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Abstract: An object of investigation is the differential geometry of the Riemannian Π-manifolds; in
particular, a natural connection, determined by a property of its torsion tensor, is defined, and it is
called the second natural connection on Riemannian Π-manifold. The uniqueness of this connection
is proved, and a necessary and sufficient condition for coincidence with the known first natural
connection on the considered manifolds is found. The form of the torsion tensor of the second natural
connection is obtained in the classes of the Riemannian Π-manifolds, in which it differs from the first
natural connection. All of the main classes of considered manifolds are characterized with respect to
the torsion of the second natural connection. An explicit example of dimension 5 is given in support
of the proven assertions.
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1. Introduction

Objects of investigation in the present work are the almost paracontact almost para-
complex Riemannian manifolds, also known as Riemannian Π-manifolds [1,2]. These
manifolds are odd-dimensional, and they have a traceless induced almost product structure
on the paracontact distribution. Moreover, the restriction on the paracontact distribution
of the almost paracontact structure is an almost paracomplex structure. The beginning of
their investigation is given in [1] by the name almost paracontact Riemannian manifolds of
type (n, n), followed by series of papers (e.g., [2–5]).

An important role in the geometry of the manifolds with additional tensor structures
is played by the so-called natural connections, i.e., affine connections that preserve the
structure tensors and the metric (e.g., [6–15]). In the differential geometry of almost
Hermitian manifolds, a unique natural connection is called canonical Hermitian connection
(also known as Chern connection [16]) if the following two conditions are valid [17]:
the component of the torsion T that has the property T(J·, J·) = T(·, ·) and satisfies the
Bianchi identity vanishes; (S T)+ = (1− 2t)(dΩ)+(J·, J·, J·), where t ∈ R and (dΩ)+

is the part of type (2, 1) + (1, 2) of the differential dΩ for the Kähler form Ω = g(J·, ·).
Known example of such connections are the Lichnerowicz first and second canonical
connections [18–20]. Moreover, in [17], it is proved that there exists a one-parameter family
of canonical Hermitian connections ∇t = t∇1 + (1− t)∇0, where ∇0 and ∇1 stand for the
Lichnerowicz first and second canonical connections, respectively.

Following this ideas, we investigate the counterparts of Lichnerowicz first and second
canonical connections in the geometry of the considered manifolds, called first and second
natural connections on Riemannian Π-manifolds. In [21], we presented and studied the
first natural connection Ḋ on Riemannian Π-manifolds. Here, we introduce a natural
connection D̈ determined by a property of its torsion tensor T̈, and we call it the second
natural connection on the considered manifolds. We prove the uniqueness of D̈, and we
determine a necessary and sufficient condition that D̈ coincides with Ḋ. Then, we obtain
the form of T̈ in the classes of a known classification of Riemannian Π-manifolds where D̈
differs from Ḋ.
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The paper is organized as follows. The introductory Sections 1 and 2 provide some
preliminary facts about Riemannian Π-manifolds and recall some definitions and assertions
for the first natural connection on the studied manifolds necessary for further investiga-
tions. Moreover, we characterize all of the basic classes of the considered classification of
Riemannian Π-manifolds with respect to Ṫ. In Section 3, we define D̈ and determine the
class of the studied manifolds for which D̈ coincides with Ḋ. After that, we characterize
again all of the basic classes but now regarding T̈. The final Section 4 is devoted to an
explicit 5-dimensional example in support of the proven theory.

2. Preliminaries
2.1. Riemannian Π-Manifolds

Let us denote a Riemannian Π-manifold by (M, φ, ξ, η, g), i.e., M is a (2n + 1)-
dimensional differentiable manifold with a Riemannian Π-structure (φ, ξ, η) consisting of a
(1,1)-tensor field φ, a Reeb vector field ξ, and its dual 1-form η, andM is equipped with a
Riemannian metric g such that the following basic identities and their immediately derived
properties are valid:

φξ = 0, φ2 = I − η ⊗ ξ, η ◦ φ = 0, η(ξ) = 1,
tr φ = 0, g(φx, φy) = g(x, y)− η(x)η(y),

(1)

g(φx, y) = g(x, φy), g(x, ξ) = η(x),
g(ξ, ξ) = 1, η(∇xξ) = 0,

(2)

where I and ∇ denote the identity and the Levi-Civita connection of g, respectively [2,22].
In the latter equalities and further, x, y, z stand for arbitrary differentiable vector fields on
M or tangent vectors at a point ofM.

