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Department of Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia; norma.mankoc@fmf.uni-lj.si

Abstract: In a long series of works, it has been demonstrated that the spin-charge-family theory,
assuming a simple starting action in even dimensional spaces with d ≥ (13 + 1), with massless
fermions interacting with gravity only, offers the explanation for all assumed properties of the
second quantized fermion and boson fields in the standard model, as well as offering predictions and
explanations for several of the observed phenomena. The description of the internal spaces of the
fermion and boson fields by the Clifford odd and even objects, respectively, justifies the choice of
the simple starting action of the spin-charge-family theory. The main topic of the present article is the
analysis of the properties of the internal spaces of the fermion and boson fields in odd dimensional
spaces, d = (2n + 1), which can again be described by the Clifford odd and even objects, respectively.
It turns out that the properties of fermion and boson fields differ essentially from their properties
in even dimensional spaces, resembling the ghosts needed when looking for final solutions with
Feynman diagrams.

Keywords: second quantization of fermion and boson fields with Clifford algebra; beyond the
standard model; Kaluza–Klein-like theories in higher dimensional spaces; Clifford algebra in odd
dimensional spaces; ghosts in quantum field theories

1. Introduction

Thirty years ago, I recognized that there are two kinds of Clifford algebra objects, γas
and γ̃as [1–5], originating from Grassmann algebra. The Clifford and Grassmann algebras
can be used to describe the internal spaces of fermions in even-dimensional spaces (while
the Clifford odd algebras describe fermions with a half-integer spin, the “Grassmann’s”
fermions carry integer spins [1,3]). The superposition of odd products of either γa or γ̃a

or θa anti-commute, fulfilling the anti-commutation relations on the vacuum states [4] of
the second quantization postulates for fermion fields [6–10]. The superpositions of odd
products of either γa or γ̃a carry half integer spins and appear in irreducible representations,
offering the description of families of fermions [3].

Only one kind of fermion has been observed so far and this appears in several families.
If we use one of the two kinds of Clifford algebra objects, say γa, to describe the internal
space of fermions and the second kind of Clifford algebra objects, γ̃a, to describe the family
quantum numbers of each irreducible representation determined by γas, we are left with
one kind of fermion [11,12], Section 3.2.3 of [3].

In a long series of works [5,11,13] I have found, together with my
collaborators ([3,4,12,14] and the references therein), phenomenological success with the
model named the spin-charge-family theory with the following properties:

a. The internal space of fermions is described by the “basis vectors”, which are super-
positions of odd products of anticommuting objects γa in d = (13 + 1) [3,4]. Corre-
spondingly, the “basis vectors” of one Lorentz irreducible representation in the internal
space of fermions, together with their Hermitian conjugated partners, anticommute,
fulfilling (on the vacuum state) all the requirements for the second quantized fermion
fields [3,12] (In even dimensional spaces, the Clifford odd “basis vectors” have only
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left or right handedness, depending on the definition (Γ = ∏d
a(
√

ηaaγa) · (i) d
2 ) and

the choice of the “basis vectors”. The reader can find one irreducible representation
of the Clifford odd “basis vectors” for d = (13 + 1) in Appendix D, which is ana-
lyzed from the point of view of the subgroups SO(3, 1)× SO(4) (included in SO(7, 1))
and SO(7, 1)× SO(6) (included in SO(13, 1), while SO(6) breaks into SU(3)×U(1)),
containing quarks, leptons, antiquarks, and antileptons with the quantum numbers
assumed by the standard model before the electroweak break. Since SO(4) contains
two SU(2) groups and Y = τ23 + τ4, one irreducible representation includes the
right handed neutrinos and left handed antineutrinos, which are not found in the
standard model scheme. Table A1 of Appendix D shows that either quarks or leptons or
antiquarks and antileptons manifest in d = (3 + 1) left and right handedness [3].).

b. The second kind of the anticommuting object, γ̃as, equips each irreducible representa-
tion of odd “basis vectors” with the family quantum number [3,4,12].

c. The creation operators for single fermion states, which are tensor products, ∗T , of a

finite number of odd “basis vectors” appearing in 2
d
2−1 families, with each family

having 2
d
2−1 members, and the (continuously) infinite momentum/coordinate basis

applied on the vacuum state [3,4], inherit the anticommutativity of “basis vectors”.
Creation operators and their Hermitian conjugated partners correspondingly anticom-
mute, explaining the second quantization postulates of Dirac (Two fermion states with
the orthogonal basis part in ordinary space “do not meet”. Correspondingly, each can
carry the same “basis vector”. They must be distinguished in terms of their internal
basis if they have an identical ordinary part of the basis. Otherwise, the tensor product,
∗TH , of the two fermion states would be zero. Illustration: Let us consider an atom with
many electrons. Each electron has a spin of either 1/2 or−1/2. The orthogonal basis of
the electrons in ordinary space allows them to have an internal spin of ±1/2 (leading
to a total angular momentum of ±1/2 or greater due to the angular momentum in
ordinary space)).

d. The Hilbert space of second quantized fermions is represented by the tensor products,
∗TH , of all possible numbers of creation operators, from zero to infinity [4], applied on
a vacuum state.

e. In a simple starting action, Equation (1), massless fermions carry only spins and interact
with only gravity with the vielbeins and the two kinds of spin connection fields (the gauge
fields of momenta, of Sab = i

4 (γ
aγb − γbγa) and of S̃ab = 1

4 (γ̃
aγ̃b − γ̃bγ̃a), respectively.

A few years ago, I recognized that Clifford algebra offers a description of the internal
spaces for not only fermion fields but also for boson fields [15]:

i. The Clifford odd “basis vectors”, the superpositions of the odd products of γa in
d ≥ (13+ 1)-dimensional space, manifest in d = (3+ 1) families of quarks and leptons
and antiquarks and antileptons, explaining all of the assumptions of the standard
model for fermions. The Clifford odd “basis vectors” anticommute, transferring the
anticommuting properties to the corresponding creation and annihilation operators,
which are tensor products of the 2

d
2−1 families of the Clifford odd “basis vectors”, each

family with 2
d
2−1 family members, and the infinite basis in ordinary space.

The Hermitian conjugated partners of the Clifford odd “basis vectors” appear in a
separate group, determining the annihilation operators ([3] and references therein).

ii. The Clifford even “basis vectors” in d ≥ (13 + 1)-dimensional space manifest in
d = (3 + 1) all the properties of the vector gauge fields of the corresponding fermion
fields, and the scalar gauge fields, explaining the appearance of the scalar Higgs and
Yukawa couplings.

They appear in two orthogonal groups, each with 2
d
2−1 ×2

d
2−1 members. Each member

of the two groups has their Hermitian conjugated partner within the same group. The
members of one of the two groups transform the Clifford odd “basis vector” of a particular
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family into other members of the same family (keeping the family quantum number
unchanged).

The members of the second group transfer the Clifford odd “basis vector” of a par-
ticular family into the Clifford odd “basis vector” of another family, keeping the family
member’s quantum number unchanged. The members of one of the two groups therefore
cause changes in the Clifford odd “basis vector” of a particular family and a particular
family member quantum number, as do the operators of the Lorentz transformations in
the internal space of fermions Sab. The other group causes changes in the Clifford odd
“basis vector” as do the operators S̃ab. These properties of the Clifford even “basis vectors”
obviously dictate the interaction of the boson fields with the fermion fields, justifying the
choice of the two spin connection fields in Equation (1) [15].

The Clifford even “basis vectors” commute, transferring the commuting properties
to the corresponding creation operators, which are tensor products of the two times
2

d
2−1 × 2

d
2−1 Clifford even “basis vectors” and the infinite basis in ordinary space.

iii. The properties of the Clifford odd and the Clifford even “basis vectors” in odd dimen-
sional spaces, d = (2n + 1), differ essentially from their properties in even dimensional
spaces. Although anticommuting, the Clifford odd “basis vectors” manifest the prop-
erties of the Clifford even “basis vectors” in even dimensional spaces. The Clifford
even “basis vectors” do not manifest the properties of the second quantized boson
fields in even dimensional spaces. Although commuting, they manifest properties of
the Clifford odd “basis vectors” in even dimensional spaces, resembling the ghosts
needed when looking for finite solutions with Feynman diagrams.

In addition, since the operator of handedness has the Clifford odd character
(Γ = ∏d

a(
√

ηaaγa) · (i) d−1
2 ) in odd dimensional spaces, it transforms Clifford odd “ba-

sis vectors” into Clifford even “basis vectors” [16]. The eigenstates of the operator of
handedness are in odd dimensional spaces corresponding to the superpositions of the
Clifford odd and Clifford even “basis vectors”.

We present the simple starting action of the spin-charge-family theory in which fermions
interact in d = (13 + 1)-dimensional space with the gravitational fields only. As discussed
above in points i., ii., iii. and in Ref. [16]; the assumption that “nature has made a choice” to
use the Clifford algebra to describe the internal spaces of fermion fields (by using Clifford
odd “basis vectors”) and boson fields (by using Clifford even “basis vectors”) requires
the starting action of Equation (1) to have two kinds of spin connection field, ωabα (the
gauge fields of Sab) and ω̃abα (the gauge fields of S̃ab). Ref. [3], and references therein,
demonstrates that this action offers the description of all properties of fermion and boson
fields—vector and scalar—as observed so far in d = (3 + 1), offering several predictions
for the observed phenomena.

A =
∫

ddx E 1
2 (ψ̄ γa p0aψ) + h.c.+∫

ddx E (α R + α̃ R̃) ,

p0a = f α
a p0α +

1
2E {pα, E f α

a}− ,

p0α = pα − 1
2 Sabωabα − 1

2 S̃abω̃abα ,

R = 1
2 { f α[a f βb] (ωabα,β −ωcaα ωc

bβ)}+ h.c. ,

R̃ = 1
2 { f α[a f βb] (ω̃abα,β − ω̃caα ω̃c

bβ)}+ h.c. .

(1)

Here, f α
a are inverted vielbeins to ea

α with the properties ea
α f α

b = δa
b, ea

α f β
a = δ

β
α ,

E = det(ea
α). Latin indices a, b, ..., m, n, ..., s, t, ... denote a tangent space (a flat index), while

Greek indices α, β, ..., µ, ν, ..., σ, τ, ... denote an Einstein index (a curved index). Letters from
the beginning of both alphabets indicate a general index (a, b, c, ... and α, β, γ, ...). From the
middle of both alphabets are the observed dimensions 0, 1, 2, 3 (m, n, ... and µ, ν, ...). Indexes
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from the bottom of the alphabets indicate compactified dimensions (s, t, ... and σ, τ, ...). We
assume the signature is ηab = diag{1,−1,−1, · · · ,−1}.) f α[a f βb] = f αa f βb − f αb f βa.

A short overview of the properties of the Clifford odd and Clifford even “basis vectors”
in even dimensional spaces is given in Section 2.1, showing that the Clifford odd “basis
vectors”, when applied on the appropriate vacuum states, manifest the postulates of the
second quantized fermion fields, while the Clifford even “basis vectors” manifest the
postulates for their gauge fields—the second quantized boson fields.

The properties of the Clifford odd and the Clifford even “basis vectors” in odd di-
mensional spaces are discussed in Section 2.2, demonstrating that, in odd-dimensional
space, the Clifford odd and Clifford even objects have drastically different properties than
in even dimensional spaces, offering an explanation for the postulated ghost fields that
appear in several theories by taking care of the singular contributions when evaluating
Feynman graphs.

