,k∈Z

∫ θ j+1

θ j

∫ θk+1

θk

∣∣∣µr,s ∗ Gj,k

∣∣∣α drds
rs

)1/α
∥∥∥∥∥∥

α

Lp(Rn×Rm)

=
∫∫

Rn×Rm ∑
j,k∈Z

∫ θ j+1

θ j

∫ θk+1

θk

∣∣∣µr,s ∗ Gj,k(ω, υ)
∣∣∣α drds

rs
ϑ(ω, υ)dωdυ. (11)

By Hölder’s inequality, it is easy to obtain that∣∣∣µr,s ∗ Gj,k(ω, υ)
∣∣∣α ≤ C‖Ω‖(α/α′)

L1(Sn−1×Sm−1)
‖h‖(α/α′)

∆γ(R+×R+)

×
s∫

s/2

r∫
r/2

∫∫
Sn−1×Sm−1

∣∣∣Gj,k(ω− κx, υ− ηy)
∣∣∣α|Ω(x, y)|dµ(x)dµ(y)|h(κ, η)|α−

αγ
α′

dκdη

κη
. (12)

Again, by using Hölder’s inequality and Inequalities (11) and (12), we have

∥∥∥∥∥∥
(

∑
j,k∈Z

∫ θ j+1

θ j

∫ θk+1

θk

∣∣∣µr,s ∗ Gj,k

∣∣∣α drds
rs

)1/α
∥∥∥∥∥∥

α

Lp(Rn×Rm)

≤ C‖Ω‖(α/α′)
L1(Sn−1×Sm−1)

‖h‖(α/α′)
∆1(R+×R+)

×
∫∫

Rn×Rm

(
∑

j,k∈Z

∣∣∣Gj,k(ω, υ)
∣∣∣α)S

|h|α−
αγ
α′ ,θ

(ϑ)(−ω,−υ)dωdυ

≤ C‖Ω‖(α/α′)
L1(Sn−1×Sm−1)

‖h‖(α/α′)
∆1(R+×R+)

∥∥∥∥∥ ∑
j,k∈Z

∣∣∣Gj,k

∣∣∣α∥∥∥∥∥
L(p/α)(Rn×Rm)

∥∥∥∥∥S
|h|

α(α′−γ)
α′ ,θ

(ϑ)

∥∥∥∥∥
L(p/α)′ (Rn×Rm)

,

where ϑ(ω, υ) = ϑ(−ω,−υ). Therefore, since |h|
α(α′−γ)

α′ ∈ ∆ α′γ
α(α′−γ)

(R+×R+)
, then we have

∥∥∥∥∥∥
(

∑
j,k∈Z

∫ θ j+1

θ j

∫ θk+1

θk

∣∣∣µr,s ∗ Gj,k

∣∣∣α drds
rs

)1/α
∥∥∥∥∥∥

Lp(Rn×Rm)

≤ CΩ,h ln2/α(θ)

∥∥∥∥∥∥
(

∑
j,k∈Z

∣∣∣Gj,k

∣∣∣α)1/α
∥∥∥∥∥∥

Lp(Rn×Rm)

(13)

for all p ∈ (α, α′γ
α′−γ ). For the case p = α, we use (12) and Hölder’s inequality to obtain that
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∥∥∥∥∥∥
(

∑
j,k∈Z

∫ θ j+1

θ j

∫ θk+1

θk

∣∣∣µr,s ∗ Gj,k

∣∣∣α drds
rs

)1/α
∥∥∥∥∥∥

α

Lp(Rn×Rm)

≤ C‖Ω‖(α/α′)
L1(Sn−1×Sm−1)

‖h‖(α/α′)
∆1(R+×R+)

× ∑
j,k∈Z

∫
Rn×Rm

∫ θ j+1

θ j

∫ θk+1

θk

∫ s

s/2

∫ r

r/2

∫
Sn−1×Sm−1

∣∣∣Gj,k(ω− κx, υ− ηy)
∣∣∣α

× |Ω(x, y)||h(κ, η)|
α(α′−γ)

α′ dµ(x)dµ(y)
dκdη

κη

drds
rs

dωdυ

≤ C ln2(θ)‖Ω‖(α/α′)+1
L1(Sn−1×Sm−1)

‖h‖(α/α′)+1
∆1(R+×R+)

∫
Rn×Rm

(
∑

j,k∈Z

∣∣∣Gj,k(ω, υ)
∣∣∣α)dωdυ. (14)