The associated metric g̃ of g on (M, φ, ξ, η, g) is an indefinite metric of signature
(n + 1, n) and is compatible with the manifold in the same way as g. It is defined by
g̃(x, y) = g(x, φy) + η(x)η(y).

On an arbitrary Riemannian Π-manifold (M, φ, ξ, η, g), we consider two complemen-
tary distributions of TM using ξ and η—the horizontal distributionH = ker(η) and the
vertical distribution V = span(ξ). They are mutually orthogonal regarding g and g̃, i.e.,

H⊕V = TM, H ⊥ V , H∩ V = {o}, (3)

where o stands for the zero vector field onM. Thus, the respective horizontal and vertical
projectors are determined by h : TM 7→ H and v : TM 7→ V .

An arbitrary vector field x is decomposed in the so-called horizontal and vertical
component (xh and xv, respectively) as follows:

x = xh + xv, (4)

where
xh = φ2x, xv = η(x)ξ. (5)

The (0, 3)-tensor field F, defined by

F(x, y, z) = g
(
(∇xφ)y, z

)
, (6)

plays an important role in the differential geometry of the considered manifolds. Moreover,
the following general properties of F are valid: [1]

F(x, y, z) = F(x, z, y) = −F(x, φy, φz) + η(y)F(x, ξ, z) + η(z)F(x, y, ξ),

F(x, y, φz) = −F(x, φy, z) + η(z)F(x, φy, ξ) + η(y)F(x, φz, ξ),

F(x, φy, φz) = −F(x, φ2y, φ2z),

F(x, φy, φ2z) = −F(x, φ2y, φz).

(7)
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Lemma 1 ([2]). The following identities are valid:

(1) (∇xη)(y) = g(∇xξ, y),
(2) η(∇xξ) = 0,
(3) F(x, φy, ξ) = −(∇xη)(y).

Let
(

gij) be the inverse matrix of
(

gij
)

of g with respect to a basis {ξ; ei} of TpM
(i = 1, 2, . . . , 2n; p ∈ M). Then, the 1-forms θ, θ∗, ω, called Lee forms, are associated with
F and defined by:

θ = gijF(ei, ej, ·), θ∗ = gijF(ei, φej, ·), ω = F(ξ, ξ, ·). (8)

Taking into account (7), the following relations for the Lee forms are valid: [1]

ω(ξ) = 0, θ∗ ◦ φ = −θ ◦ φ2, θ∗ ◦ φ2 = θ ◦ φ.

A classification of Riemannian Π-manifolds with respect to the fundamental tensor
F, consisting of eleven basic classes F1, F2, . . . , F11, is given in [1]. The intersection of the
basic classes is the special class F0 determined by the condition F = 0. The characteristic
conditions of the basic classes in the considered classification are [1,2]

F1 : F(x, y, z) =
1

2n
{

g(φx, φy)θ(φ2z) + g(φx, φz)θ(φ2y)

− g(x, φy)θ(φz)− g(x, φz)θ(φy)
}

;

F2 : F(ξ, y, z) = 0, F(x, ξ, z) = 0, θ = 0

F(x, y, φz) + F(y, z, φx) + F(z, x, φy) = 0;

F3 : F(ξ, y, z) = 0, F(x, ξ, z) = 0,

F(x, y, z) + F(y, z, x) + F(z, x, y) = 0;

F4 : F(x, y, z) =
θ(ξ)

2n
{

g(φx, φy)η(z) + g(φx, φz)η(y)
}

;

F5 : F(x, y, z) =
θ∗(ξ)

2n
{

g(x, φy)η(z) + g(x, φz)η(y)
}

;