In Section 2, an appropriate definition of the eigenstates of the Cartan subalgebra
members is presented for even dimensional spaces, and this is extended to odd dimen-
sional spaces.

In Section 3, the internal spaces for fermion and boson fields in even and odd dimen-
sional spaces are discussed for simple cases: in Section 3.1, for the choices d = (1 + 1),
d = (3 + 1), and in Section 3.2, for d = (2 + 1) and d = (4 + 1) (In Ref. [17], produced
20 years ago, discuss the question of q time and d− q dimensions in odd and even dimen-
sional spaces for any q. Using the requirement that the inner product of two fermions must
be unitary and invariant under Lorentz transformations, the authors conclude that odd
dimensional spaces are not appropriate due to the existence of fermions of both handedness
and, correspondingly, are not mass protected. The recognition of this paper might further
clarify the “effective” choice of nature for one time and three space dimensions.).

In Section 4, an overview of the main ideas of this paper is given.
In Appendix A, some helpful relations of the Clifford algebra can be found.
In Appendix B, the Grassmann algebra, expressible with the two Clifford subalgebras,

γa and γ̃a, is reviewed.
In Appendix C the algebra of 2d=(3+1) products of Dirac γa in d = (3 + 1) shows

that the Dirac vectors and the Clifford odd “basis vectors” used to describe the spins and
handedness of quarks, leptons, antiquarks, and antileptons are related.

In Appendix D one irreducible representation of SO(13, 1), analyzed with respect to
SO(3, 1), SU(2)I , SU(2)I I , SU(3), and U(1) is presented, demonstrating “basis vectors” of
quarks and leptons and antiquarks and antileptons in the spin-charge-family theory. The
relations with the corresponding vector and scalar gauge fields with respect to d = (3 + 1)
are described.

Appendix E presents the creation operators (and annihilation of their Hermitian
conjugated partners) as the tensor products of the “basis vectors” and the basis in ordi-
nary momentum or coordinate space, explaining the Dirac second quantized postulates.
The Hilbert space of fermions, formed from the tensor products of creation operators
is discussed.

The last four Appendixes are (indirectly) suggested by the referees.
Let me repeat, the recognition that the Clifford even “basis vectors” in even dimen-

sional spaces offer an explanation for the properties of the boson gauge fields of the
corresponding fermion fields, described by the Clifford odd “basis vectors”, together with
the recognition that, in odd dimensional spaces, the Clifford odd and even “basis vectors”
demonstrate the properties of the ghosts, has introduced a new step beyond the standard
model that can be used in cosmology.

In this article, I do not confront the achievements of the spin-charge-family theory but
offer a simple action (Equation (1), the choice of which is supported by the description
of the internal spaces of fermion and boson fields with the Clifford odd and even alge-
bra, respectively, in d ≥ (13 + 1)-dimensional space, which treats quarks and leptons
and antiquarks and antileprons in an equivalent way, as manifested in Appendix D) with
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suggestions in the literature for the next step beyond the standard model. There are many
suggestions for unifying charges in larger groups by adding additional groups for describ-
ing families [18–32], going to higher dimensional spaces [33–43], and looking for anomalies
in gravity [44–46]. An explanation of what and how the spin-charge-family theory elegantly
shows the way beyond the standard model is provided in Ref. [3]. Although there are several
steps still to take, such as the quantization of gravity, the method suggested in this paper
is promising and will hopefully lead to new findings, such as understanding the second
quantized fields in black holes [47].

I do not know any literature that explains the internal spaces for fermion and boson
fields in an equivalent way: not for d = (3 + 1), and not for general d—either even or
odd (Let me repeat again, the Clifford odd “basis vectors” transfer their anticommutativity
to creation and annihilation operators, and the Clifford even “basis vectors” transfer their
commutativity to creation and annihilation operators. The main point is that the Clifford
odd “basis vectors” appear in families and have their Hermitian conjugated partners in a
separate group, while the Clifford even “basis vectors” have their Hermitian conjugated
partners in the same group and appear in two groups. The member of one group, when
applied on the Clifford odd “basis vector” transforms it to one of the member of the same
family, while the member of another group, when applied on the Clifford odd “basis vector”
transforms it to the same member of another family. This article and also Ref. [15] clearly
demonstrate these properties, empowering Clifford odd and even “basis vectors” and
offering an explanation for the second quantized fermion and boson fields, respectively.).

Other references used a different approach by trying to make the next step with
Clifford algebra to the second quantized fermion, which might also be a boson field [48–50].

2. Eigenstates of Cartan Subalgebra Members of Lorentz Algebra for Clifford Odd and
Clifford Even “Basis Vectors”

In this section, the properties of the two kinds of Clifford algebra objects, γas and γ̃as,
are repeated in accordance with several papers [1,4,11,15,51], in particular, the reference ([3],
and the references therein).

In Appendix B, the starting Grassmann algebra is introduced and the corresponding
Clifford subalgebras are discussed.

The two kinds of Clifford algebra objects, γa and γ̃a, each offering 2d superposition of
products of either γa or γ̃a, fulfill the relation [1,12]

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+ ,

{γa, γ̃b}+ = 0 , (a, b) = (0, 1, 2, 3, 5, · · · , d) , (2)

(γa)† = ηaa γa , (γ̃a)† = ηaa γ̃a .

Each of these two kinds of Clifford algebra objects can be used to describe the internal
spaces of fermion and boson fields.

We can reduce the two possibilities to only one by deciding to describe the internal
spaces of fermion and boson fields with the superpositions of the Clifford odd (for fermion
fields) and Clifford even (for boson fields) products of γas, while using γ̃a’s to equip the
irreducible representations of the Lorentz group in the internal space of fermions with the
family quantum numbers by assuming

{γ̃aB = (−)B i Bγa} |ψoc > , (3)

with (−)B = −1 if B is (a function of) an odd product of γas; otherwise, (−)B = 1, |ψoc >,
as defined in Equations (8) and (A8). It is proven in [3] (Appendix I, Statement 3, 3.a, 3.b)
that all relations of Equation (2) remain valid after the assumption of Equation (3).
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The “basis vectors” describing the internal spaces of fermion and boson fields are cho-
sen to be eigenstates of all Cartan subalgebra members. There are d

2 commuting operators
of the Lorentz algebra in the even dimensional spaces, as described in Equation (A3), and
d−1

2 in odd dimensional spaces, as described in Equation (A4).
If Sab, a 6= b, (or S̃ab or Sab = Sab + S̃ab) are members of the Cartan subalgebra group of

the Lorentz algebra in the internal space of fermion and boson fields, then it is not difficult
to find the eigenstate of each of the members by taking into account the relations shown in
Equation (2): Sab 1

2 (γ
a + ηaa

ik γb) = k
2

1
2 (γ

a + ηaa

ik γb) and Sab 1
2 (1+

i
k γaγb) = k

2
1
2 (1+

i
k γaγb),

with k2 = ηaaηbb. The first eigenstate is nilpotent, ( 1
2 (γ

a + ηaa

ik γb))2 = 0, and the second
eigenstate is projector, ( 1

2 (1 +
i
k γaγb))2 = 1

2 (1 +
i
k γaγb).

Let us introduce the graphic notation in accordance with Refs. [1,12,15].
ab
(k): =

1
2
(γa +

ηaa

ik
γb) ,

ab
[k]:=

1
2
(1 +

i
k

γaγb) ,

ab
˜(k): =

1
2
(γ̃a +

ηaa

ik
γ̃b) ,

ab
˜[k]:

1
2
(1 +

i
k

γ̃aγ̃b) , (4)

(
ab
(k))† =

ab
(−k) , (

ab
(k))2 = 0 , (

ab
[k])† =

ab
[k] , (

ab
[k])2 =

ab
[k] .

After taking into account Equations (2) and (3), the relations follow

γa
ab
(k) = ηaa

ab
[−k], γb

ab
(k)= −ik

ab
[−k], γa

ab
[k]=

ab
(−k), γb

ab
[k]= −ikηaa

ab
(−k) , (5)

γ̃a
ab
(k) = −iηaa

ab
[k], γ̃b

ab
(k)= −k

ab
[k], γ̃a

ab
[k]= i

ab
(k), γ̃b

ab
[k]= −kηaa

ab
(k) ,

More relations can be found in Appendix A.

2.1. Properties of Clifford Odd and Clifford Even “Basis Vectors” in Even Dimensional Spaces

In each even dimensional space, there are 2
d
2−1 members of the Clifford odd “basis

vectors” appearing in 2
d
2−1 families, and the same number of 2

d
2−1 Hermitian conjugated

partners appearing in 2
d
2−1 families.

There are two orthogonal groups of the Clifford even “basis vectors”. The members of
each group have their Hermitian conjugated partners within the same group.

2.1.1. Clifford Odd “Basis Vectors”

The Clifford odd “basis vectors” describing the internal space of fermion fields are
products of odd numbers of nilpotents and the rest of the projectors. Each nilpotent and
each projector represent the eigenstate of one of the Cartan subalgebra members.

Let us call the Clifford odd “basis vectors” b̂m†
f , if it is the mth member of the family f .

Let us choose the first member b̂1†
1 in d = 2(2n + 1) as the product of nilpotents only.

d = 2(2n + 1) ,

b̂1†
1 =

03
(+i)

12
(+)

56
(+) · · ·

d−1 d
(+) ,

b̂2†
1 =

03
[−i]

12
[−]

56
(+) · · ·

d−1 d
(+) , (6)

· · ·

b̂2
d
2 −1†

1 =
03
[−i]

12
[−]

56
(+) . . .

d−3 d−2
[−]

d−1 d
[−] ,

· · · .
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In the case that d = 4n, n = 1, 2, ..., the first member must have one projector.

d = 4n ,

b̂1†
1 =

03
(+i)

12
(+)

56
(+) · · ·

d−1 d
[+] , (7)

· · · .

All the rest of the members of the same family, 2
d
2−1− 1, follow through the application

of all possible Sab on b̂1†
1 , while all the rest of the 2

d
2−1 − 1 families follow through the

application of all possible S̃ab on all members of the starting family.
The Hermitian conjugated partners (b̂m†

f )† of the “basis vectors” b̂m†
f follow from these

2
d
2−1 × 2

d
2−1 “basis vectors” by replacing each nilpotent

ab
(k) with

ab
(−k).

Let us recognize that all Clifford odd ”basis vectors” are orthogonal: b̂m†
f ∗A b̂m′†

f ′ = 0.

The Hermitian conjugated partners are also orthogonal b̂m
f ∗A b̂m′

f ′ = 0.
When we choose a vacuum state equal to

|ψoc >=
2

d
2−1

∑
f=1

b̂m
f ∗A b̂m†

f | 1 > , (8)

for one of the members m, whcih can be any one of the odd irreducible representations
f with | 1 >, which is the vacuum without any structure (the identity) it follows that
b̂m

f |ψoc >= 0.
Each Clifford odd “basis vector” carries the family quantum number, and so does its

Hermitian conjugated partner. One correspondingly finds that the “basis vectors” and their
Hermitian conjugated partners fulfill the postulates for the second quantized fermion fields.

b̂m
f ∗A |ψoc > = 0. |ψoc > ,

b̂m†
f ∗A |ψoc > = |ψm

f > ,

{b̂m
f , b̂m′

f ‘ }∗A+|ψoc > = 0. |ψoc > , (9)

{b̂m†
f , b̂m′†

f ‘ }∗A+|ψoc > = 0. |ψoc > ,

{b̂m
f , b̂m′†

f ‘ }∗A+|ψoc > = δmm′
f f ‘ |ψoc > ,

where ∗A represents the algebraic multiplication of b̂m†
f and b̂m′

f ′ among themselves and
with the vacuum state |ψoc > of Equation (8). Equation (9) follows by taking into account
Equations (2) and (3).