Finally, we consider the case p ∈ ( αγ′

α+γ′−1 , α). Define the linear operator T on any
function G = Gj,k(x, y) by T (G) = µθkr,θ js ∗ Gj,k(x, y). Then, we have

∥∥∥∥∥∥∥‖T (G)‖L1([1,θ)×[1,θ)), drds
rs

∥∥∥
l1(Z×Z)

∥∥∥∥
L1(Rn×Rm)

≤ C ln2(θ)

∥∥∥∥∥
(

∑
j,k∈Z

∣∣∣Gj,k

∣∣∣)∥∥∥∥∥
L1(Rn×Rm)

. (15)

On the other hand, by using (6), we obtain∥∥∥∥∥ sup
j,k∈Z

sup
(r,s)∈[1,θ]×[1,θ]

∣∣∣µθkr,θ js ∗ Gj,k

∣∣∣∥∥∥∥∥
Lp(Rn×Rm)

≤
∥∥∥∥∥µ∗h

(
sup
j,k∈Z

∣∣∣Gj,k

∣∣∣)∥∥∥∥∥
Lp(Rn×Rm)

≤ CΩ,h

∥∥∥∥∥ sup
j,k∈Z

∣∣∣Gj,k

∣∣∣∥∥∥∥∥
Lp(Rn×Rm)

for all γ′ < p < ∞, which in turn implies∥∥∥∥∥∥∥‖µθkr,θ js ∗ Gj,k‖L∞([1,θ]×[1,θ], drds
rs )

∥∥∥
l∞(Z×Z)

∥∥∥∥
Lp(Rn×Rm)

≤ CΩ,h

∥∥∥∥∥∥∥Gj,k

∥∥∥
l∞(Z×Z)

∥∥∥∥
Lp(Rn×Rm)

. (16)

Therefore, by interpolating between (15) and (16) we get (10) for any p ∈ ( αγ′

α+γ′−1 , α).

Lemma 4. Assume that θ ≥ 2, h ∈ ∆γ(R+ ×R+) for some 2 < γ < ∞ and Ω ∈ Lq(
Sn−1 × Sm−1) for some 1 < q ≤ 2. Let α ≤ γ′ and {Gj,k(·, ·), j, k ∈ Z} be arbitrary functions

defined on Rn ×Rm. Then, there exists a positive constant CΩ,h such that∥∥∥∥∥∥∥∥
 ∑

j,k∈Z

θ j+1∫
θ j

θk+1∫
θk

∣∣∣µr,s ∗ Gj,k

∣∣∣α drds
rs


1/α
∥∥∥∥∥∥∥∥

Lp(Rn×Rm)

≤ CΩ,h ln2/α(θ)

∥∥∥∥∥∥
(

∑
j,k∈Z

∣∣∣Gj,k

∣∣∣α)1/α
∥∥∥∥∥∥

Lp(Rn×Rm)

(17)

for all p ∈ (1, α).

Proof. By duality, there is a set of functions {Mj,k(ω, υ, r, s)} defined on Rn ×Rm ×R+ ×

R+ with
∥∥∥∥∥∥∥‖Mj,k‖Lα′ ([θk ,θk+1]×[θ j ,θ j+1], drds

rs )

∥∥∥
lα′ (Z×Z)

∥∥∥∥
Lp′ (Rn×Rm)

≤ 1 and
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∥∥∥∥∥∥
(

∑
j,k∈Z

∫ θ j+1

θ j

∫ θk+1

θk

∣∣∣µr,s ∗ Gj,k

∣∣∣α drds
rs

)1/α
∥∥∥∥∥∥

Lp(Rn×Rm)

=
∫∫

Rn×Rm ∑
j,k∈Z

∫ θ j+1

θ j

∫ θk+1

θk

(
µr,s ∗ Gj,k(ω, υ)

)
Mj,k(ω, υ, r, s)

drds
rs

dωdυ

≤ C(ln θ)2/α
∥∥∥(N (M))1/α′

∥∥∥
Lp′ (Rn×Rm)

∥∥∥∥∥∥
(

∑
j,k∈Z

∣∣∣Gj,k

∣∣∣α)1/α
∥∥∥∥∥∥

Lp(Rn×Rm)

, (18)

where

N (M)(ω, υ) = ∑
j,k∈Z

∫ θ j+1

θ j

∫ θk+1

θk

∣∣∣µr,s ∗Mj,k(ω, υ, r, s)
∣∣∣α′ drds

rs
.

