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Abstract: In this study, we solve the fractional advection–dispersion equation (FADE) by applying
the Laplace transform decomposition method (LTDM) and the variational iteration transform
method (VITM). The Atangana–Baleanu (AB) sense is used to describe the fractional derivative.
This equation is utilized to determine solute transport in groundwater and soils. The FADE is
converted into a system of non-linear algebraic equations whose solution leads to the approximate
solution for this equation using the techniques presented. The proposed approximate method’s
convergence is examined. The suggested method’s applicability is demonstrated by testing it
on several illustrative examples. The series solutions to the specified issues are obtained, and
they contain components that converge more quickly to the precise solutions. The actual and
estimated results are demonstrated in graphs and tables to be quite similar, demonstrating the
usefulness of the proposed strategy. The innovation of the current work is in the application
of an effective method that requires less calculation and achieves a greater level of accuracy.
Furthermore, the proposed approaches may be implemented to prove their utility in tackling
fractional-order problems in science and engineering.

Keywords: fractional advection–dispersion equations; variational iteration transform method; Laplace
transform decomposition method; fractional advection–dispersion equations; Atangana–Baleanu
fractional derivative

1. Introduction

Fractional calculus (FC) has recently received a great deal of interest from scholars,
with many distinct topics being researched. This is because fractional calculus is a valuable
tool for explaining the dynamical behavior of numerous physical systems. The benefit of
fractional differential operators is that they have nonlocal properties absent in integer-order
differential operators. Fractional differential equations (FDEs) are notable for providing
memory and transmission qualities for numerous mathematical models. Fractional-order
models are, in reality, more realistic and practical than integer-order models. In these
models, the derivative possessing fractional order gives a higher degree of flexibility.
The global properties of these models, which do not exist in classical-order models, are
their most iterating feature. FC has received a great deal of interest in many areas, includ-
ing fluid dynamics, solid mechanics, ecology, financial mathematics, biological diseases,
and many other fields [1–8]. Since finding the solution to FDEs can be difficult, affective
computing approaches for solving FDEs may be required [9–12]. Many authors, including
Baleanu et al. [13], Miller and Ross [14], Kilbas et al. [15], and Podlubny [16] have pub-
lished books on FC in the last few years. For such challenges, several approximate and
analytical approaches have been developed [17–22]. The fractional differential equation is
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a useful tool for expressing nonlinear events in scientific and engineering models. Partial
differential equations, especially nonlinear ones, have been used in applied mathematics
and engineering to model a variety of scientific phenomena. Parallel to their work in the
physical sciences, researchers were able to identify and model a wide variety of significant
and practical physical difficulties thanks to fractional-order partial differential equations
(FPDEs). It has long been argued that it is crucial for scientists to use analytical or numerical
approaches to obtain approximations. As a result, symmetry analysis is an excellent tool for
understanding partial differential equations, particularly in the case of equations derived
from mathematical ideas related to accounting. Contrary to popular belief, symmetry is
not the fundamental principle of nature.

The study of Brownian motion of particles in a fluid results in the simultaneous occur-
rence of particle dispersion and advection, which gives rise to the advection–dispersion
equation (ADE). The phenomenon of anomalous diffusion of particles in the transport
process is better described by the FADE, as in anomalous diffusion, the solute transport
is faster or quicker than the inferred square root of time given by Baeumer et al. [23].
The equation has been applied to research a variety of environmental issues, including
smoke and dust pollution of the atmosphere, groundwater pollution, pollutant discharges,
and the spread of chemical solutes, among others [24]. Thus, FADE has gained the interest
of several scholars. Our main focus in this work is to solve the FADE of the form [25]:

Dλ
η ψ(ν, η) = κ`D2

νψ(ν, η)− Dνψ(ν, η) η > 0, ν > 0, 0 < λ ≤ 1 (1)

where ψ is the solute concentration, κ,  are the average dispersion coefficient and fluid
velocity, ν is the spatial domain, η is time, and λ is the parameter determining the order of
the time- and space-fractional derivatives, respectively. In the Atangana–Baleanu sense,
the fractional derivative is examined. The order of fractional derivatives is described by
parameters in the general response expression, which can be changed to obtain numerous
results. The fractional equation is reduced to the standard ADE when λ = 1. Gaussian
densities with variances and means dependent on the values of the macroscopic trans-
port coefficients κ and  will constitute the fundamental solutions of the ADE over time.
A number of authors have already studied the space–time FADE.