These “basis vectors” are not yet the representatives of the creation and annihilation
operators: the tensor, ∗T , products of the “basis vectors” m and the basis in ordinary
momentum or coordinate space [3] (In even dimensional spaces with d = 4n, one can
proceed, as we did for the d = 2(2n + 1) dimensional case after taking into account the
requirement that the odd number of nilpotents forms the anticommuting “basis vectors”
describing the internal space of fermions. The starting “basis vector” b̂1†

1 must have one
projector, while all the rest are nilpotents. Sabs then generate all the members of one
family, while S̃abs generate all of the families. The “basis vectors” and their Hermitian
conjugated partners fulfill the requirements on the vacuum state, as shown in Equation (A8).
The anti-commuting properties of Equation (9)) represent the creation operators and the
corresponding Hermitian conjugated partners, the annihilation operators.

2.1.2. Clifford Even “Basis Vectors”

We can define the Clifford even “basis vectors” describing the internal space of the
boson fields as products of even numbers of nilpotents and the rest as projectors if each
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nilpotent and each projector represent an eigenstate of one of the Cartan subalgebra mem-
bers [15].

Let us call the Clifford even “basis vectors” iAm†
f , i = I, I I. There are two groups of

Clifford even “basis vectors”. Each group has 2
d
2−1 × 2

d
2−1 members.

Let us choose the starting Clifford even “basis vector”, i=IA1†
1 , to be the product

of projectors
ab
[k] with k = i for S03, and k = 1 for the rest 2

d
2−1 − 1 members of the

Cartan subalgebra.

IÂ1†
1 =

03
[+i]

12
[+] · · ·

d−1 d
[+] . (10)

The starting Clifford even “basis vector” of the second group i=I IA1†
1 can again be the

product of projectors only, but in this case, with
03
[−i] instead of

03
[+i], and for all the rest of

the 2
d
2−1 − 1 members of the Cartan subalgebra, with k = +1. (This starting member can

not be obtained from IA1†
1 through the application of Sabs or S̃abs, since these operators

always change the eigenvalues of two Cartan subalgebra members.)

I IÂ1†
1 =

03
[−i]

12
[+] · · ·

d−1 d
[+] . (11)

The rest of the members of each group follow on from the starting member through
the application of either Sabs or S̃abs.

Since S01 transforms
03
[+i]

12
[+] into

03
(−i)

12
(−1), while S̃01 transforms

03
[+i]

12
[+] into

03
(+i)

ab
(+),

we can immediately see that the Clifford even “basis vectors” have Hermitian conjugated
partners within the same group of 2

d
2−1 × 2

d
2−1 members.

2.1.3. Clifford Even “Basis Vectors” Applied on Clifford Odd “Basis Vectors”

Let us apply IA1†
1 , which is made from the projectors

ab
[k] only, with k = i for S03 and

k = 1 for the rest of the members of the Cartan subalgebra, on b̂1†
1 , which is the product

of the nilpotents only, with an eigenvalue of S03 equal to k = i
2 and that of the rest of the

Cartan subalgebra members equal to k = 1
2 .

Taking into account Equations (A9) and (A10), one sees that, in this application,
IA1†

1 ∗A b̂1†
1 , leaving b̂1†

1 unchanged. When applying IA2†
1 , with the first two projectors

transformed into two nilpotents,
03

(−i)
12

(−1), and all of the rest remain the same. We see that

this application transforms b̂1†
1 into b̂2†

1 (=
03
[−i]

12
[−1]

56
(+)

78
(+) .... (all the rest remain the same).

The application of IA2†
1 on b̂1†

1 obviously changes the eigenvalues of S03 and S12 to b̂1†
1 for

the integer values of −i and −1, respectively.
We conclude that the algebraic application ∗A of the Clifford even “basis vectors” on

the Clifford odd “basis vectors”, describing the internal space of fermion fields, changes
the eigenvalues of the Cartan subalgebra members to 0 or for the integer values ±i or ±1,
leading to

IÂm†
f ‘ ∗A b̂m′†

f →
{

b̂m†
f ,

or zero .
(12)

For each m′, there exists one f , so that the Equation (12) is fulfilled for all f ‘ and all
m [15].

2.1.4. Clifford Even “Basis Vectors” Applied on Clifford Even “Basis Vectors” [15]

It is not difficult to see, by taking Equations (A9) and (A10) into account, that the
algebraic applications of IA f †

1 ∗A
IIAm′†

f ‘ = 0 = I IAm′†
f ‘ ∗A

IAm†
f , for all (m, m′, f , f ‘).
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The algebraic application ∗A, of iAm†
f ∗A

iAm′†
f ‘ , i = (I, I I) within each of the two

groups general has a nonzero contribution, demonstrating the properties of the internal
spaces of the gauge fields to the corresponding fermion fields, the internal space of which
is described by the Clifford odd “basis vectors”.

In each of the two groups, there are 2
d
2−1 members, which are products of projectors

only. They are self adjoint and have the eigenvalues of all the Cartan subalgebra members
equal to zero: S ab = Sab + S̃ab.

All the rest iAm†
f (there are 2

d
2−1 × (2

d
2−1 − 1) members) appear in pairs that are

Hermitian-conjugated to each other. Their mutual algebraic products form one of 2
d
2−1 self

adjoint members.
The algebraic multiplication of the Clifford even “basis vectors” on the Clifford even

“basis vectors” leads to

iÂm†
f ∗A

iÂm′†
f ‘ →

{
iÂm†

f ‘ ,
or zero .

i = (I, I I) . (13)

Special cases for Clifford odd and even “basis vectors” are discussed in Section 3.1 for
d = (1 + 1) and d = (3 + 1) and in Appendixes C and D. In Appendix D, one irreducible
representation in d = (13 + 1) is presented to describe the internal space of quarks and
leptons and antiquarks and antileptons.

In Ref. [15], the reader can find the Clifford odd and Clifford even “basis vectors” for
the case where the dimensions of the space are d = (5 + 1), describing the internal space of
fermion and boson fields, respectively, as illustrated by the figures.

2.2. Properties of Clifford Odd and Clifford Even ”Basis Vectors” in Odd Dimensional Spaces

In this Section 2.2 the Clifford odd and Clifford even “basis vectors” in odd dimen-
sional spaces [15] are discussed.

While in even dimensional spaces the Clifford odd “basis vectors” fulfill the postulates
for the second quantized fermion fields, as shown in Equation (9), and Clifford even ”basis
vectors” have all the properties of the internal spaces of their corresponding gauge fields,
as shown in Equations (12) and (13), in odd dimensional spaces, the Clifford odd and even
”basis vectors” have unusual properties resembling properties of the internal spaces of the
Faddeev–Popov ghosts, as we describe in the following text.

Looking at d = (2n + 1)-dimensional cases, n = 1, 2, . . . , for the Clifford odd
and Clifford even “basis vectors” in the 2n-dimensional part of space, we find half of
the “basis vectors” with properties presented in Equations (6), (7), (10) and (11). In
Equations (14) and (15), they are presented on the left-hand side.

The rest of the “basis vectors” in odd dimensional spaces follow if S0 2n+1 is applied on
the obtained half of the Clifford odd and the Clifford even “basis vectors”. Since S0 2n+1 are
Clifford even operators, they do not change the oddness or evenness of the “basis vectors”.

For the Clifford odd “basis vectors”, correspondingly, the additional 2
d−1

2 −1 members
appear in 2

d−1
2 −1 families and the same number of their Hermitian conjugated partners are

present on the right-hand side of Equation (14).

d = 2(2n + 1) + 1

b̂1†
1 =

03
(+i)

12
(+)

56
(+) · · ·

d−2 d−1
(+) , b̂1†

2
d−1

2 −1+1
=

03
[−i]

12
(+)

56
(+) · · ·

d−2 d−1
(+) γd ,

b̂2†
1 =

03
[−i]

12
[−]

56
(+) · · ·

d−2 d−1
(+) , b̂2†

2
d−1

2 −1+1
=

03
(+i)

12
[−]

56
(+) · · ·

d−2 d−1
(+) γd , (14)

· · · · · ·

b̂2
d−1

2 −1†
1 =

03
[−i]

12
[−]

56
(+) . . .

d−2 d−1
[−] , b̂2

d−1
2 −1†

2d−12−1+1 =
03

(+i)
12
[−]

56
(+) . . .

d−2 d−1
[−] γd ,

· · · · · · .
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The half of the “basis vectors” or their Hermitian conjugated partners appearing on
the right-hand side follow on from those appearing on the left-hand side through the
application of S0d or S̃0d on the left-hand side. The application of S0d or S̃0d on the left-hand
side of the “basis vectors” and their Hermitian conjugated partners generates the whole set
of two 2d−2 members of the Clifford odd “basis vectors” and their Hermitian conjugated
partners in d = (2n + 1)- dimensional space appearing on the left- and right-hand sides of
Equation (14).

When applied on the Clifford even “basis vectors” that appear on the left-hand side
of Equation (15), the operators S0 2n+1 and the additional two groups of 2

d−1
2 −1× 2

d−1
2 −1

“basis vectors” follow, as presented in Equation (15), on the right-hand side.
For the 2d−2 Clifford odd objects present on the right-hand side of Equation (14), and

for the special cases in Equations (23) and (25), although they are the superpositions of the
Clifford odd products of γas, do not manifest the properties of “basis vectors” and their
Hermitian conjugated partners, presented on the left-hand side of Equation (14) and in the
special cases of Equations (23) and (25).

The eigenstates appearing on the right-hand side of Equation (14) can be divided into
two groups that are orthogonal to each other, having their Hermitian conjugated partners
within the same group or being self adjoint. Although they are Clifford odd objects, they
resemble the properties of the Clifford even partners of the “basis vectors” that appear on
the left-hand side of Equation (15).

Let us see the application of the operators S0d and S̃0d on the Clifford even “basis vec-
tors” on the even dimensional part of the d = (2(2n + 1) + 1) space. The Clifford even
“basis vectors” must have an even number of nilpotents, which means that, in d = 2(2n+ 1),
we must have at least one projector. To obtain all of the Clifford even “basis vectors”, we
must apply the operators S0d or S̃0d on these starting Clifford even “basis vectors”, as
presented in Equation (15) on the left-hand side.

d = 2(2n + 1) + 1

IA1†
1 =

03
(+i)

12
(+)

56
(+) · · ·

d−2 d−1
[+] , IA1†

2d−12−1+1 =
03
[−i]

12
(+)

56
(+) · · ·

d−2 d−1
[+] γd ,

IA2†
1 =

03
[−i]

12
[−]

56
(+) · · ·

d−2 d−1
[+] , IA2†

2d−12−1+1 =
03

(+i)
12
[−]

56
(+) · · ·

d−2 d−1
[+] γd , (15)

· · · · · ·
IA2

d−1
2 −1†

1 =
03
[−i]

12
[−]

56
[−] . . .

d−2 d−1
[+] , IA2

d−1
2 −1†

2d−12−1+1 =
03

(+i)
12
[−]

56
[−] . . .

d−2 d−1
[+] γd ,

· · · · · · .