Since γ ≥ 2 ≥ γ′ ≥ α, then by Hölder’s inequality we obtain

∣∣∣µr,s ∗Mj,k(ω, υ)
∣∣∣α′ ≤ C‖Ω‖(α

′/α)

L1(Sn−1×Sm−1)
‖h‖(α

′/α)
∆γ(R+×R+)

×
∫ θ j+1

θ j

∫ θk+1

θk

∫∫
Sn−1×Sm−1

∣∣∣Mj,k(ω− κx, υ− ηy, r, s)
∣∣∣α′ |Ω(x, y)|dµ(x)dµ(y)

dκdη

κη
. (19)

Since p′ > α′, there exists a function ρ ∈ L(p′/α′)′(Rn ×Rm) such that

‖N (M)‖L(p′/α′)(Rn×Rm)
= ∑

j,k∈Z

∫∫
Rn×Rm

∫ θ j+1

θ j

∫ θk+1

θk

∣∣∣µr,s ∗Mj,k(ω, υ, r, s)
∣∣∣α′ drds

rs
ρ(ω, υ)dωdυ.

Therefore, a simple change in variable together with Lemmas 1 and (19) give

‖N (M)‖L(p′/α′)(Rn×Rm)
≤ C‖Ω‖(α

′/α)

L1(Sn−1×Sm−1)
‖h‖(α

′)
∆γ(R+×R+)

‖µ∗(ρ)‖
L(p′/α′)′ (Rn×Rm)

×
∥∥∥∥∥
(

∑
j,k∈Z

∫ θ j+1

θ j

∫ θk+1

θk

∣∣∣Mj,k(·, ·, r, s)
∣∣∣α′ drds

rs

)∥∥∥∥∥
L(p′/α′)(Rn×Rm)

≤ C‖Ω‖(α
′/α)+1

L1(Sn−1×Sm−1)
‖h‖α′

∆γ(R+×R+)
‖(ρ)‖

L(p′/α′)′ (Rn×Rm)
. (20)

Therefore, by (18) and (20), Inequality (17) is proved. Consequently, the proof of
Lemma 4 is complete.

Lemma 5. Assume that θ, Ω, and {Gj,k(·, ·), j, k ∈ Z} are given as in Lemma 3. Suppose that
h ∈ ∆γ(R+ ×R+) with 1 < γ < ∞ and α ≥ γ′. Then, there exists a constant CΩ,h > 0 such
that

∥∥∥∥∥∥∥∥
 ∑

j,k∈Z

θ j+1∫
θ j

θk+1∫
θk

∣∣∣µr,s ∗ Gj,k

∣∣∣α drds
rs


1/α
∥∥∥∥∥∥∥∥

Lp(Rn×Rm)

≤ CΩ,h ln2/α(θ)

∥∥∥∥∥∥
(

∑
j,k∈Z

∣∣∣Gj,k

∣∣∣α)1/α
∥∥∥∥∥∥

Lp(Rn×Rm)

(21)

for all γ′ < p < ∞.
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Proof. By (6), we have∥∥∥∥∥ sup
j,k∈Z

sup
(r,s)∈[1,θ]×[1,θ]

∣∣∣µθkr,θ js ∗ Gj,k

∣∣∣∥∥∥∥∥
Lp(Rn×Rm)

≤
∥∥∥∥∥µ∗h

(
sup
j,k∈Z

∣∣∣Gj,k

∣∣∣)∥∥∥∥∥
Lp(Rn×Rm)

≤ CΩ,h

∥∥∥∥∥ sup
j,k∈Z

∣∣∣Gj,k

∣∣∣∥∥∥∥∥
Lp(Rn×Rm)

(22)

for all γ′ < p < ∞. Hence,

∥∥∥∥∥∥∥‖µθkr,θ js ∗ Gj,k‖L∞([1,θ]×[1,θ], drds
rs )

∥∥∥
l∞(Z×Z)

∥∥∥∥
Lp(Rn×Rm)

≤ CΩ,h

∥∥∥∥∥∥∥Gj,k

∥∥∥
l∞(Z×Z)

∥∥∥∥
Lp(Rn×Rm)

. (23)

By the duality, there exists ψ ∈ L(p/γ′)′(Rn ×Rm) such that ‖ψ‖
L(p/γ′)′ (Rn×Rm)

≤ 1 and

∥∥∥∥∥∥
(

∑
j,k∈Z

∫ θ

1

∫ θ

1

∣∣∣µθkr,θ js ∗ Gj,k

∣∣∣γ′ drds
rs

)1/γ′
∥∥∥∥∥∥

γ′

Lp(Rn×Rm)