With the aid of the Laplace transform (LT) and fractional Attangana–Baleanu deriva-
tive operator, we used two analytical approaches to solve the FADE in this study [26,27].
To approach problem (1), the Adomian decomposition method [28,29] and the varia-
tional iteration method [30–35] were employed successfully. Both techniques are novel
approaches in providing an analytical approximation to linear and nonlinear problems.
They are particularly useful tools for scientists and applied mathematicians because
they give extremely fast and visible symbolic terms of analytic solutions and approxi-
mate numerical solutions to linear and nonlinear differential equations. The literature
has utilized the decomposition method to provide approximate solutions to a wide
range of linear and nonlinear differential equations [36]. The methods used for FDEs
have recently been extended [37–41]. He et al. [30–35] presented the variational itera-
tion approach, which has been used for autonomous ordinary and partial differential
equations [42–46] and other areas. He introduced the variational iteration method to
solve FDEs. Momani and Odibat [47] recently used the variational iteration approach
to solve fractional-order nonlinear ordinary differential equations. Furthermore, they
provide a numerical comparison of the two approaches for solving fractional-order linear
differential equations [48].

2. Preliminaries

Here, we examine some fundamental fractional calculus definitions that are relevant
to our current research.
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Definition 1. The Caputo operator is defined as [15,16]

CDλ
η {y(η)} =

1
(n− λ)

∫ η

0
(η − k)n−λ−1yn(k)dk, where n < λ ≤ n + 1.

Definition 2. In addition to the Caputo derivative, the Laplace transformation LDλ
η {y(η)} is

defined as [15,16]

L{LCDλ
η {y(η)}}(v) =

1
vn−λ

[
vnL{y(ν, η)}(v)−vn−1y(ν, 0)− · · · − yn−1(ν, 0)

]
.

Definition 3. The Atangana–Baleanu (AB) derivative is defined as [49]

ABDλ
η {y(η)} =

A(λ)

1− λ

∫ η

a
y
′
(k)Eλ

[
− λ

1− λ
(1− k)λ

]
dk.

Here, A(γ) represents the normalization function with A(0) = A(1) = 1, y ∈ H1(a, b), b >
a, λ ∈ [0, 1], and Eλ illustrates the Mittag–Leffler function.

Definition 4. The Riemann–Liouville derivative of AB is given as [49]

ABDλ
η {y(η)} =

A(λ)

1− λ

d
dη

∫ η

a
y(k)Eλ

[
− γ

1− λ
(1− k)λ

]
dk

Definition 5. The AB operator is used in association with the Laplace transformation as [50]

ABDλ
η {y(η)}(v) =

A(γ)vλL{y(η)}(v)−vλ−1y(0)

(1− λ)

(
vλ + λ

1−γ

)
Definition 6. If 0 < y < 1 is a function of η, the integral operator with fractional order is defined
as [50]

AB Iλ
η {y(η)} =

1− λ

A(λ)
y(η) +

λ

A(λ)Γ(λ)

∫ η

a
y(k)(η − k)λ−1dk.

3. Idea of LTDM

The general form of the proposed technique for solving a nonlinear partial differential
equation is defined as

ABDλ
η ψ(ν, η) + Ḡ1(ν, η) +N1(ν, η) = F (ν, η), 0 < λ ≤ 1, (2)

with the initial source
ψ(ν, 0) = Φ(ν).

where ABDλ
η = ∂λ

∂ηλ is the time-fractional derivative in an AB manner, Ḡ1, N1 represent the

linear and non-linear parts, and F (ν, η) is a known function.
By employing LT in Equation (2), we obtain

L[ABDλ
η ψ(ν, η) + Ḡ1(ν, η) +N1(ν, η)] = L[F (ν, η)]. (3)

Using Laplace differentiation property yields

L[ψ(ν, η)] = Θ(ν, v)− vλ + λ(1− λ)

vλ
L[Ḡ1(ν, η) +N1(ν, η)], (4)
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where Θ(ν, v) = 1
vλ+1 [v

λg0(ν) + vλ−1g1(ν) + · · ·+ g1(ν)] +
vλ+λ(1−λ)

vλ F (ν, η).
Applying the inverse LT, we obtain

ψ(ν, η) = Θ(ν, v)− L−1
{

vλ + λ(1− λ)

vλ
L[Ḡ1(ν, η) +N1(ν, η)]

}
, (5)

Here, Θ(ν, v) is the term obtained from the result of the initial and nonhomogeneous
terms. Thus, the infinite-series form solution is shown as

ψ(ν, η) =
∞

∑
m=0

ψm(ν, η). (6)

N1 indicates the nonlinear term as

N1(ν, η) =
∞

∑
m=0
Am(ν, η). (7)

Here, Am is the Adomian polynomial:

Am(ν, η) =
1

m!