The right-hand side of Equation (15) and the special cases of the Clifford even part of
Equations (23) and (25) show the Clifford even “basis vectors” as the left-handed partners.
However, they resemble the properties of the Clifford odd “basis vectors”, as presented in
Equation (14) and for the special cases of the Clifford odd part of Equations (23) and (25).
These Clifford even objects can be arranged into 2

d−1
2 −1 members in 2

d−1
2 −1 families of

“basis vectors” and into a separate group of Hermitian conjugated partners. However, they
are the Clifford even “basis vectors”.

Let us point out that the Lorentz transformations in the internal spaces of fermion and
boson fields transform the left-hand sides of Equation (14) and (15) into the corresponding
right-hand sides vice versa.

If we algebraically apply the Clifford even “basis vectors” appearing on the right-hand
side of Equation (15) to the Clifford odd “basis vectors” appearing on the right-hand side
of Equation (14), we end up with the Clifford odd “basis vector” appearing on the left-hand
side of Equation (14) or on one of their Hermitian conjugated partners. Otherwise, we
obtain a value of zero.

In the next section, we discuss concrete cases to make the discussion more transparent.
Let us conclude this section with what we have learned:

a. In d = 2n + 1 dimensional spaces, n = 1, 2, . . . , there are two kinds of Clifford odd
“basis vectors”:
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a.i. The “basis vectors” are the products of an odd number of nilpotents and the

rest of the projectors. These “basis vectors” appear in 2
d−1

2 −1 families, where
each family has 2

d−1
2 −1 members. They anticommute, fulfilling together with

their Hermitian conjugated partners the postulates for the second quantized
fermion fields. Their Hermitian conjugated partners appear in a separate group.

a.ii. When the operators S0d or S̃0d are applied on these Clifford odd “basis vectors”,

the additional two times 2
d−1

2 −1× 2
d−1

2 −1 of the Clifford odd “basis vectors” fol-
low. These Clifford odd “basis vectors” resemble the properties of the Clifford
even “basis vectors” from the case b.i. presented below. They form two or-
thogonal groups. The members of each group have their Hermitian conjugated
partners within the same group, or they are self adjoint.

b. In d = 2n + 1 dimensional spaces, n = 1, 2, . . . , there are two kinds of Clifford even
“basis vectors”:

b.i. The “basis vectors” are products of even numbers of nilpotents and the rest
of the projectors. These “basis vectors” appear in two orthogonal groups with
2

d−1
2 −1×2

d−1
2 −1 members. Each group has its Hermitian conjugated members

within the group or is self adjoint. They commute, fulfilling the postulates
for the second quantized boson fields or the gauge fields of the corresponding
fermion fields for the case a.i..

b.ii. When the operators S0d or S̃0d are applied to these “basis vectors” the additional

two times 2
d−1

2 −1× 2
d−1

2 −1 Clifford even “basis vectors” follow. These Clifford
even “basis vectors” resemble the properties of the Clifford odd “basis vectors”
for the case a.i.. They form two groups with 2

d−1
2 −1 members in each of the

2
d−1

2 −1 families. Their Hermitian conjugated partners appear in a separate
group. However, they commute.

c. When Clifford even “basis vectors” of the kind b:

c.i. When Clifford even “basis vectors” of the b.i. type are algebraically applied on
the Clifford odd “basis vectors” of the a.i. type, they transfer to the Clifford odd
“basis vectors” the integer values of the Cartan subalgebra members (±i, ±1 or
0) or they have a value of zero.

c.ii. When Clifford even basis vectors” of the b.ii. type are algebraically applied to
the Clifford odd “basis vectors” of the a.ii. type, they transfer to the Clifford
odd “basis vectors” the integer values of the Cartan subalgebra members, (±i,
±1 or 0) or they have a value of zero, as in the case c.i..

d. While the Clifford odd “basis vectors” in even dimensional spaces have well-defined
handedness, since the operator of handedness is the Clifford even operator,
Equation (A1), the eigenvectors of the operator of handedness in odd dimensional
spaces are the superpositions of the “basis vectors” of the a.i. and a.ii. types.

3. “Basis Vectors” in Even, d = 2n for n = 1, 2, and Odd, d = 2n + 1 for n = 1, 2,
Dimensional Spaces

The internal spaces for fermion and boson fields in even and odd dimensional spaces
are discussed for simple cases: In Section 3.1 for the choices d = (1 + 1), d = (3 + 1) and in
Section 3.2 for d = (2 + 1) and d = (4 + 1). This section is meant to be an illustration of
Section 2.

The case with d = (3 + 1) is also discussed in Appendix C, relating 2d=4 products
of Dirac’s matrices γa to the Clifford odd and even “basis vectors” and their Hermitian
conjugated partners. In Appendix D, a description of the internal spaces of quarks, leptons,
antiquarks, and antileptons with the “basis vectors” in d = (13 + 1) is presented.

The reader can also find the definition of the “basis vectors” as the eigenstates of the
Cartan subalgebra of the Lorentz algebra describing the internal spaces of fermion and
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boson fields in Refs. [3,4,15,51]. The “basis vectors” are written as superpositions of the
Clifford odd (for fermions) and Clifford even (for bosons) products of γas.

The “basis vectors” for fermions have either left- or righthandedness, Γd (the handed-
ness is defined in Equation (A1)), and they appear in families (the family quantum numbers
are determined by γ̃as, with S̃ab = i

4{γ̃a, γ̃b}−). The Clifford odd “basis vectors” have their
Hermitian conjugated partners in a separate group.

“Basis vectors” for bosons have no families, and they have their Hermitian conjugated
partners within the same group, as described in Section 2.

The “basis vectors” in odd dimensional spaces differ in properties from the “basis
vectors” in even dimensional spaces, as we concluded in the previous Section 2. Let
us repeat:

Half of the Clifford odd “basis vectors” have the same properties in odd dimensional
spaces as in even dimensional spaces (The same choice of Cartan subalgebra members is
made in the case of d = (2n + 1) and in the case of d = 2n. The Lorentz transformations
take place from the left-hand side into the right-hand side and vice versa in the internal
spaces of the fermion and boson fields, as shown in Equations (14) and (15)). The remaining
half of the Clifford odd “basis vectors”, although anticommuting, gain the properties of the
Clifford even “basis vectors”.

Half of the Clifford even “basis vectors” have the properties of the Clifford even
“basis vectors” in even dimensional spaces. The remaining half of the Clifford even “basis
vectors”, although commuting, gain the properties of the Clifford odd “basis vectors”.

Since the operator of handedness is the Clifford odd object (it is the product of the
odd number of γas), only the superpositions of the Clifford odd and the Clifford even
“basis vectors” have definite handedness (Correspondingly, the eigenvectors of the Cartan
subalgebra members have both handednesses, Γ(2n+1) = ±1.).

3.1. “Basis Vectors” in Even Dimensional Spaces: d = (1 + 1), (3 + 1)

To illustrate the differences in the properties of the internal spaces of fermion and
boson fields in even and odd dimensional spaces, a few simple cases are discussed. The
definitions of nilpotents and projectors and the relations among them can be found in
Equation (4) and Appendix A.

3.1.1. d = (1 + 1)

There are 4 (2d=2) “eigenvectors” of the Cartan subalgebra members, as shown in
Equation (A3), S01 and S01 of the Lorentz algebra Sab and S ab = S01 + S̃01 (Sab = i

4{γa, γb}−,

S̃ab = i
4{γ̃a, γ̃b}−), representing one Clifford odd “basis vector” b̂1†

1 =
01

(+i) (m = 1), appear-

ing in one family (f = 1) and correspondingly one Hermitian conjugated partner b̂1
1 =

01
(−i)

(It is our choice as to whether
01

(+i) or
01

(−i) is chosen as the “basis vector” b̂1†
1 ; the remainder

is its Hermitian conjugated partner. The choice of “basis vector” determines the vacuum

state |ψoc >, Equation (8). For b̂1†
1 =

01
(+i), the vacuum state is |ψoc >=

01
[−i] (due to the

requirement that b̂1†
1 |ψoc > must be nonzero, while b̂1

1|ψoc > is zero).
01
[−i] is the Clifford

even object.) and two Clifford even “basis vectors” IA1†
1 =

01
[+i] and I IA1†

1 =
01
[−i], which are

both self adjoint.
Correspondingly, after using Equations (A14) and (A7), we have two Clifford odd and

two Clifford even eigenvectors of the Cartan subalgebra members

Clifford odd

b̂1†
1 =

01
(+i) , b̂1

1 =
01

(−i) ,

Clifford even (16)

IA1†
1 =

01
[+i] , I IA1†

1 =
01
[−i] .
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The two Clifford odd “basis vectors” are Hermitian conjugated to each other. b̂1†
1 is

chosen to be the “basis vector”, and the second Clifford odd object is its Hermitian conju-
gated partner. After defining the handedness as Γ(1+1) = γ0γ1, Equation (A1), it follows,
using Equation (A5), that Γ(1+1) b̂1†

1 = b̂1†
1 . b̂1†

1 is the right-handed “basis vector” (We could

choose left-handed “basis vectors” if choosing b̂1†
1 =

01
(−i), but the choice of handedness

would remain at one.).
Each of the two Clifford even “basis vectors” is self adjoint ((I,I IA1†

1 )† = I,I IA1†
1 ).

Taking into account Equations (A5) and (A9), we can observe that

{b̂1
1(≡

01
(−i)) ∗A b̂1†

1 (≡
01

(+i))}|ψoc > = I IA1†
1 (≡

01
[−i])|ψoc >= |ψoc > ,

{b̂1†
1 (≡

01
(+i)) ∗A b̂1

1(≡
01

(−i))}|ψoc > = 0 ,

IA1†
1 (≡

01
[+i]) ∗A b̂1†

1 (≡
01

(+i))|ψoc > = b̂1†
1 (≡

01
(+i))|ψoc > , (17)

IA1†
1 (≡

01
[+i]) b̂1

1(≡
01

(−i))|ψoc > = 0 ,
IA1†

1 ∗A
IIA1†

1 = 0 = I IA1†
1 ∗A

IA1†
1 .

The case with d = (3 + 1) is more informative:

3.1.2. d = (3 + 1)

In d = (3 + 1) there are 16 (2d=4) “eigenvectors” of the Cartan subalgebra members
(S03, S12) and (S03,S12) of the Lorentz algebras Sab and S ab , as shown in Equation (A3).

Half of them are Clifford odd “basis vectors”, which appear in two families 2
4
2−1,

f = (1, 2)), each with two (2
4
2−1, m = (1, 2)), members, b̂m†

f .

There are 2
4
2−1× 2

4
2−1 Hermitian conjugated partners b̂m

f that appear in a separate

group (not reachable by Sab).
There are 2

4
2−1 × 2

4
2−1 Clifford even ”basis vectors”, the members of the group IAm†

f ,
which are self adjoint or have their Hermitian conjugated partners within the same group.

All members of this group are reachable by S ab = Sab + S̃ab from any starting ”ba-
sis vector” IA1†

1 .
There is another group of 2

4
2−1 × 2

4
2−1 Clifford even “basis vectors”. They are the

members of I IAm†
f , which again are either Hermitian conjugated to each other or are self

adjoint. All are reachable from the starting vector I IA1†
1 by the application of S ab.