F6 : F(x, y, z) = F(x, y, ξ)η(z) + F(x, z, ξ)η(y),

F(x, y, ξ) = F(y, x, ξ) = F(φx, φy, ξ);

F7 : F(x, y, z) = F(x, y, ξ)η(z) + F(x, z, ξ)η(y),

F(x, y, ξ) = −F(y, x, ξ) = F(φx, φy, ξ);

F8 : F(x, y, z) = F(x, y, ξ)η(z) + F(x, z, ξ)η(y),

F(x, y, ξ) = F(y, x, ξ) = −F(φx, φy, ξ);

F9 : F(x, y, z) = F(x, y, ξ)η(z) + F(x, z, ξ)η(y),

F(x, y, ξ) = −F(y, x, ξ) = −F(φx, φy, ξ);

F10 : F(x, y, z) = −η(x)F(ξ, φy, φz);

F11 : F(x, y, z) = η(x){η(y)ω(z) + η(z)ω(y)}.

(9)

In [2], the (1, 2)-tensors N and N̂ determined by

N(x, y) =
(
∇φxφ

)
y− φ(∇xφ)y− (∇xη)(y)ξ

−
(
∇φyφ

)
x + φ

(
∇yφ

)
x +

(
∇yη

)
(x)ξ,
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N̂(x, y) =
(
∇φxφ

)
y− φ(∇xφ)y− (∇xη)(y)ξ

+
(
∇φyφ

)
x− φ

(
∇yφ

)
x−

(
∇yη

)
(x)ξ

are called Nijenhuis tensor and associated Nijenhuis tensor, respectively, for the Π-structure
on M. The tensors N and N̂ are antisymmetric and symmetric, respectively, i.e., the
following properties hold:

N(x, y) = −N(y, x), N̂(x, y) = N̂(y, x).

The corresponding (0, 3)-tensors of N and N̂ on (M, φ, ξ, η, g) are defined by

N(x, y, z) = g(N(x, y), z), N̂(x, y, z) = g
(

N̂(x, y), z
)

and have the following properties [2]:

N(φ2x, φy, φz) = −N(φ2x, φ2y, φ2z),

N(φ2x, φ2y, φ2z) = N(φx, φy, φ2z),

N(x, φ2y, φ2z) = −N(x, φy, φz),

N(φ2x, φ2y, z) = N(φx, φy, z),

N(ξ, φy, φz) = −N(ξ, φ2y, φ2z),

N(φx, φy, ξ) = N(φ2x, φ2y, ξ),

(10)

N̂(φ2x, φy, φz) = −N̂(φ2x, φ2y, φ2z),

N̂(φ2x, φ2y, φ2z) = N̂(φx, φy, φ2z),

N̂(x, φ2y, φ2z) = −N̂(x, φy, φz),

N̂(φ2x, φ2y, z) = N̂(φx, φy, z),

N̂(ξ, φy, φz) = −N̂(ξ, φ2y, φ2z),

N̂(φx, φy, ξ) = N̂(φ2x, φ2y, ξ).

(11)

The tensors N and N̂ are expressed by means of F through the equalities [2]:

N(x, y, z) = F(φx, y, z)− F(φy, x, z)− F(x, y, φz) + F(y, x, φz)

+ η(z){F(x, φy, ξ)− F(y, φx, ξ)},
N̂(x, y, z) = F(φx, y, z) + F(φy, x, z)− F(x, y, φz)− F(y, x, φz)

+ η(z){F(x, φy, ξ) + F(y, φx, ξ)}.

(12)

Vice versa, F is expressed in terms of N and N̂ as follows: [2]

F(x, y, z) =
1
4
{

N(φx, y, z) + N(φx, z, y) + N̂(φx, y, z) + N̂(φx, z, y)
}

− 1
2

η(x)
{

N(ξ, y, φz) + N̂(ξ, y, φz) + η(z)N̂(ξ, ξ, φy)
}

.
(13)

Let us remark that the class of the normal Riemannian Π-manifolds, i.e., with the
condition N = 0, is U0 = F1 ⊕F2 ⊕F4 ⊕F5 ⊕F6. On the other hand, the class with the
property N̂ = 0 is Û0 = F3 ⊕ F7. Applying the expression of F from (13) for these two
classes, we obtain