[
∂m

∂`m

{
N1

(
∞

∑
k=0

`kνk,
∞

∑
k=0

`kηk

)}]
`=0

. (8)

On incorporating Equations (6) and (7) into (5), we obtain

∞

∑
m=0

ψm(ν, η) = Θ(ν, v)− L−1

{
vλ + λ(1− λ)

vλ
L[Ḡ1(

∞

∑
m=0

νm,
∞

∑
m=0

ηm) +
∞

∑
m=0
Am]

}
, (9)

The rest of the components are derived asψ0(ν, η) = Θ(ν, v),

ψ1(ν, η) = L−1
{

vλ+λ(1−λ)
vλ L[Ḡ1(ν0, η0) +A0]

}
,

(10)

On continuing the same process, all the components for m ≥ 1 are calculated as

ψm+1(ν, η) = L−1
{

vλ + λ(1− λ)

vλ
L[Ḡ1(νm, ηm) +Am]

}
.

4. VITM Formulation

The general form of the proposed technique for solving a nonlinear partial differential
equation is defined as

ABDλ
η ψ(ν, η) +Mψ(ν, η) +Nψ(ν, η)−P(ν, η) = 0, m− 1 < δ ≤ m, (11)

with the initial source
ψ(ν, 0) = g1(ν). (12)

where ABDλ = ∂λ

∂λ is the time-fractional derivative in an AB manner,M, N represent the
linear and non-linear parts, and P is a known function.

By employing LT in Equation (11), we obtain

L[ABDλ
η ψ(ν, η)] + L[Mψ(ν, η) +Nψ(ν, η)−P(ν, η)] = 0. (13)

Using Laplace differentiation property yields

L[ψ(ν, η)] =
vλ

vλ + λ(1− λ)
L[Mψ(ν, η) +Nψ(ν, η)−P(ν, η)]. (14)
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The iterative scheme for Equation (13) is given as

ψm+1(ν, η) = ψm(ν, η) + λ(v)

[
vλ

vλ + λ(1− λ)
L[Mψ(ν, η) +Nψ(ν, η)−P(ν, η)]

]
. (15)

and λ(v) is the Lagrange multiplier

λ(v) = −vλ + λ(1− λ)

vλ
, (16)

The series form solution for Equation (14) is obtained by taking the inverse LT as

ψ0(ν, η) = ψ(0) + L−1[λ(v)L[−P(ν, η)]],

ψ1(ν, η) = L−1[λ(v)L[Mψ(ν, η) +Nψ(ν, η)]],
...

ψn+1(ν, η) = L−1[λ(v)L[M[ψ0(ν, η) + ψ1(ν, η) + · · · , ψn(ν, η)]] +N [ψ0(ν, η) + ψ1(ν, η), · · · , ψn(ν, η)]].

5. Applications

Here, we extract the solutions of FADE by implementing LTDM and VITM.

5.1. Example

Consider the following ADE:

Dλ
η ψ(ν, η) = `D2

νψ(ν, η)− Dνψ(ν, η) 0 < λ ≤ 1, η > 0, (17)

with the initial source
ψ(ν, 0) = e−ν.

By employing LT, we obtain

vλL[ψ(ν, η)]−v−1ψ(ν, 0)
vλ + λ(1−vλ)

= L
[
`D2

νψ(ν, η)− Dνψ(ν, η)
]
. (18)

By applying inverse LT, we obtain

ψ(ν, η) = e−ν + L−1
[

vλ + λ(1−vλ)

vλ
L
[
`D2

νψ(ν, η)− Dνψ(ν, η)
]]

. (19)

The ψ(ν, η) series solution is given as

ψ(ν, η) =
∞

∑
m=0

ψm(ν, η),

∞

∑
m=0

ψm(ν, η) =e−ν + L−1
[

vλ + λ(1−vλ)

vλ
L
[
`D2

νψ(ν, η)− Dνψ(ν, η)
]]

.
(20)

By comparing both sides of Equation (20), we obtain

ψ0(ν, η) = e−ν,

For m = 0:

ψ1(ν, η) = e−ν(`+ 1)
[

ληλ

Γ(λ + 1)
+ (1− λ)

]
,
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For m = 1:

ψ2(ν, η) = e−ν(`+ 1)2
[

λ2η2λ

Γ(2λ + 1)
+ 2λ(1− λ)

ηλ

Γ(λ + 1)
+ (1− λ)2

]
,

For m = 2:

ψ3(ν, η) = e−ν(`+ 1)3
[

λ3η3λ

Γ(3λ + 1)
+ 3λ2(1− λ)

η2λ

Γ(2λ + 1)
+ 3λ(1− λ)2 ηλ

Γ(λ + 1)
+ (1− λ)3

]
,

Consequently, we determine the solution in series form as

ψ(ν, η) =
∞

∑
m=0

ψm(ν, η) = ψ0(ν, η) + ψ1(ν, η) + ψ2(ν, η) + ψ3(ν, η) + · · ·

ψ(ν, η) = e−ν + e−ν(`+ 1)
[

ληλ

Γ(λ + 1)
+ (1− λ)