=
∫∫

Rn×Rm ∑
j,k∈Z

∫ θ

1

∫ θ

1

∣∣∣µθkr,θ js ∗ Gj,k

∣∣∣γ′ drds
rs

ψ(ω, υ)dωdυ

≤ C‖Ω‖(γ
′/γ)

L1(Sn−1×Sm−1)
‖h‖γ′

∆γ(R+×R+)

×
∫∫

Rn×Rm

(
∑

j,k∈Z

∣∣∣Gj,k(ω, υ)
∣∣∣γ′)µ∗(ψ)(−ω,−υ)dωdυ

≤ C ln2 (θ)‖Ω‖(γ
′/γ)

L1(Sn−1×Sm−1)
‖h‖(γ

′)
∆γ(R+×R+)

∥∥∥∥∥ ∑
j,k∈Z

∣∣∣Gj,k

∣∣∣γ′∥∥∥∥∥
L(p/γ′)(Rn×Rm)

∥∥µ∗(ψ)
∥∥

L(p/γ′)′ (Rn×Rm)
, (24)

where ψ(ω, υ) = ψ(−ω,−υ). Define the linear operator L on any function Gj,k(ω, υ) by
L(Gj,k(ω, υ)) = µθkr,θ js ∗ Gj,k(ω, υ). Hence, by interpolating between (23) and (24), we
obtain∥∥∥∥∥∥∥∥

 ∑
j,k∈Z

θ j+1∫
θ j

θk+1∫
θk

∣∣∣µr,s ∗ Gj,k

∣∣∣α drds
rs


1/α
∥∥∥∥∥∥∥∥

Lp(Rn×Rm)

≤ C

∥∥∥∥∥∥∥
 ∑

j,k∈Z

θ∫
1

θ∫
1

∣∣∣µθkr,θ js ∗ Gj,k

∣∣∣α drds
rs

1/α
∥∥∥∥∥∥∥

Lp(Rn×Rm)

≤ CΩ,h ln2/α(θ)

∥∥∥∥∥∥
(

∑
j,k∈Z

∣∣∣Gj,k

∣∣∣α)1/α
∥∥∥∥∥∥

Lp(Rn×Rm)

for all γ′ < p < ∞ with γ′ < α. The proof of this lemma is complete.

3. Proof of the Main Results

Proof of Theorem 1. We employ similar arguments as those in [19,20]. Assume that
α > 1, h ∈ ∆γ(R+ ×R+) with 1 < γ ≤ 2 and Ω ∈ Lq(Sn−1 × Sm−1) with q ∈ (1, 2]. By
Minkowski’s inequality, we obtain
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M
(α)
Ω,h( f )(x, y) =

(∫∫
R+×R+

∣∣∣∣∣ ∞

∑
j,k=0

1
rλ1 sλ2

∫
2−j−1s<|ω|≤2−js

∫
2−k−1r<|υ|≤2−kr

KΩ,h(ω, υ)

× f (x−ω, y− υ)dωdυ|α drds
rs

)1/α

≤
∞

∑
j,k=0

(∫∫
R+×R+

∣∣∣∣ 1
rλ1 sλ2

∫
2−j−1s<|ω|≤2−js

∫
2−k−1r<|υ|≤2−kr

× KΩ,h(ω, υ) f (x−ω, y− υ)dωdυ
∣∣α drds

rs

)1/α

≤ 2τ1+τ2

(2τ1 − 1)(2τ2 − 1)

(∫∫
R+×R+

|µr,s ∗ f (x, y)|α drds
rs

)1/α

. (25)

Take θ = 2γ′q′ , then ln(θ) ≤ C
(γ−1)(q−1) . Choose a set of functions {ϕk}∞

−∞ defined on
(0,∞) with the following properties:

ϕk ∈ C∞, 0 ≤ ϕk ≤ 1, ∑
k∈Z

ϕk(r) = 1,

supp (ϕk) ⊆ Ik ≡ [θ−1−k, θ1−k] and
∣∣∣∣dβ ϕk(r)

drβ

∣∣∣∣ ≤ Cβ

rβ
,

where Cβ is independent of θ. Define the operators (f̂k(ζ)) = ϕk(|ζ|) and (f̂j(ξ)) = ϕj(|ξ|)
for (ζ, ξ) ∈ Rn ×Rm. Therefore, we obtain that for any f ∈ S(Rn ×Rm),(∫∫

R+×R+

|µr,s ∗ f (x, y)|α drds
rs

)1/α

≤ C ∑
t,i∈Z
At,i( f )(x, y), (26)

where

At,i( f )(x, y) =
(∫∫

R+×R+

|Bt,i( f )(x, y, r, s)|α drds
rs

)1/α

and
Bt,i( f )(x, y, r, s) = ∑

j,k∈Z
µr,s ∗

(
fk+i ⊗fj+t

)
∗ f (x, y)χ

[θk ,θk+1)×[θ j ,θ j+1)
(r, s).