U0 : F(x, y, z) =
1
4
{

N̂(φx, y, z) + N̂(φx, z, y)
}

− 1
2

η(x)
{

N̂(ξ, y, φz) + η(z)N̂(ξ, ξ, φy)
}

,

Û0 : F(x, y, z) =
1
4
{

N(φx, y, z) + N(φx, z, y)
}
− 1

2
η(x)N(ξ, y, φz).
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The class Û0 is important for further considerations, as well as its orthogonal comple-
ment one, characterized by the following:

Lemma 2. The class U1 = F1⊕F2⊕F4⊕F5⊕F6⊕F8⊕F9⊕F10⊕F11 of the Riemannian
Π-manifolds (M, φ, ξ, η, g) is determined by the condition

N(φ·, φ·) = 0.

Proof. Using the expression of N in terms of F given in (12) and the characteristic conditions
(9) of the basic classes of the considered manifolds, we establish the truthfulness of the
lemma.

It is obvious from Lemma 2 that the condition N(φ·, φ·) 6= 0 is valid for Û0. So, we can
conclude that the following two properties of N and N̂ are equivalent:

N(φ·, φ·) 6= 0 ⇔ N̂(·, ·) = 0.

Let us denote by T the torsion tensor of an arbitrary affine connection D, i.e.,

T(x, y) = Dxy− Dyx− [x, y]. (14)

The corresponding (0, 3)-tensor with respect to the metric g is determined by

T(x, y, z) = g(T(x, y), z). (15)

The associated 1-forms of T, denoted by t, t∗, and t̂, are defined by

t(x) = gijT(x, ei, ej), t∗(x) = gijT(x, ei, φej), t̂(x) = T(x, ξ, ξ) (16)

with respect to a basis {ξ; ei} of TpM (i = 1, 2, . . . , 2n; p ∈ M).

2.2. First Natural Connection on Riemannian Π-Manifolds

In [21], we defined a non-symmetric natural connection and called it the first natural
connection on a Riemannian Π-manifold. We obtained relations between the introduced
connection and the Levi-Civita connection, and we studied some of its curvature character-
istics in the so-called main classes, i.e., those basic classes in which F is expressed explicitly
by the metrics and the Lee forms. Firstly, we recalled some definitions and assertions
from [21] necessary for further investigations.

Let us consider an arbitrary Riemannian Π-manifold (M, φ, ξ, η, g).

Definition 1 ([21]). An affine connection D on a Riemannian Π-manifold (M, φ, ξ, η, g) is called
a natural connection for the Riemannian Π-structure (φ, ξ, η, g) if this structure is parallel with
respect to D, i.e., Dφ = Dξ = Dη = Dg = 0.

As a consequence, the associated metric g̃ is also parallel with respect to D on (M, φ,
ξ, η, g), i.e., Dg̃ = 0.

Let Q stand for the potential of D with respect to ∇:

Dxy = ∇xy + Q(x, y), (17)

Q(x, y, z) = g(Q(x, y), z). (18)

Proposition 1 ([21]). An affine connection D is a natural connection on a Riemannian Π-manifold
if and only if the following properties hold:

Q(x, y, φz)−Q(x, φy, z) = F(x, y, z),

Q(x, y, z) = −Q(x, z, y).



Symmetry 2023, 15, 817 6 of 15

Definition 2 ([21]). A natural connection Ḋ, defined by

Ḋxy = ∇xy− 1
2
{
(∇xφ)φy− (∇xη)y · ξ

}
− η(y)∇xξ, (19)

is called the first natural connection on a Riemannian Π-manifold (M, φ, ξ, η, g).

As we remarked in [21], the restriction of Ḋ on the paracontact distributionH of (M,
φ, ξ, η, g) is the known P-connection on the corresponding Riemannian manifold equipped
with traceless almost product structure (see, e.g., [9]).

Let Ṫ denote the torsion tensor of Ḋ, i.e.,

Ṫ(x, y) = Ḋxy− Ḋyx− [x, y].