]
+ e−ν(`+ 1)2

[ λ2η2λ

Γ(2λ + 1)
+ 2λ(1− λ)

ηλ

Γ(λ + 1)
+

(1− λ)2
]
+ e−ν(`+ 1)3

[
λ3η3λ

Γ(3λ + 1)
+ 3λ2(1− λ)

η2λ

Γ(2λ + 1)
+ 3λ(1− λ)2 ηλ

Γ(λ + 1)
+ (1− λ)3

]
+ · · ·

If we set λ = 1, we obtain ψ(ν, η) = e(1+`)η−ν.
VITM Solution:

Applying the iterative formula to Equation (17), we obtain

ψm+1(ν, η) = ψm(ν, η) + L−1
[vλ + λ(1−vλ)

vλ
L
{ vλ

vλ + λ(1−vλ)
`D2

νψm(ν, η)− Dνψm(ν, η)
}]

, (21)

where
ψ0(ν, η) = e−ν.

For m = 0, 1, 2, · · ·

ψ1(ν, η) = ψ0(ν, η) + L−1
[vλ + λ(1−vλ)

vλ
L
{ vλ

vλ + λ(1−vλ)
`D2

νψ0(ν, η)− Dνψ0(ν, η)
}]

,

ψ1(ν, η) = e−ν + e−ν(`+ 1)
[

ληλ

Γ(λ + 1)
+ (1− λ)

]
,

(22)

ψ2(ν, η) = ψ1(ν, η) + L−1
[vλ + λ(1−vλ)

vλ
L
{ vλ

vλ + λ(1−vλ)
`D2

νψ1(ν, η)− Dνψ1(ν, η)
}]

,

ψ2(ν, η) = e−ν + e−ν(`+ 1)
[

ληλ

Γ(λ + 1)
+ (1− λ)

]
+ e−ν(`+ 1)2

[
λ2η2λ

Γ(2λ + 1)
+ 2λ(1− λ)

ηλ

Γ(λ + 1)
+ (1− λ)2

]
,

(23)

ψ3(ν, η) = ψ2(ν, η) + L−1
[vλ + λ(1−vλ)

vλ
L
{ vλ

vλ + λ(1−vλ)
`D2

νψ2(ν, η)− Dνψ2(ν, η)
}]

,

ψ3(ν, η) = e−ν + e−ν(`+ 1)
[

ληλ

Γ(λ + 1)
+ (1− λ)

]
+ e−ν(`+ 1)2

[
λ2η2λ

Γ(2λ + 1)
+ 2λ(1− λ)

ηλ

Γ(λ + 1)
+ (1− λ)2

]
+

e−ν(`+ 1)3
[

λ3η3λ

Γ(3λ + 1)
+ 3λ2(1− λ)

η2λ

Γ(2λ + 1)
+ 3λ(1− λ)2 ηλ

Γ(λ + 1)
+ (1− λ)3

]
,

(24)
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ψ(ν, η) =
∞

∑
m=0

ψm(ν, η) = e−ν + e−ν(`+ 1)
[

ληλ

Γ(λ + 1)
+ (1− λ)

]
+ e−ν(`+ 1)2

[ λ2η2λ

Γ(2λ + 1)

+ 2λ(1− λ)
ηλ

Γ(λ + 1)
+ (1− λ)2

]
+ e−ν(`+ 1)3

[ λ3η3λ

Γ(3λ + 1)
+ 3λ2(1− λ)

η2λ

Γ(2λ + 1)
+

3λ(1− λ)2 ηλ

Γ(λ + 1)
+ (1− λ)3

]
+ · · ·

(25)

If we set λ = 1, we obtain ψ(ν, η) = e(1+`)η−ν.

5.2. Example

Consider the following ADE:

Dλ
η ψ(ν, η) = `D2

νψ(ν, η)− Dνψ(ν, η) 0 < λ ≤ 1, η > 0, (26)

subject to the initial condition
ψ(ν, 0) = ν3 − ν2.