Choosing the right-handed Clifford odd “basis vectors” as

f = 1 f = 2
S̃03 = i

2 , S̃12 = − 1
2 S̃03 = − i

2 , S̃12 = 1
2 S03 S12

b̂1†
1 =

03
(+i)

12
[+] b̂1†

2 =
03
[+i]

12
(+) i

2
1
2

b̂2†
1 =

03
[−i]

12
(−) b̂2†

2 =
03

(−i)
12
[−] − i

2 − 1
2 ,

(18)

We find, for their Hermitian conjugated partners,

S03 = − i
2 , S12 = 1

2 S03 = i
2 , S12 = − 1

2 S̃03 S̃12

b̂1
1 =

03
(−i)

12
[+] b̂1

2 =
03
[+i]

12
(−) − i

2 − 1
2

b̂2
1 =

03
[−i]

12
(+) b̂2

2 =
03

(+i)
12
[−] i

2
1
2 .

(19)

The vacuum state on which the Clifford odd “basis vectors” are applied is equal to:

|ψoc >= 1√
2
(

03
[−i]

12
[+] +

03
[+i]

12
[+]) (The case SO(1, 1) can be viewed as a subspace of the

case SO(3, 1), recognizing the “basis vectors”
03

(+i)
12
[+] and

03
(−)

12
[−] with

03
(+i) and

03
(−i),
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respectively, as carrying two different types of handedness in d = (1 + 1), but each of them
also carries a different “charge” S12. In the whole internal space, all of the Clifford odd
“basis vectors” have only one kind of handedness.).

Let us recognize that all of the Clifford odd “basis vectors” are orthogonal: b̂m†
f ∗A

b̂m′†
f ′ = 0.

Let us present 2
4
2−1 × 2

4
2−1 Clifford even ”basis vectors”, the members of the group

IAm†
f , which are Hermitian conjugated to each other or are self adjoint (Let it be repeated

that S ab = Sab + S̃ab [15].)
S03 S12 S03 S12

IA1†
1 =

03
[+i]

12
[+] 0 0 , IA1†

2 =
03

(+i)
12
(+) i 1

IA2†
1 =

03
(−i)

12
(−) −i −1 , IA2†

2 =
03
[−i]

12
[−] 0 0 ,

(20)

and 2
4
2−1× 2

4
2−1 Clifford even ”basis vectors”, the members of the group I IAm†

f , m = (1, 2),
f = (1, 2), which are again Hermitian conjugated to each other or are self adjoint

S03 S12 S03 S12

I IA1†
1 =

03
[+i]

12
[−] 0 0 , I IA1†

2 =
03

(+i)
12
(−) i −1

I IA2†
1 =

03
(−i)

12
(+) −i 1 , I IA2†

2 =
03
[−i]

12
[+] 0 0 .

(21)

The Clifford even “basis vectors” have no families. The two groups IAm†
f and I IAm†

f

(they are not reachable by S ab) are orthogonal.

IAm†
f ∗A

IIAm′†
f ‘ = 0, for any (m, m′, f , f ‘) . (22)

Even dimensional spaces have the properties of the fermion and boson second quan-
tized fields [15].

In Appendix C, the 16 members of the Dirac’s products of γa, arranged into the 16
Clifford odd and even “basis vectors” presented in Equations (18)–(21), are presented.

The reader can find discussions about the d = (5 + 1)- dimensional case in [3,15] and
the references therein.

3.2. “Basis Vectors” in Odd Dimensional Spaces with d = (2 + 1), and d = (4 + 1)

Half of the Clifford odd and Clifford even Clifford objects in the (2n + 1)-dimensional
cases can be found by treating the Clifford odd “basis vectors” and their Hermitian conju-
gated partners and the Clifford even “basis vectors” in the 2(2n′ + 1) (or 4n′) dimensional
part of space. The properties of these “basis vectors” are presented in Equations (6), (7),
(10) and (11).

The rest of the “basis vectors” follow by the application of S0d on the “basis vectors”
determining the internal spaces of the fermion and boson fields in the 2(2n′ + 1) (or 4n′)-
dimensional part of space. Since S0d represents the Clifford even operators, they do not
change oddness or evenness of the “basis vectors” or their Hermitian conjugated partners.
However, they do change their properties:

i. In even dimensional subspace, 2(2n + 1) of d = 2(2n + 1) + 1) (or 4n of d = 4n + 1),

the Clifford odd “basis vectors”, b̂m†
f , have 2

d−1
2 −1 members, m, in 2

d−1
2 −1 families,

f , and their Hermitian conjugated partners appear in a separate group of 2
d−1

2 −1

members in 2
d−1

2 −1 families. The Clifford even “basis vectors” appear in two mutually
orthogonal groups, each with 2

d−1
2 −1× 2

d−1
2 −1 members.

ii. The second part of the “basis vectors” and their Hermitian conjugated partners, ob-
tained from the first part through the application of S0d with the same number of either
Clifford odd or Clifford even objects as the first part manifests as follows: The Clifford
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odd “basis vectors” appear in two mutually orthogonal groups, each with 2
d−1

2 −1×
2

d−1
2 −1 members, self adjoint, or with the Hermitian conjugated partners within the

same group. The Clifford even “basis vectors” appear with 2
d−1

2 −1 members, m, in
2

d−1
2 −1 families, f , and their Hermitian conjugated partners appear in a separate group

of 2
d−1

2 −1 members in 2
d−1

2 −1 families.
iii. While b̂m†

f has one handedness only (either right or left, depending on the definition
of handedness) in even dimensional spaces, in odd dimensional spaces, the operator
of handedness is a Clifford odd object—the product of an odd number of γas, as
shown in Equation (A1), (still commuting with Sab). This transforms the Clifford odd
“basis vectors” into Clifford even “basis vectors” and vice versa. Correspondingly, the
eigenvectors of the operator of handedness are the superpositions of the Clifford odd
and the Clifford even basis vectors”, offering the right- and left-handed eigenvectors
of the operator of handedness in odd dimensional spaces.

Let us illustrate the abovementioned properties of the “basis vectors” in odd dimen-
sional spaces, starting with the simplest case:

3.2.1. d = (2 + 1)

In d = (2 + 1), there are 8 (2d=3) “eigenvectors” of the Cartan subalgebra members
(S01, S01) for the Lorentz algebras, Sab and S ab, Equation (A4).

Half of the Clifford odd and Clifford even “basis vectors” and their Hermitian conju-
gated partners can be taken from Equation (16); the rest are obtained by the application of
S02 or S̃02 on the first half. One obtains

d = 2 + 1

Clifford odd

b̂1†
1 =

01
(+i) , b̂1†

2 =
01
[−i] γ2 ,

b̂1
1 =

01
(−i) , b̂1

2 =
01
[+i] γ2 , (23)

Clifford even

IA1†
1 =

01
[+i] , IA1†

2 =
01

(−i) γ2 ,

I IA1†
1 =

01
[−i] , I IA1†

2 =
01

(+i) γ2 .

It can clearly be seen that the left-hand side of the Clifford odd “basis vectors” and the
right-hand side of the Clifford even “basis vectors”, although the former are the Clifford
odd objects and the latter are Clifford even objects, have similar properties.

For example,

b̂1
1 ∗A b̂1†

1 = IA1†
2 ∗A

IIA1†
2 =

01
(−i)

01
(+i)=

01
[−i]= |ψoc > .

The right-hand side of the Clifford odd “basis vectors” contains two self adjoint “basis
vectors” that are orthogonal to each other, as does the left-hand side of the two Clifford
even “basis vectors”.

Let us find the eigenvectors of the operator of handedness Γ(2+1) = iγ0γ1γ2. Since it
is the Clifford odd object, its eigenvectors are the superpositions of the Clifford odd and
Clifford even “basis vectors”.

Γ(2+1){
01
[−i] ±i

01
[−i] γ2} = ∓{

01
[−i] ±i

01
[−i] γ2} ,

Γ(2+1){
01

(+i) ±i
01

(+i) γ2} = ∓{
01

(+i) ±i
01

(+i) γ2} ,

Γ(2+1){
01
[+i] ±i

01
[+i] γ2} = ±{

01
[+i] ±i

01
[+i] γ2} ,

Γ(2+1){
01

(−i) γ2 ± i
01

(−i)} = ±{
01

(−i) γ2 ± i
01

(−i)} .

(24)
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3.2.2. d = (4 + 1)

In d = (4 + 1) there are 32 (2d=5) “eigenvectors” of the Cartan subalgebra members
(S03, S12) and (S03,S12) for the Lorentz algebras Sab and S ab, as shown in Equation (A4).

Half of the Clifford odd and Clifford even “basis vectors” and their Hermitian con-
jugated partners can be taken from Equations (18)–(21); the other half follows by the
application of S05 or S̃05 on the first half.

d = 4 + 1

Clifford odd

b̂1†
1 =

03
(+i)

12
[+] , b̂1†

2 =
03
[+i]

12
(+) , b̂1†

3 =
03
[−i]

12
[+i] γ5 , b̂1†

4 =
03

(−i)
12
(+) γ5 ,

b̂2†
1 =

03
[−i]

12
(−) , b̂2†

2 =
03

(−i)
12
[−] , b̂2†

3 =
03

(+i)
12
(−) γ5 , b̂2†

4 =
03
[+i]

12
[−] γ5 ,

b̂1
1 =

03
(−i)

12
[+] , b̂1

2 =
03
[+i]

12
(−) , b̂1

3 =
03
[+i]

12
[+] γ5 , b̂1

4 =
03

(−i)
12
(−) γ5 ,

b̂2
1 =

03
[−i]

12
(+) , b̂2

2 =
03

(+i)
12
[−] , b̂2

3 =
03

(+i)
12
(+) γ5 , b̂2

4 =
03
[−i]

12
[−] γ5 ,

(25)

Clifford even

IA1†
1 =

03
[+i]

12
[+] , IA1†

2 =
03

(+i)
12
(+) , IA1

3 =
03

(−i)
12
[+] γ5 , IA1

4 =
03
[−i]

12
(+) γ5 ,

IA2†
1 =

03
(−i)

12
(−i) , IA2†

2 =
03
[−i]

12
[−] , IA2

3 =
03
[+i]

12
(−) γ5 , IA2

4 =
03

(+i)
12
[−] γ5 ,

I IA1†
1 =

03
[−i]

12
[+] , I IA1†

2 =
03

(−i)
12
(+) , I IA1†

3 =
03

(+i)
12
[+] γ5 , I IA1†

4 =
03
[+i]

12
(+) γ5 ,

I IA2†
1 =

03
(+i)

12
(−) , I IA2†

2 =
03
[+i]

12
[−] , I IA2†

3 =
03
[−i]

12
(−) γ5 , I IA2†

4 =
03

(−i)
12
[−] γ5 .

It can be observed that the right-hand side of the Clifford odd “basis vectors” appears
to have two mutually orthogonal groups, each with either self adjoint members or with the
Hermitian conjugated partners within the same group.

The members of one group

b̂1†
3 =

03
[−i]

12
[+i] γ5 , b̂1†

4 =
03

(−i)
12
(+) γ5 , b̂2†

3 =
03

(+i)
12
(−) γ5 , b̂2†

4 =
03
[+i]

12
[−] γ5

have the same properties, except for commutativity (they are, namely, the Clifford odd
objects), as the group of Clifford even objects

I IA1†
1 =

03
[−i]

12
[+] , I IA1†

2 =
03

(−i)
12
(+) , I IA2†

1 =
03

(+i)
12
(−) , I IA2†

2 =
03
[+i]

12
[−] .