Then, according to [21], we have

Ṫ(x, y) = −1
2
{
(∇xφ)φy− (∇yφ)φx− dη(x, y)ξ

}
+ η(x)∇yξ − η(y)∇xξ. (20)

The corresponding (0, 3)-tensor with respect to g is determined as follows [21]:

Ṫ(x, y, z) = g(Ṫ(x, y), z) (21)

and it is expressed by F through

Ṫ(x, y, z) = −1
2
{F(x, φy, z)− F(y, φx, z)}

− 1
2

η(z){F(x, φy, ξ)− F(y, φx, ξ)}
+ η(y)F(x, φz, ξ)− η(x)F(y, φz, ξ).

(22)

Moreover, in [21], the torsion of Ḋ with respect to N and N̂ is obtained:

Ṫ(x, y, z) = −1
8
{

2N(φx, φy, z) + N(φx, z, φy)− N(φy, z, φx)

+ N̂(φx, z, φy)− N̂(φy, z, φx)
}

+
1
4

η(x)
{

2N(ξ, φy, φz)− N(φy, φz, ξ)

+ 2η(z)N̂(ξ, ξ, φ2y)− N̂(φy, φz, ξ)
}

− 1
4

η(y)
{

2N(ξ, φx, φz)− N(φx, φz, ξ)

+ 2η(z)N̂(ξ, ξ, φ2x)− N̂(φx, φz, ξ)
}

− 1
8

η(z)
{

2N(φx, φy, ξ) + N(φx, ξ, φy)− N(φy, ξ, φx)

+ N̂(φx, ξ, φy)− N̂(φy, ξ, φx)
}

.

(23)

The latter result, using the decomposition in (3)–(5), is transformed into the following
form with respect to the horizontal and the vertical components of the vector fields:
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Ṫ(x, y, z) = −1
8
{
S N(xh, yh, zh) + N(xh, yh, zh)

+ N̂(yh, zh, xh)− N̂(zh, xh, yh)
}

−1
4
{

2N(xh, yh, zv) + N(yh, zv, xh) + N(zv, xh, yh)

+ 2N(xv, yh, zh) + N(yh, zh, xv) + 2N(xh, yv, zh)

+ N(zh, xh, yv) + 2N̂(yh, zh, xv)− N̂(zv, xh, yh)

− N̂(zh, xh, yv)− 2N̂(zv, xv, yh) + 2N̂(yv, zv, xh)
}

,

(24)

where S stands for the cyclic sum by the three arguments.
Taking into account that for the basic classes in Û0 the tensor N has the form

F3 : N(x, y, z) = −2
{

F(φx, φy, φz) + F(φ2x, φ2y, φz)
}

,

F7 : N(x, y, z) = 4F(x, φy, ξ)η(z)
(25)

and N̂ vanishes [2], as a consequence of (24), we obtain

Û0 : Ṫ(x, y, z) = −1
8
{
S N(xh, yh, zh) + N(xh, yh, zh)

}
− 1

4
{
S N(xh, yh, zv) + N(xh, yh, zv)

} (26)

and, respectively,

F3 : Ṫ(x, y, z) = −1
8
{
S N(xh, yh, zh) + N(xh, yh, zh)

}
,

F7 : Ṫ(x, y, z) = −1
4
{
S N(xh, yh, zv) + N(xh, yh, zv)

}
.

(27)

Then, by virtue of Lemma 1, (9), (10), and (25) and denoting N(xh, yh, zh) = Nh(x, y, z),
equalities (26) and (27) take the following shorter form:

Û0 : Ṫ = −1
8
{
S Nh + Nh}+ 1

2
{

η ∧ dη + dη ⊗ η
}

,

F3 : Ṫ = −1
8
{
S Nh + Nh},

F7 : Ṫ =
1
2
{

η ∧ dη + dη ⊗ η
}

.