By employing LT, we obtain

vλL[ψ(ν, η)]−v−1ψ(ν, 0)
vλ + λ(1−vλ)

= L
[
`D2

νψ(ν, η)− Dνψ(ν, η)
]
. (27)

By applying inverse LT, we obtain

ψ(ν, η) = ν3 − ν2 + L−1
[

vλ + λ(1−vλ)

vλ
L
[
`D2

νψ(ν, η)− Dνψ(ν, η)
]]

. (28)

The ψ(ν, `, η) series solution is defined as

ψ(ν, η) =
∞

∑
m=0

ψm(ν, η),

∞

∑
m=0

ψm(ν, η) =ν3 − ν2 + L−1
[

vλ + λ(1−vλ)

vλ
L
[
`D2

νψ(ν, η)− Dνψ(ν, η)
]]

.
(29)

By comparing both sides of Equation (29), we obtain

ψ0(ν, η) = ν3 − ν2,

For m = 0:

ψ1(ν, η) = {−3ν2 + 2ν(1 + 3`)− 2`}
[

ληλ

Γ(λ + 1)
+ (1− λ)

]
,

For m = 1:

ψ2(ν, η) = {6ν− 2− 12`}
[

λ2η2λ

Γ(2λ + 1)
+ 2λ(1− λ)

ηλ

Γ(λ + 1)
+ (1− λ)2

]
,

For m = 2:

ψ3(ν, η) = −6
[

λ3η3λ

Γ(3λ + 1)
+ 3λ2(1− λ)

η2λ

Γ(2λ + 1)
+ 3λ(1− λ)2 ηλ

Γ(λ + 1)
+ (1− λ)3

]
,
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Consequently, we determine the solution in series form as

ψ(ν, η) =
∞

∑
m=0

ψm(ν, η) = ψ0(ν, η) + ψ1(ν, η) + ψ2(ν, η) + ψ3(ν, η) + · · ·

ψ(ν, η) = ν3 − ν2 + {−3ν2 + 2ν(1 + 3`)− 2`}
[

ληλ

Γ(λ + 1)
+ (1− λ)

]
+ {6ν− 2− 12`}

[ λ2η2λ

Γ(2λ + 1)
+ 2λ(1− λ)

ηλ

Γ(λ + 1)
+ (1− λ)2

]
− 6
[

λ3η3λ

Γ(3λ + 1)
+ 3λ2(1− λ)

η2λ

Γ(2λ + 1)
+ 3λ(1− λ)2 ηλ

Γ(λ + 1)
+ (1− λ)3

]
+ · · ·

VITM Solution:
Applying the iterative formula to Equation (27), we obtain

ψm+1(ν, η) = ψm(ν, η) + L−1
[vλ + λ(1−vλ)

vλ
L
{ vλ

vλ + λ(1−vλ)
`D2

νψm(ν, η)− Dνψm(ν, η)
}]

, (30)

where
ψ0(ν, η) = ν3 − ν2.

For m = 0, 1, 2, · · ·

ψ1(ν, η) = ψ0(ν, η) + L−1
[vλ + λ(1−vλ)

vλ
L
{ vλ

vλ + λ(1−vλ)
`D2

νψ0(ν, η)− Dνψ0(ν, η)
}]

,

ψ1(ν, η) = ν3 − ν2 + {−3ν2 + 2ν(1 + 3`)− 2`}
[

ληλ

Γ(λ + 1)
+ (1− λ)

]
,

(31)

ψ2(ν, η) = ψ1(ν, η) + L−1
[vλ + λ(1−vλ)

vλ
L
{ vλ

vλ + λ(1−vλ)
`D2

νψ1(ν, η)− Dνψ1(ν, η)
}]

,

ψ2(ν, η) = ν3 − ν2 + {−3ν2 + 2ν(1 + 3`)− 2`}
[

ληλ

Γ(λ + 1)
+ (1− λ)

]
+ {6ν− 2− 12`}

[
λ2η2λ

Γ(2λ + 1)
+ 2λ(1− λ)

ηλ

Γ(λ + 1)
+ (1− λ)2

]
,

(32)

ψ3(ν, η) = ψ2(ν, η) + L−1
[vλ + λ(1−vλ)

vλ
L
{ vλ

vλ + λ(1−vλ)
`D2

νψ2(ν, η)− Dνψ2(ν, η)
}]

,

ψ3(ν, η) = ν3 − ν2 + {−3ν2 + 2ν(1 + 3`)− 2`}
[

ληλ

Γ(λ + 1)
+ (1− λ)

]
+ {6ν− 2− 12`}

[
λ2η2λ

Γ(2λ + 1)
+ 2λ(1− λ)

ηλ

Γ(λ + 1)
+ (1− λ)2

]
− 6
[

λ3η3λ

Γ(3λ + 1)
+ 3λ2(1− λ)

η2λ

Γ(2λ + 1)
+ 3λ(1− λ)2 ηλ

Γ(λ + 1)
+ (1− λ)3

]
,

(33)

ψ(ν, η) =
∞

∑
m=0

ψm(ν, η) = ν3 − ν2 + {−3ν2 + 2ν(1 + 3`)− 2`}
[

ληλ

Γ(λ + 1)
+ (1− λ)