The Clifford odd members of the group also have comparable properties

b̂1
3 =

03
[+i]

12
[+] γ5 , b̂1

4 =
03

(−i)
12
(−) γ5 , b̂2

3 =
03

(+i)
12
(+) γ5 , b̂2

4 =
03
[−i]

12
[−] γ5 ,

as do the Clifford even members of the group

IA1†
1 =

03
[+i]

12
[+] , IA1†

2 =
03

(+i)
12
(+) , IA2†

1 =
03

(−i)
12

(−i) , IA2†
2 =

03
[−i]

12
[−] .

The members of both groups have Hermitian conjugated partners within the same
group or are self adjoint.

On the other side, the members of the Clifford even group

I IA1†
3 =

03
(+i)

12
[+] γ5 , I IA1†

4 =
03
[+i]

12
(+) γ5 , I IA2†

3 =
03
[−i]

12
(−) γ5 , I IA2†

4 =
03

(−i)
12
[−] γ5 ,
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have their Hermitian conjugated partners in a separate group

IA1
3 =

03
(−i)

12
[+] γ5 IA1

4 =
03
[+i]

12
(−) γ5 , IA2

3 =
03
[−i]

12
(+) γ5 , IA2

4 =
03

(+i)
12
[−] γ5 ,

just like the Clifford odd objects on the left-hand side

b̂1†
1 =

03
(+i)

12
[+] , b̂1†

2 =
03
[+i]

12
(+) , b̂2†

1 =
03
[−i]

12
(−) , b̂2†

2 =
03

(−i)
12
[−] ,

which have their Hermitian conjugated partners in a separate group

b̂1
1 =

03
(−i)

12
[+] , b̂1

2 =
03
[+i]

12
(−) , b̂2

1 =
03
[−i]

12
(+) , b̂2

2 =
03

(+i)
12
[−] .

The “basis vectors” of the right-hand side keep their oddness if they are partners of
the Clifford odd “basis vectors” on the left-hand side, but they demonstrate the properties
of Clifford even objects on the left-hand side.

The “basis vectors” of the right-hand side keep their evenness if they are partners of
the Clifford even “basis vectors” on the left-hand side, but they demonstrate the properties
of Clifford odd objects on the left-hand side.

After the algebraic application of, for example, I IA1†
3 (=

03
(+i)

12
[+] γ5 on b̂1†

4 =
03

(−i)
12
(+)

γ5, we are left with b̂1†
2 =

03
[+i]

12
(+).

The eigenvectors of the operator of handedness in d = (4 + 1), Γ(4+1) = γ0γ1γ2γ3γ5,
are the superpositions of the Clifford odd and Clifford even “basis vectors”, for example,

Γ(4+1)(b̂1†
1 [=

03
(+i)

12
[+]]± I IA1†

3 [=
03

(+i)
12
[+] γ5]) = ∓((b̂1†

1 ± I IA1†
3 ).

We can conclude that, in odd dimensional spaces, neither the Clifford odd nor the
Clifford even “basis vectors” have the properties that they demonstrate in even dimensional
spaces, such as the properties that empower the Clifford odd “basis vectors” to describe
the internal space of fermion fields and the Clifford even “basis vectors” to describe the
internal space of the corresponding gauge fields. After enlarging the “basis vectors” in a
tensor product, ∗T , with the basis in ordinary space [15], the corresponding creation and
annihilation operators manifest the properties required by the postulates for the second
quantized field, either fermion or boson.

In odd dimensional spaces, half of the Clifford odd “basis vectors” demonstrate
the properties of the Clifford even “basis vectors” and half of the Clifford even “basis
vectors” demonstrate the properties of the Clifford odd “basis vectors”. Arbitrary Lorentz
transformations transform the left-hand side into the right side and vice versa.

These are the properties of the internal spaces of the ghost scalar fields, used in the
quantum field theory to make the contributions of the Feynman diagrams finite.

4. Discussion

This article briefly repeated the properties of the fermion and boson fields in even
dimensional spaces [3,15] and discussed the properties of the fermion and boson fields in
odd [16] dimensional spaces if their internal spaces are described by the superpositions of
the Clifford odd products of γa (for fermions) and by the superpositions of the Clifford
even products of γa (for bosons).

The discussion on the properties of the fermion and boson gauge fields in odd dimen-
sional spaces is the main new contribution of this article.

The recognition that the internal spaces of both fermion and boson field can be de-
scribed by the Clifford algebra objects offers a new step forward in the understanding
of the laws of nature. It is a new step beyond the standard model of elementary fields,
and it is a new step for cosmology, since this method of describing the internal spaces of
fields not only explains the second quantization postulates for all fermion and boson fields,
offering, in addition, the understanding of the assumption of Fadeev and Popov to use
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ghosts to ensure the final solutions are obtained when using Feynman diagrams [52], but
also because the relations among fermions and bosons described by the Clifford objects
influence the choice of starting action, as shown in Equation (1), which unifies all of the
boson gauge fields:

In the starting action in d = (13 + 1)-dimensional space, as shown in Equation (1) and
explained in d = (3 + 1) for all of the properties of the quarks and leptons and antiquarks
and antileptons of the corresponding vector gauge fields and the scalar fields, it is assumed
in the standard model before the electroweak phase transition ([3] and the references therein)
that the covariant momenta, p0α = pα− 1

2 Sabωabα− 1
2 S̃abω̃abα, includes two spin connection

fields, ωabα and ω̃abα.
The analysis of the properties of admissible even Clifford “basis vectors” shows that

there are two kinds of even Clifford “basis vectors”: one kind transforms the Clifford odd
“basis vectors” of a given family into other members of the same family, while the family
quantum number remains unchanged; the second kind changes a family member of a
particular family into the same family member of another family [15].

Let us repeat what we have learned in Sections 2.2 and 3.2 and Appendixes D and E
about the properties of the Clifford even and Clifford odd objects in odd dimensional spaces:

In odd dimensional spaces, neither Clifford odd nor Clifford even “basis vectors”
have the properties that they demonstrate in even dimensional spaces. These are the
properties that empower the Clifford odd “basis vectors” to describe the internal space of
fermion fields and the Clifford even “basis vectors” to describe the internal space of the
corresponding gauge fields.

In odd dimensional spaces, half of the Clifford odd “basis vectors”, although anticom-
muting, demonstrate the properties of the Clifford even “basis vectors” in even dimensional
spaces, and half of the Clifford even “basis vectors”, although commuting, demonstrate
properties of the Clifford odd “basis vectors” in even dimensional spaces.

These “basis vectors” obviously resemble the properties of the internal spaces of the
ghost scalar fields, used in quantum field theory to make the contributions of the Feynman
diagrams finite (Arbitrary Lorentz transformations in odd dimensional spaces transform
the left-hand sides of Equations (14), (15), (23) and (25) into the right-hand sides and
vice versa.).

Further studies on the properties of the Clifford even “basis vectors” in even di-
mensional spaces are required to realise the benefits of this description (In particular, the
contribution of the replacement of vielbeins, f a

α, and the two kinds of spin connection fields,
ωabα (the gauge fields of Sab) and ω̃abα (the gauge fields of S̃ab) in the covariant derivative
p0α, (p0α = pα − 1

2 Sabωabα − 1
2 S̃abω̃abα,) with (p0α = pα −∑m f

IÂm†
f

ICm
f α −∑m f

I IÂm†
f

ICm
f α.)

in a simple starting action in d = 2(2n + 1), n ≥ 7, as shown in Equation (1), must be
understood. Additionally, the properties of the Clifford odd and the Clifford even ”basis
vectors” in odd dimensional spaces need further study. Both recognitions are new and
have not yet been studied enough.

We again observe that the simple starting actions, as presented in Equation (1), as-
suming massless fermion and boson fields, interact with only gravity in d = (13 + 1)-
dimensional space, offering an explanation for all assumptions of the standard model, such
as the families of fermions and the vector gauge fields and scalar gauge fields (higgs and
Yukawa coupling included). They also offer explanations for the appearance of dark mat-
ter and matter/antimatter asymmetry. Several other observations [1,3–5,11–14,51,53–55]
indicate that the postulation for the second quantization of the fermion and boson fields
is too promising not to be presented to all who are looking for the next step beyond the
standard model.
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Appendix A. Some Useful Formulas

This appendix contains the helpful relations needed for the reader of this paper. For
more detailed explanations and for proofs, the reader is kindly asked to read [3] and the
references therein.

For fermions, the operator of handedness Γd is determined as follows:

Γ(d) = ∏
a
(
√

ηaaγa) ·
{

(i)
d
2 , for d even ,

(i)
d−1

2 , for d odd ,
(A1)

The Clifford objects γas and γ̃as fulfill the relations

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+ ,

{γa, γ̃b}+ = 0 , (a, b) = (0, 1, 2, 3, 5, · · · , d) ,

(γa)† = ηaa γa , (γ̃a)† = ηaa γ̃a . (A2)

In the paper, the signature ηaa = diag(1,−1,−1, . . . ,−1) is used.
The choice of Cartan subalgebra members for d even is

S03, S12, S56, · · · , Sd−1 d ,

S03, S12, S56, · · · , Sd−1 d ,

S̃03, S̃12, S̃56, · · · , S̃d−1 d ,

Sab = Sab + S̃ab , (A3)

and for d odd, it is

S03, S12, S56, · · · , Sd−2 d−1 ,

S03, S12, S56, · · · , Sd−2 d−1 ,

S̃03, S̃12, S̃56, · · · , S̃d−2 d−1 ,

Sab = Sab + S̃ab . (A4)

Nilpotents and projectors are defined as follows: [1,12]

ab
(k): =

1
2
(γa +

ηaa

ik
γb) ,

ab
[k]:=

1
2
(1 +

i
k

γaγb) , (A5)

with k2 = ηaaηbb.
Taking Equation (A14) into account and assuming

{γ̃aB = (−)B i Bγa} |ψoc > , (A6)

with (−)B = −1, if B is (a function of) an odd product of γas, otherwise (−)B = 1, |ψoc >
is defined in Equation (A8), the eigenvalues of the Cartan subalgebra operators are

Sab
ab
(k)=

k
2

ab
(k) , S̃ab

ab
(k)=

k
2

ab
(k) ,

Sab
ab
[k]=

k
2

ab
[k] , S̃ab

ab
[k]= − k

2

ab
[k] . (A7)
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The vacuum state for the Clifford odd ”basis vectors”, |ψoc >, is defined as

|ψoc >=
2

d
2 −1

∑
f=1

b̂m
f ∗A b̂m†

f | 1 > . (A8)

Taking Equation (A14) into account, it follows that

γa
ab
(k) = ηaa

ab
[−k], γb

ab
(k)= −ik

ab
[−k], γa

ab
[k]=

ab
(−k), γb

ab
[k]= −ikηaa

ab
(−k) ,

γ̃a
ab
(k) = −iηaa

ab
[k], γ̃b

ab
(k)= −k

ab
[k], γ̃a

ab
[k]= i

ab
(k), γ̃b

ab
[k]= −kηaa

ab
(k) ,

ab
(k)

†

= ηaa
ab

(−k) , (
ab
(k))2 = 0 ,

ab
(k)

ab
(−k)= ηaa

ab
[k] ,

ab
[k]

†

=
ab
[k] , (

ab
[k])2 =

ab
[k] ,

ab
[k]

ab
[−k]= 0 ,

ab
(k)

ab
[k] = 0 ,

ab
[k]

ab
(k)=

ab
(k) ,

ab
(k)

ab
[−k]=

ab
(k) ,

ab
[k]

ab
(−k)= 0 ,

ab
˜(k)

†

= ηaa
ab
˜(−k) , (

ab
˜(k))2 = 0 ,

ab
˜(k)

ab
˜(−k)= ηaa

ab
˜[k] ,

ab
˜[k]

†

=
ab
˜[k] , (

ab
˜[k])2 =

ab
˜[k] ,

ab
˜[k]

ab
˜[−k]= 0 ,

ab
˜(k)

ab
˜[k] = 0 ,

ab
˜[k]

ab
˜(k)=

ab
˜(k) ,

ab
˜(k)

ab
˜[−k]=

ab
˜(k) ,

ab
˜[k]

ab
˜(−k)= 0 ,

ab

(̃−k)
ab
(k) = −iηaa

ab
[k] ,

ab

[̃k]
ab
(k)=

ab
(k) ,

ab

(̃k)
ab
[k]= i

ab
(k) ,

ab

[̃−k]
ab
[k]=

ab
[k] ,

ab

(̃k)
ab
(k) = 0 ,

ab

[̃−k]
ab
(k)= 0 ,

ab

(̃k)
ab

[−k]= 0 ,
ab

[̃k]
ab
[k]= 0 .