Therefore, to prove Theorem 1, it is sufficient to prove that there exists a positive
constant ε such that

‖At,i( f )‖Lp(Rn×Rm) ≤ CpCΩ,h2−
ε
2 (|t|+|i|)(ln θ)2/α‖ f ‖ .

F
−→
0 ,α
p (Rn×Rm)

(27)

for all p ∈ ( αγ′

α+γ′−1 , α′γ
α′−γ ) with γ′ ≥ α, and also for all γ′ < p < ∞ with γ′ ≤ α.

Let us first estimate the norm ofAt,i( f ) for the case p = α = 2. Indeed, by Plancherel’s
theorem, Fubini’s theorem, and Lemma 2, we obtain
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‖At,i( f )‖2
L2(Rn×Rm)

≤ ∑
j,k∈Z

∫∫
Ej+t,k+i

(∫ θ j+1

θ j

∫ θk+1

θk
|µ̂r,s(ζ, ξ)|2 drds

rs

)∣∣∣ f̂ (ζ, ξ)
∣∣∣2dζdξ

≤ Cp ln2(θ)C2
Ω,h ∑

j,k∈Z

∫∫
Ej+t,k+i

∣∣∣θkζ
∣∣∣± 2δ

ln(θ)
∣∣∣θ jξ

∣∣∣± 2δ
ln(θ)
∣∣∣ f̂ (ζ, ξ)

∣∣∣2dζdξ

≤ Cp ln2(θ) 2−ε(|t|+|i|) C2
Ω,h ∑

j,k∈Z

∫∫
Ej+t,k+i

∣∣∣ f̂ (ζ, ξ)
∣∣∣2dζdξ

≤ Cp ln2(θ) 2−ε(|t|+|i|) C2
Ω,h‖ f ‖2

L2(Rn×Rm), (28)

where Ej,k =
{
(ζ, ξ) ∈ Rn ×Rm : (|ζ|, |ξ|) ∈ Ik × Ij

}
and ε ∈ (0, 1).

However, we estimate the Lp-norm of At,i( f ) in the following. By Lemmas 3 and 5,
together with the Littlewood–Paley theory and invoking Lemma 2.3 in [9], we obtain

‖At,i( f )‖Lp(Rn×Rm)

≤ C

∥∥∥∥∥∥
(

∑
j,k∈Z

∫ θ j+1

θ j

∫ θk+1

θk

∣∣µr,s ∗
(
fk+i ⊗fj+t

)
∗ f
∣∣α drds

rs

)1/α
∥∥∥∥∥∥

Lp(Rn×Rm)

≤ CΩ,h ln2/α(θ)

∥∥∥∥∥∥
(

∑
j,k∈Z

∣∣(fk+i ⊗fj+t
)
∗ f
∣∣α)1/α

∥∥∥∥∥∥
Lp(Rn×Rm)

≤ Cp
1

[(q− 1)(γ− 1)]2/α
CΩ,h‖ f ‖ .

F
−→
0 ,α
p (Rn×Rm)

(29)

for all p ∈ ( αγ′

α+γ′−1 , α′γ
α′−γ ) with α ≤ γ′, and also for all γ′ < p < ∞ with α ≥ γ′. There-

fore, by interpolating (28) with (29), we immediately obtain (27). This ends the proof of
Theorem 1.

Proof of Theorem 2. To prove this theorem, we follow the exact procedure that was
used in the proof of Theorem 1, employing Lemma 4 instead of Lemma 3.

4. Conclusions

In this article, we established appropriate Lp bounds for the generalized parametric
Marcinkiewicz integral operator M(α)

Ω,h under the assumption that Ω ∈ Lq(Sn−1 × Sm−1)
for some q > 1. Then, we used these bounds, along with Yano’s extrapolation argument,
to prove the boundedness of the operator M(α)

Ω,h under very weak conditions on the kernel
function Ω. Such conditions on Ω are considered to be the best possible among their
respective classes. The results in this article improve and extend several known results in
the field of Marcinkiewicz and generalized Marcinkiewicz operators. In fact, our results
improve and extend the results in [1–4,6,8,9,17].
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