]
+ {6ν− 2− 12`}

[ λ2η2λ

Γ(2λ + 1)
+ 2λ(1− λ)

ηλ

Γ(λ + 1)
+ (1− λ)2

]
− 6
[ λ3η3λ

Γ(3λ + 1)
+ 3λ2(1− λ)

η2λ

Γ(2λ + 1)
+

3λ(1− λ)2 ηλ

Γ(λ + 1)
+ (1− λ)3

]
+ · · ·

(34)
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5.3. Example

Consider the following ADE:

Dλ
η ψ(ν, η) = `D2

νψ(ν, η)− Dνψ(ν, η) 0 < λ ≤ 1, η > 0, (35)

subject to the initial condition
ψ(ν, 0) = cos(ν).

By employing LT, we obtain

vλL[ψ(ν, η)]−v−1ψ(ν, 0)
vλ + λ(1−vλ)

= L
[
`D2

νψ(ν, η)− Dνψ(ν, η)
]
. (36)

By applying inverse LT, we obtain

ψ(ν, η) = cos(ν) + L−1
[

vλ + λ(1−vλ)

vλ
L
[
`D2

νψ(ν, η)− Dνψ(ν, η)
]]

. (37)

The ψ(ν, η) series solution is given as

ψ(ν, η) =
∞

∑
m=0

ψm(ν, η),

∞

∑
m=0

ψm(ν, η) = cos(ν) + L−1
[

vλ + λ(1−vλ)

vλ
L
[
`D2

νψ(ν, η)− Dνψ(ν, η)
]] (38)

By comparing both sides of Equation (38), we obtain

ψ0(ν, η) = cos(ν),

For m = 0:

ψ1(ν, η) = (sin(ν)− ` cos(ν))
[

ληλ

Γ(λ + 1)
+ (1− λ)

]
,

For m = 1:

ψ2(ν, η) = (− cos(ν)− 2` sin(ν) + `2 cos(ν))
[

λ2η2λ

Γ(2λ + 1)
+ 2λ(1− λ)

ηλ

Γ(λ + 1)
+ (1− λ)2

]
,

For m = 2:

ψ3(ν, η) = (− sin(ν) + 3` cos(ν) + 3`2 sin(ν)− `3 cos(ν))

[
λ3η3λ

Γ(3λ + 1)
+ 3λ2(1− λ)

η2λ

Γ(2λ + 1)
+ 3λ(1− λ)2

ηλ

Γ(λ + 1)
+ (1− λ)3

]
,

Consequently, we determine the solution in series form as

ψ(ν, η) =
∞

∑
m=0

ψm(ν, η) = ψ0(ν, η) + ψ1(ν, η) + ψ2(ν, η) + ψ3(ν, η) + · · ·
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ψ(ν, η) = cos(ν) + (sin(ν)− ` cos(ν))
[

ληλ

Γ(λ + 1)
+ (1− λ)

]
+ (− cos(ν)− 2` sin(ν) + `2 cos(ν))

[ λ2η2λ

Γ(2λ + 1)
+

2λ(1− λ)
ηλ

Γ(λ + 1)
+ (1− λ)2

]
+ (− sin(ν) + 3` cos(ν) + 3`2 sin(ν)− `3 cos(ν))

[
λ3η3λ

Γ(3λ + 1)
+ 3λ2(1− λ)

η2λ

Γ(2λ + 1)
+ 3λ(1− λ)2 ηλ

Γ(λ + 1)
+ (1− λ)3

]
+ · · ·

VITM Solution:
Applying the iterative formula to Equation (27), we obtain

ψm+1(ν, η) = ψm(ν, η) + L−1
[vλ + λ(1−vλ)

vλ
L
{ vλ

vλ + λ(1−vλ)
`D2

νψm(ν, η)− Dνψm(ν, η)
}]

, (39)

where
ψ0(ν, η) = cos(ν).

For m = 0, 1, 2, · · ·

ψ1(ν, η) = ψ0(ν, η) + L−1
[vλ + λ(1−vλ)

vλ
L
{ vλ

vλ + λ(1−vλ)
`D2

νψ0(ν, η)− Dνψ0(ν, η)
}]

,

ψ1(ν, η) = cos(ν) + (sin(ν)− ` cos(ν))
[

ληλ

Γ(λ + 1)
+ (1− λ)

]
,

(40)

ψ2(ν, η) = ψ1(ν, η) + L−1
[vλ + λ(1−vλ)

vλ
L
{ vλ

vλ + λ(1−vλ)
`D2

νψ1(ν, η)− Dνψ1(ν, η)
}]