(A9)

One can further find that

Sac
ab
(k)

cd
(k) = − i

2 ηaaηcc
ab

[−k]
cd

[−k] , Sac
ab
[k]

cd
[k]= i

2

ab
(−k)

cd
(−k) ,

Sac
ab
(k)

cd
[k] = − i

2 ηaa
ab

[−k]
cd

(−k) , Sac
ab
[k]

cd
(k)= i

2 ηcc
ab

(−k)
cd

[−k] .
(A10)

Appendix B. Grassmann and Clifford Algebras

This part of the appendix presents a short overview of Section 3.2 of Ref. [3].
In Grassmann d-dimensional space, there are d anticommuting operators θa and d

anticommuting derivatives with respect to θa, ∂
∂θa

,

{θa, θb}+ = 0 , { ∂

∂θa
,

∂

∂θb
}+ = 0 , {θa,

∂

∂θb }+ = δab , (a, b) = (0, 1, 2, 3, 5, · · · , d) . (A11)

θa and ∂
∂θa

are, up to the sign, Hermitian conjugated to each other.

(θa)† = ηaa ∂

∂θa
, leads to (

∂

∂θa
)† = ηaaθa , (A12)

with ηab = diag{1,−1,−1, · · · ,−1}.
The identity is the self adjoint member of the algebra.
The operators θa offer 2d superpositions of the products of θa, the Hermitian conjugated

partners of which are the corresponding superpositions of the products of ∂
∂θa

.
One can define two kinds of Clifford algebra elements—γa and γ̃a—which are the

superpositions of θa and their conjugate momenta pθa = i ∂
∂θa

[1].
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γa = (θa +
∂

∂θa
) , γ̃a = i (θa − ∂

∂θa
) , (A13)

θa =
1
2
(γa − iγ̃a) ,

∂

∂θa
=

1
2
(γa + iγ̃a) ,

offering together 2 · 2d operators which are the superpositions of the products of either γa,
2d or γ̃a, 2d.

Taking Equations (A12) and (A13) into account, it is easy to prove that they form
two anticommuting Clifford subalgebras, {γaandγ̃b}+ = 0, as shown in Refs. ([3] and the
references therein)

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+ ,

{γa, γ̃b}+ = 0 , (a, b) = (0, 1, 2, 3, 5, · · · , d) , (A14)

(γa)† = ηaa γa , (γ̃a)† = ηaa γ̃a .

In each of the two subalgebras, half of the products of the operators (γa or γ̃a) have
an odd number of operators, and the rest have an even number of operators. The super-
position of an odd number of operators can be arranged to describe the internal space of
fermions [1,3], and the superposition of an even number of operators can be arranged to
describe the internal space of bosons, the gauge fields of the corresponding fermions [15].

In even dimensional spaces, the superposition of an odd number of operators, either
γa or γ̃a, forms 2

d
2−1 irreducible representations of the corresponding generators of the

Lorentz transformations (either Sab or S̃ab) with 2
d
2−1 members each. Their Hermitian

conjugated partners appear in a different group.
The superposition of an even number of operators of either γa or γ̃a forms two

orthogonal groups with 2
d
2−1 ×2

d
2−1 members, with the Hermitian conjugated partners

appearing in the same group.
In odd dimensional spaces, the superposition of an odd number of operators either γa

or γ̃a, forms 2× 2
d−1

2 −1 irreducible representations with 2× 2
d−1

2 −1 members each. Their
Hermitian conjugated partners appear in a different group.

The superposition of an even number of operators of either γa or γ̃a each forms two
groups of 2× 2

d−1
2 −1×2× 2

d−1
2 −1 members, which are no longer orthogonal.

Two Clifford spaces of γa and γ̃a can be reduced to only one by the assumption (A15).
Let γ̃a operate on γa as follows: [1,11]

{γ̃aB = (−)B i Bγa} |ψoc > , (A15)

where (−)B = −1, if B is (a function of) an odd product of γa; otherwise, (−)B = 1, |ψoc >
is defined in Equation (8).

After this postulate, the vector space of γ̃as is “frozen out”. No vector space of γ̃as
needs to be taken into account any longer, in agreement with the observed properties
of fermions.

One can check that all relations of Equation (A14) remain valid ([3], Appendix I ,
Statement 3, 3a, 3b) after the postulate of Equation (A15), and S̃ab is used to determine the
family quantum numbers of the irreducible representations of Sab.

Appendix C. Dirac γa, Spin States and Clifford Even and Odd “Basis Vectors”

This appendix relates the algebra of the products of Dirac γa, a = (0, 1, 2, 3), and the
method of describing states of fermions and bosons with the Clifford algebra.
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The Dirac algebra of γa with the commutation relations of Equation (A14) offers
2(3+1) = 16 products of γa. Half of them are odd products of γa, and the other half are
even products of γa.

odd products ofγa ,

γ0 , γ1 , γ2 , γ3 ,

γ0γ1γ2 , γ0γ1γ3 , γ0γ2γ3 , γ1γ2γ3 , (A16)

even products ofγa ,

1 , γ0γ1 , γ0γ2 , γ0γ3 , γ1γ2 , γ1γ3 , γ2γ3 ,

γ0γ1γ2γ3 .

Let us arrange these 16 elements into four Clifford odd “basis vectors” which are
eigenstates of S03 and S12 (or Γ(3+1)) made up of the members presented in Equation (A16).
The corresponding Dirac vectors are presented as (1

0) and (0
1).

b̂1†
1 =

03
(+i)

12
[+] , b̂1†

2 =
03
[+i]

12
(+) ,

(
1
0

)
R

, S03 = +
i
2

, S12 = +
1
2

,

b̂2†
1 =

03
[−i]

12
(−) , b̂2†

2 =
03

(−i)
12
[−] .

(
0
1

)
R

, S03 = − i
2

, S12 = −1
2

,

The Hermitian conjugated partners of the four “basis vectors” and the Dirac Hermitian
conjugated vectors presented as (1

0)
†(= (1 0) and (0

1)
†(= (0 1), are

b̂1
1 =

03
(−i)

12
[+] , b̂1

2 =
03
[+i]

12
(−) ,

(
1
0

)†

R
, S̃03 = − i

2
, S̃12 = −1

2
, ,

b̂2
1 =

03
[−i]

12
(+) , b̂2

2 =
03

(+i)
12
[−] ,

(
0
1

)†

R
, S̃03 = +

i
2

, S̃12 = +
1
2

,

The “basis vectors” b̂m†
f in the first column represent the family with f = 1. The

two members carry S̃03 = i
2 and S̃12 = − 1

2 (according to Equation (A9)). There are
(S01, S02, S31, S32), which rotate the two members of the first family among themselves. The
second irreducible representation has S̃03 = − i

2 and S̃12 = 1
2 .

The Dirac vectors do not pay attention to (in the spin-charge-family theory existing)
irreducible representations which, in the spin-charge-family case, are equipped with the
family quantum numbers.

The four “basis vectors”, together with their Hermitian conjugated partners, exhaust
the odd products of γa, as presented in Equation (A16).

The even products of γa can be arranged into two orthogonal groups of Clifford even
“basis vectors”, as presented in Equations (20) and (21). The members of each group are
either self adjoint or have their Hermitian conjugated partners within the same group.

Dirac vectors do not pay attention to either irreducible representations or to the
Clifford even “basis vectors”.

Let me add that, in even dimensional spaces, the Clifford odd “basis vectors” describe
“basis vectors” of only one handedness, either R or L, depending on the definition of
handedness. However, we need “basis vectors” of both types of handedness if we want
to describe quarks and leptons and antiquarks and antileptons. However, in any even
dimensional subspace of an even dimensional space with d > (3 + 1), there are always
both types of handedness.

To see this, let us look at Table A1, presented in Appendix D. The whole one family
representation (with 64 members) is right-handed. The right-handedness in d = (3 + 1)
carries the four “basis vectors” appearing in the first four lines in this table, representing
the internal space of u and d quarks with the spin S12 = ± 1

2 and with the color charge
(τ33 = 1

2 , τ38 = 1
2
√

3
). However, the Clifford odd “basis vectors”, presented in the next four
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lines of this table, describe the “basis vectors” again of the u and d quarks of spin S12 = ± 1
2

and color charge (τ33 = 1
2 , τ38 = 1

2
√

3
), but for left-handedness. They follow by rotating

their right-handed partners with, for example, S07.

Appendix D. One Family Representation of Clifford Odd “Basis Vectors” in d = (13+ 1)

This appendix presents an overview of Appendix A of Ref. [15]. Short comments on
the corresponding gauge vector and scalar fields and fermion and boson representations in
d = (14 + 1)-dimensional space are also included.

In even dimensional space d = (13 + 1), one irreducible representation of the Clifford
odd “basis vectors”, analyzed from the point of view of the subgroups SO(3, 1)× SO(4)
(included in SO(7, 1)) and SO(7, 1)× SO(6) (included in SO(13, 1), while SO(6) breaks
into SU(3)×U(1)), contains the Clifford odd “basis vectors” describing the internal spaces
of quarks and leptons and antiquarks and antileptons with the quantum numbers assumed
by the standard model before the electroweak break. Since SO(4) contains two SU(2) groups,
Y = τ23 + τ4, one irreducible representation includes the right-handed neutrinos and the
left-handed antineutrinos, which are not in the standard model scheme.

The Clifford even “basis vectors”, analyzed with respect to the same subgroups, offer
a description of the internal spaces of the corresponding vector and scalar fields, appearing
in the standard model before the electroweak break [15].

For an overview of the properties of the vector and scalar gauge fields in the spin-
charge-family theory, the reader is invited to read Refs. ([3,14] and the references therein).
The vector gauge fields, expressed as the superpositions of spin connections and vielbeins,
carrying the space index m = (0, 1, 2, 3), manifest the properties of the observed boson
fields. The scalar gauge fields, which cause the electroweak break, carry the space index
s = (7, 8) and determine the symmetry of the mass matrices of quarks and leptons.