Similarly to (16), the torsion forms ṫ, ṫ∗, and ̂̇t for Ṫ with respect to a basis {ξ; ei} of
TpM (i = 1, 2, . . . , 2n; p ∈ M) are defined by: [21]

ṫ(x) = gijṪ(x, ei, ej), ṫ∗(x) = gijṪ(x, ei, φej), ̂̇t(x) = Ṫ(x, ξ, ξ). (28)

The following formulae for the torsion forms hold

ṫ(x) =
1
2

θ(φx)− θ∗(ξ)η(x),

ṫ∗(x) =
1
2

θ∗(φx)− θ(ξ)η(x),̂̇t(x) = ω(φx)

(29)
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and the following relations between them and the Lee forms are valid [21]:

ṫ∗ ◦ φ = ṫ ◦ φ2,

2ṫ ◦ φ = θ ◦ φ2, 2ṫ ◦ φ2 = θ ◦ φ,

2ṫ∗ ◦ φ = θ∗ ◦ φ2, 2ṫ∗ ◦ φ2 = θ∗ ◦ φ.

(30)

Theorem 1. Let (M, φ, ξ, η, g) be a (2n + 1)-dimensional Riemannian Π-manifold. Then, the
basic classes Fi (i = 1, . . . , 11) are characterized by the following properties of the torsion tensor Ṫ
of the first natural connection Ḋ:

F1 : Ṫ(x, y) = − 1
2n
{

ṫ(φ2y)φ2x− ṫ(φ2x)φ2y + ṫ(φx)φy− ṫ(φy)φx
}

;

F2 : Ṫ(ξ, y) = 0, η
(
Ṫ(x, y)

)
= 0, Ṫ(x, y) = −Ṫ(φx, φy), ṫ = 0;

F3 : Ṫ(ξ, y) = 0, η
(
Ṫ(x, y)

)
= 0, Ṫ(x, y) = −φṪ(x, φy);

F4 : Ṫ(x, y) = − 1
2n

ṫ∗(ξ){η(y)φx− η(x)φy};

F5 : Ṫ(x, y) = − 1
2n

ṫ(ξ)
{

η(y)φ2x− η(x)φ2y
}

;

F6 : Ṫ(x, y) = η(x)Ṫ(ξ, y)− η(y)Ṫ(ξ, x)− η(Ṫ(x, y))ξ,

Ṫ(ξ, y, z) = −Ṫ(ξ, z, y) = Ṫ(ξ, φy, φz) =
1
2

Ṫ(y, z, ξ) =
1
2

Ṫ(φy, φz, ξ);

F7 : Ṫ(x, y) = η(x)Ṫ(ξ, y)− η(y)Ṫ(ξ, x) + η(Ṫ(x, y))ξ,

Ṫ(ξ, y, z) = −Ṫ(ξ, z, y) = Ṫ(ξ, φy, φz) =
1
2

Ṫ(y, z, ξ) = −1
2

Ṫ(φy, φz, ξ);

F8 : Ṫ(x, y) = η(x)Ṫ(ξ, y)− η(y)Ṫ(ξ, x)− η(Ṫ(x, y))ξ,

Ṫ(ξ, y, z) = −Ṫ(ξ, z, y) = −Ṫ(ξ, φy, φz) =
1
2

Ṫ(y, z, ξ) = −1
2

Ṫ(φy, φz, ξ);

F9 : Ṫ(x, y) = η(x)Ṫ(ξ, y)− η(y)Ṫ(ξ, x),

Ṫ(ξ, y, z) = Ṫ(ξ, z, y) = −Ṫ(ξ, φy, φz);

F10 : Ṫ(x, y) = η(x)Ṫ(ξ, y)− η(y)Ṫ(ξ, x),

Ṫ(ξ, y, z) = −Ṫ(ξ, z, y) = −Ṫ(ξ, φy, φz);

F11 : Ṫ(x, y) =
{

η(y)̂ṫ(x)− η(x)̂ṫ(y)
}

ξ.

Proof. The truthfulness of the assertions in the cases when (M, φ, ξ, η, g) belongs to the
main classes F1, F4, F5, and F11 is proved in [21].

Now, let (M, φ, ξ, η, g) ∈ F2. Taking into account the characteristic conditions (9) of F
in the considered class, the expression of Ṫ from (22) takes the following form:

Ṫ(x, y, z) = −1
2
{

F(x, φy, z)− F(y, φx, z)
}

. (31)

Therefore, bearing in mind (21) and (2), we find that the following identities hold:

Ṫ(ξ, y) = 0, η
(
Ṫ(x, y)

)
= 0.