,

ψ2(ν, η) = cos(ν) + (sin(ν)− ` cos(ν))
[

ληλ

Γ(λ + 1)
+ (1− λ)

]
+ (− cos(ν)− 2` sin(ν) + `2 cos(ν))[

λ2η2λ

Γ(2λ + 1)
+ 2λ(1− λ)

ηλ

Γ(λ + 1)
+ (1− λ)2

]
,

(41)

ψ3(ν, η) = ψ2(ν, η) + L−1
[vλ + λ(1−vλ)

vλ
L
{ vλ

vλ + λ(1−vλ)
`D2

νψ2(ν, η)− Dνψ2(ν, η)
}]

,

ψ3(ν, η) = cos(ν) + (sin(ν)− ` cos(ν))
[

ληλ

Γ(λ + 1)
+ (1− λ)

]
+ (− cos(ν)− 2` sin(ν) + `2 cos(ν))[

λ2η2λ

Γ(2λ + 1)
+ 2λ(1− λ)

ηλ

Γ(λ + 1)
+ (1− λ)2

]
+ (− sin(ν) + 3` cos(ν) + 3`2 sin(ν)− `3 cos(ν))[

λ3η3λ

Γ(3λ + 1)
+ 3λ2(1− λ)

η2λ

Γ(2λ + 1)
+ 3λ(1− λ)2 ηλ

Γ(λ + 1)
+ (1− λ)3

]
,

(42)

ψ(ν, η) =
∞

∑
m=0

ψm(ν, η) = cos(ν) + (sin(ν)− ` cos(ν))
[

ληλ

Γ(λ + 1)
+ (1− λ)

]
+ (− cos(ν)− 2` sin(ν)+

`2 cos(ν))
[ λ2η2λ

Γ(2λ + 1)
+ 2λ(1− λ)

ηλ

Γ(λ + 1)
+ (1− λ)2

]
+ (− sin(ν) + 3` cos(ν) + 3`2 sin(ν)− `3 cos(ν))[ λ3η3λ

Γ(3λ + 1)
+ 3λ2(1− λ)

η2λ

Γ(2λ + 1)
+ 3λ(1− λ)2 ηλ

Γ(λ + 1)
+ (1− λ)3

]
+ · · ·

(43)



Symmetry 2023, 15, 819 11 of 16

6. Results and Discussion

The numerical investigation of space–time FADE using LTDM and VITM is presented
in this section. The solutions are graphically illustrated in the Figures and Table using
Maple. Table 1 shows the error analysis of fractional advection–dispersion equations
achieved using the proposed approaches for various ν, η, and λ values, whereas Table 2
demonstrates the error analysis of the proposed methods and results obtained by HPTM in
terms of absolute error. Figure 1a,b depict the nature of the proposed methods’ accurate
and analytical solutions, respectively, while Figure 1c,d depict the proposed methods’
nature at various fractional orders within the domain 0 ≤ ν, η ≤ 1. Figures 2 and 3a–d
exhibit the suggested methods’ solutions at different fractional orders, respectively, within
the domain 0 ≤ ν, η ≤ 1 and within the domain 0 ≤ ν, η ≤ 5. In comparison to other
approaches, the proposed methods were quite successful and accurate, as shown in Table 2.
Furthermore, the fractional-order solution shows that when the value of λ approaches the
integer order, the solution gets closer to the precise solution.

Table 1. LTDM and VITM absolute error comparison of Example 1.