In Table A1, one can check the quantum numbers of the Clifford odd “basis vectors”
representing quarks and leptons and antiquarks and antileptons if it is taken into account
that all nilpotents and projectors are eigenvectors of one of the Cartan subalgebra members,

(S03, S12, S56, . . . , S13 14) with the eigenvalues± i
2 for

ab
(±i) and

ab
[±i], and with the eigenvalues

± 1
2 for

ab
(±1) and

ab
[±1].

Taking into account that the third component of the weak charge is τ13 = 1
2 (S

56− S78),
the second SU(2) charge is τ23 = 1

2 (S
56 + S78), the color charge is τ33 = 1

2 (S
9 10 − S11 12)

and τ38 = 1
2
√

3
(S9 10 + S11 12 − 2S13 14), the “fermion charge” is τ4 = − 1

3 (S
9 10 + S11 12 +

S13 14), Y = τ23 + τ4, and Q = Y + τ13, one can reproduce all of the quantum numbers of
the quarks, leptons, antiquarks, and antileptons. It can be observed that the SO(7, 1) part is
the same for quarks and leptons and the same for antiquarks and antileptons. Quarks are
distinguished from leptons only in terms of their color and “fermion” quantum numbers
and antiquarks are distinguished from antileptons only in terms of their anticolor and
“antifermion” quantum numbers.

In odd dimensional space d = (14 + 1) the eigenstates of handedness are the super-
position of one irreducible representation of SO(13, 1), presented in Table A1, and the one
obtained if on each “basis vector” appearing in SO(13, 1) the operator S0 (14+1) applies. The
comment on differences in odd dimensional space with respect to even dimensional space
are discussed in Section 3.2.

Let me point out that, in addition to the electroweak break of the standard model, the
break at ≥1016 GeV is needed.

This break is caused by the condensate of the two right-handed neutrinos, Ref. ([3]),
Table 6, which interact with all of the scalar and vector gauge fields, except for the weak
fields, U(1), SU(3) and the gravitational field in d = (3 + 1), leaving these gauge fields
massless up to the electroweak break. The scalar fields only leave the electromagnetic, color,
and gravitational fields massless.
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The theory predicts two groups of four families. So far, it is known that three of the
four families contribute to the lower group. The theory predicts the symmetry of both
groups to be SU(2) × SU(2) × U(1), Ref. ([3], Section 7.3) , which enables the mixing
matrices of quarks and leptons to be calculated for the 3× 3 sub matrix of the 4× 4 unitary
matrix. No sterile neutrinos are needed, and no symmetries of the mass matrices must
be guessed. In the literature, many authors have tried to reproduce mass matrices and
measured mixing matrices for quarks and leptons [56–76].

The stable parts of the upper four families predicted by the spin-charge-family theory are
candidates for dark matter, as discussed in Ref. [3]. In the literature, there are several works
that suggest candidates for dark matter and also for matter/antimatter asymmetry [76–78].

Table A1. The left-handed (Γ(13,1) = −1 [3]) irreducible representation of one family of spinors—the
products of the odd number of nilpotents and projectors, which are eigenvectors of the Cartan
subalgebra of the SO(13, 1) group [3,11–13], resulting in the subgroup SO(7, 1) of the color charged
quarks and antiquarks and the colourless leptons and antileptons—is presented. It contains the
left-handed (Γ(3,1) = −1) weakly (SU(2)I) charged (τ13 = ± 1

2 , and the SU(2)I I chargeless (τ23 = 0
quarks and leptons and the right-handed (Γ(3,1) = 1) weak (SU(2)I) chargeless and SU(2)I I charged
(τ23 = ± 1

2 ) quarks and leptons, both with the spin S12 up and down (± 1
2 , respectively). Quarks

are distinguished from leptons only in the SU(3)×U(1) part: Quarks are triplets of three colors
(ci = (τ33, τ38) = [( 1

2 , 1
2
√

3
), (− 1

2 , 1
2
√

3
), (0,− 1√

3
), carrying the “fermion charge” (τ4 = 1

6 . The colour-

less leptons carry the “fermion charge” (τ4 = − 1
2 ). The same multiplet contains also the left-handed

weak (SU(2)I) chargeless and SU(2)I I charged antiquarks and antileptons and the right-handed
weak (SU(2)I) charged and SU(2)I I chargeless antiquarks and antileptons. Antiquarks are distin-
guished from antileptons again only in the SU(3)×U(1) part: Antiquarks are antitriplets, carrying
the “fermion charge” (τ4 = − 1

6 ). The anticolourless antileptons carry the “fermion charge” (τ4 = 1
2 ).

Y = (τ23 + τ4) is the hypercharge, and the electromagnetic charge is Q = (τ13 + Y).

i |aψi > Γ(3,1) S12 τ13 τ23 τ33 τ38 τ4 Y Q
(Anti)octet, Γ(7,1) = (−1) 1 , Γ(6) = (1) − 1
of (Anti)Quarks and (Anti)leptons

1 uc1
R

03
(+i)

12
[+] |

56
[+]

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] 1 1

2 0 1
2

1
2

1
2
√

3
1
6

2
3

2
3

2 uc1
R

03
[−i]

12
(−) |

56
[+]

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] 1 − 1

2 0 1
2

1
2

1
2
√

3
1
6

2
3

2
3

3 dc1
R

03
(+i)

12
[+] |

56
(−)

78
[−] ||

9 10
(+)

11 12
[−]

13 14
[−] 1 1

2 0 − 1
2

1
2
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2
√

3
1
6 − 1

3 − 1
3

4 dc1
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(−) |

56
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[−] ||
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(+)

11 12
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√

3
1
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3
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11 12
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√

3
1
6

1
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12
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9 10
(+)

11 12
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13 14
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1
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L
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11 12
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2
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9 uc2
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9 10
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11 12
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13 14
[−] 1 1

2 0 1
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2
1

2
√

3
1
6
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3

2
3

10 uc2
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03
[−i]

12
(−) |

56
[+]

78
(+) ||

9 10
[−]

11 12
(+)

13 14
[−] 1 − 1

2 0 1
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2
1

2
√

3
1
6

2
3

2
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03
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[+] |

56
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9 10
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11 12
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13 14
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2
1

2
√

3
1
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3 − 1
3
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R

03
[−i]

12
(−) |

56
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9 10
[−]

11 12
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13 14
[−] 1 − 1

2 0 − 1
2 − 1

2
1

2
√

3
1
6 − 1

3 − 1
3

13 dc2
L
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[−i]

12
[+] |

56
(−)

78
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11 12
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13 14
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2 0 − 1

2
1

2
√

3
1
6

1
6 − 1

3
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L −

03
(+i)

12
(−) |

56
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78
(+) ||

9 10
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11 12
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13 14
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2 0 − 1

2
1

2
√

3
1
6

1
6 − 1

3
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Table A1. Cont.

i |aψi > Γ(3,1) S12 τ13 τ23 τ33 τ38 τ4 Y Q
(Anti)octet, Γ(7,1) = (−1) 1 , Γ(6) = (1) − 1
of (Anti)Quarks and (Anti)leptons

15 uc2
L −

03
[−i]

12
[+] |

56
[+]

78
[−] ||

9 10
[−]

11 12
(+)

13 14
[−] −1 1

2
1
2 0 − 1

2
1

2
√

3
1
6

1
6

2
3

16 uc2
L

03
(+i)

12
(−) |

56
[+]

78
[−] ||

9 10
[−]

11 12
(+)

13 14
[−] −1 − 1

2
1
2 0 − 1

2
1

2
√

3
1
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1
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2
3
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03
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56
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78
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11 12
[−]
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56
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13 14
(+) 1 1

2 0 − 1
2 0 − 1√

3
1
6 − 1

3 − 1
3
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[−]

13 14
(+) 1 − 1

2 0 − 1
2 0 − 1√

3
1
6 − 1

3 − 1
3

21 dc3
L

03
[−i]

12
[+] |
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Table A1. Cont.

i |aψi > Γ(3,1) S12 τ13 τ23 τ33 τ38 τ4 Y Q
(Anti)octet, Γ(7,1) = (−1) 1 , Γ(6) = (1) − 1
of (Anti)Quarks and (Anti)leptons
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Appendix E. Second Quantization with Clifford Algebra

This appendix discusses the second quantization using the Clifford odd “basis vectors”
to describe the internal space of fermion fields. It is a short overview of Section 3.3.2 of
Ref. [3].

The second quantization of boson fields, using the Clifford even “basis vectors” to
describe their internal space, can be found in Section 3 in [15].

Creation and annihilation operators are defined as the tensor product, ∗T , of each
“basis vector” with the basis in momentum (or coordinate) ordinary space, which infinitely
generate many creation operators and, when applied on the vacuum state, infinitely many
states for each “basis vector”.

The Clifford odd “basis vectors” are anticommuting objects that transfer their anti-
commutativity to the creation operators and their Hermitian conjugated partners annihila-
tion operators.

The Dirac vectors, presented in Appendix C, do not anticommute. Correspondingly,
the anticommutativity of the creation operators must be postulated.

Let us introduce the momentum part of the creation and annihilation operators in the
method that is briefly reviewed in Ref. [3], Section 3.3, and Appendix J.

|~p > = b̂†
~p | 0p > , < ~p | =< 0p | b̂~p , (A17)

< ~p |~p′ > = δ(~p− ~p′) , b̂~p b̂†
~p′ = δ(~p− ~p′) ,
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b̂s†
f (~p) = ∑

m
csm

f (~p) b̂†
~p ∗T b̂m†

f . (A18)

The vacuum state for fermions includes both spaces: internal |ψoc > and momentum
space |0~p >. The coefficient csm

f (~p) is generally dependent on all powers of pi.
When the kinematics of the right-handed weak chargeless u-quark of the color charge

( 1
2 , 1

2
√

3
), with τ4 = 1

6 , Y = 2
3 and Q = 2

3 , is determined by the momenta in d = (3 + 1), the
Weyl equation applied on the u quark

γ0γa pa ûc1s=1†
R f=1 (~p)|ψoc > ∗T |0~p >= 0 ,

connects the creation operators with spin up and down, that is, the first two lines in
Table A1, as follows

Clifford odd creation operators in d = (13 + 1)

p0 = |p0| , c1 = (
1
2

,
1

2
√

3
) , Γ(3+1) = 1 ,(

ûc1s=1†
R f=1 (~p) = β

(
03

(+i)
12
[+] +

p1 + ip2

p0 + p3

03
[−i]

12
(−)

)
·

56
[+]

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−]

)
· (A19)

e−i(p0x0−~p·~x) ,(
ûc1s=2†

R f=1 (~p) = β∗
(

03
[−i]

12
(−) − p1 − ip2

p0 + p3

03
(+i)

12
[+]

)
·

56
[+]

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−]

)
·

e−i(p0x0+~p·~x) .

The Hilbert space of the creation operators, as shown in Equation (A18), consists of
any number of tensor products, ∗TH , for all possible creation operators

b̂s†
f (~p) ∗TH b̂s′†

f ‘ (
~p′) · · · ∗TH b̂s′′†

f “ (~p′′) · · · ∗TH . . . ,

with a finite number of different (s, f ) — (2
d
2−1)2—and continuous momentum ~p for each

b̂s†
f ([3], Section 5).

In the case of the Clifford even “basis vectors”, the creation operator for a free massless
boson field, suggested in Ref. [15], can be written as

iÂs†
ff (~p) = ∑

m f
b̂†
~p ∗T Cms

f α(~p) IÂm†
f . (A20)

This suggestion needs further study.
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