η ν |Exact− LTDM| |Exact− LTDM| |Exact− V IT M| |Exact− V IT M|

λ = 0.6 λ = 1 λ = 0.8 λ = 1

0.5 3.94307831× 10−02 2.6838000× 10−06 1.06407390× 10−02 2.6838000× 10−06

1 2.39159790× 10−02 1.6278000× 10−06 6.45393460× 10−03 1.6278000× 10−06

1.5 1.45057744× 10−02 9.8730000× 10−07 3.91450910× 10−03 9.8730000× 10−07

2 8.79819690× 10−03 5.9890000× 10−07 2.37426970× 10−03 5.9890000× 10−07

2.5 5.33637619× 10−03 3.6321000× 10−07 1.44006743× 10−03 3.6321000× 10−07

0.1 3 3.23667578× 10−03 2.2030000× 10−07 8.73445050× 10−04 2.2030000× 10−07

3.5 1.96314309× 10−03 1.3362000× 10−07 5.29771200× 10−04 1.3362000× 10−07

4 1.19070648× 10−03 8.1040000× 10−08 3.21322480× 10−04 8.1040000× 10−08

4.5 7.22199990× 10−04 4.9150000× 10−08 1.94891940× 10−04 4.9150000× 10−08

5 4.38036433× 10−04 2.9814000× 10−08 1.18207933× 10−04 2.9814000× 10−08

0.5 5.86532951× 10−02 4.3835800× 10−05 1.72341631× 10−02 4.3835800× 10−05

1 3.55750218× 10−02 2.6587800× 10−05 1.04530483× 10−02 2.6587800× 10−05

1.5 2.15773414× 10−02 1.6126300× 10−05 6.34009420× 10−03 1.6126300× 10−05

2 1.30873191× 10−02 9.7811000× 10−06 3.84546160× 10−03 9.7811000× 10−06

2.5 7.93786031× 10−03 5.9326000× 10−06 2.33239034× 10−03 5.9326000× 10−06

0.2 3 4.81455565× 10−03 3.5982600× 10−06 1.41466625× 10−03 3.5982600× 10−06

3.5 2.92017561× 10−03 2.1824600× 10−06 8.58038460× 10−04 2.1824600× 10−06

4 1.77117604× 10−03 1.3237300× 10−06 5.20426630× 10−04 1.3237300× 10−06

4.5 1.07427258× 10−03 8.0288000× 10−07 3.15654710× 10−04 8.0288000× 10−07

5 6.51579253× 10−04 4.8697300× 10−07 1.91454259× 10−04 4.8697300× 10−07

0.5 7.39988156× 10−02 2.2660620× 10−04 2.27580592× 10−02 2.2660620× 10−04

1 4.48825505× 10−02 1.3744360× 10−04 1.38034607× 10−02 1.3744360× 10−04

1.5 2.72226429× 10−02 8.3363800× 10−05 8.37222200× 10−03 8.3363800× 10−05

2 1.65113676× 10−02 5.0562700× 10−05 5.07800940× 10−03 5.0562700× 10−05

2.5 1.00146506× 10−02 3.0667900× 10−05 3.07996838× 10−03 3.0667900× 10−05

0.3 3 6.07419268× 10−03 1.8600970× 10−05 1.86809527× 10−03 1.8600970× 10−05

3.5 3.68418409× 10−03 1.1282060× 10−05 1.13305705× 10−03 1.1282060× 10−05

4 2.23457061× 10−03 6.8429200× 10−06 6.87233850× 10−04 6.8429200× 10−06

4.5 1.35533559× 10−03 4.1504400× 10−06 4.16828400× 10−04 4.1504400× 10−06

5 8.22052586× 10−04 2.5173680× 10−06 2.52819201× 10−04 2.5173680× 10−06
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Table 2. Absolute error comparison of the HPTM and proposed methods.

η ν HPT M Our Methods

λ = 1 λ = 1

1 2.0000000× 10−10 1.42429233× 10−12

1.5 1.0000000× 10−10 8.63876960× 10−12

2 1.0000000× 10−10 5.23967870× 10−12

2.5 4.0000000× 10−11 3.17802575× 10−12

0.1 3 2.0000000× 10−11 1.92757006× 10−12

3.5 2.0000000× 10−11 1.16913033× 10−12

4 1.0000000× 10−11 7.09113390× 10−12

1 3.5000000× 10−09 2.21784191× 10−11

1.5 2.1000000× 10−09 1.34518911× 10−11

2 1.3000000× 10−09 8.15898440× 10−11

2.5 7.8000000× 10−10 4.94867420× 10−11

0.2 3 4.7000000× 10−10 3.00152262× 10−11

3.5 2.9000000× 10−10 1.82051550× 10−11

4 1.7000000× 10−10 1.10419847× 10−11

1 1.8100000× 10−08 2.86980942× 10−10

1.5 1.1000000× 10−08 1.74062739× 10−10

2 6.7000000× 10−09 1.05574388× 10−10

2.5 4.0400000× 10−09 6.40341033× 10−10

0.3 3 2.4500000× 10−09 3.88386470× 10−10

3.5 1.4900000× 10−09 2.35568301× 10−10

4 9.0000000× 10−10 1.42879398× 10−10

Figure 1. The solution plot of Example 1.
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Figure 2. The solution plot of Example 2.

Figure 3. The solution plot of Example 3.
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7. Conclusions

The use of the Adomian decomposition approach and the variational iteration method
to achieve explicit and numerical solutions to the space–time fractional advection–dispersion
problem has been expanded in this research. In obtaining the solutions to the provided
equations, both of the approaches were clearly very effective and powerful; while provid-
ing quantitatively accurate results, the Adomian decomposition method and variational
iteration method demand less computational effort than existing techniques. The obtained
results indicate that the methods are reliable and that they may be utilized for solving
fractional evolution problems. The current methods have shown to be an effective and
straightforward approach when compared to other analytical and numerical techniques.
In addition, the proposed solutions required fewer calculations and can thus be applied to
other fractional-order problems.
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