Setting x = φx and y = φy in (31) and using (7) and (9), we have

Ṫ(φx, φy, z) =
1
2
{

F(x, φy, z)− F(y, φx, z)
}

.

So, comparing the latter equality and (31), the following property immediately follows:

Ṫ(x, y) = −Ṫ(φx, φy).
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Using the characteristic conditions of F2 from (9) in (29), we obtain ṫ = 0, with which
we have established the properties of F2 with respect to Ṫ. The other cases are proved in a
similar way.

3. Second Natural Connection on Riemannian Π-Manifolds

Let T̈ denote the torsion tensor of a natural connection D̈, i.e., according to (14) and
(15), we have

T̈(x, y) = D̈xy− D̈yx− [x, y],

T̈(x, y, z) = g(T̈(x, y), z).
(32)

Additionally, let the following property hold for T̈:

T̈(x, y, z) + T̈(y, z, x) + T̈(φx, y, φz) + T̈(y, φz, φx)

− η(x)
{

T̈(ξ, y, z) + T̈(y, z, ξ)− η(y)T̈(ξ, z, ξ)
}

− η(y)
{

T̈(x, ξ, z) + T̈(ξ, z, x) + T̈(φx, ξ, φz) + T̈(ξ, φz, φx)
}

− η(z)
{

T̈(x, y, ξ) + T̈(y, ξ, x)− η(y)T̈(x, ξ, ξ)
}
= 0.

(33)

Definition 3. A natural connection D̈ for which (33) holds is called the second natural connection
on a Riemannian Π-manifold (M, φ, ξ, η, g).

Let us remark that the restriction of D̈ on the paracontact distribution H of (M, φ,
ξ, η, g) is another studied natural connection (called canonical connection) on the corre-
sponding Riemannian manifold equipped with traceless almost product structure (see,
e.g., [23]).

Theorem 2. On an arbitrary Riemannian Π-manifold (M, φ, ξ, η, g), a unique second natural
connection exists.

Proof. Let us construct an affine connection D̈ on a Riemannian Π-manifold (M, φ, ξ, η, g)
as follows:

g(D̈xy, z) = g(∇xy, z) + Q̈(x, y, z), (34)

where the potential Q̈ of D̈ is determined by

Q̈(x, y, z) = Q̇(x, y, z)− 1
8

{
N(φ2z, φ2y, φ2x) + 2η(x)N(φz, φy, ξ)

}
. (35)

Using (35), we verify that D̈ satisfies the conditions of Proposition 1, i.e., D̈ is a natural
connection on (M, φ, ξ, η, g).

From (32), the symmetry of ∇ and the analogous definitions of (17) and (18) for D̈, it
follows that

T̈(x, y, z) = Q̈(x, y, z)− Q̈(y, x, z).

Taking into account the latter equality, (35) and (23), we obtain

T̈(x, y, z) = Ṫ(x, y, z)− 1
8

{
N(φ2z, φ2y, φ2x)− N(φ2z, φ2x, φ2y)

+2η(x)N(φz, φy, ξ)− 2η(y)N(φz, φx, ξ)},
(36)

which is equivalent to

T̈(x, y, z) = Ṫ(x, y, z) +
1
8
{
S N(xh, yh, zh)− N(xh, yh, zh)

}
+

1
4
{
S N(xh, yh, zv)− N(xh, yh, zv)

}
.

(37)
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Substituting the form of Ṫ from (22) into (36), we obtain

T̈(x, y, z) =− 1
2
{F(x, φy, z)− F(y, φx, z)}

− 1
2

η(z){F(x, φy, ξ)− F(y, φx, ξ)}

+ η(y)F(x, φz, ξ)− η(x)F(y, φz, ξ)

+
1
8

{
N(φ2z, φ2y, φ2x)− N(φ2z, φ2x, φ2y)

+2η(x)N(φz, φy, ξ)− 2η(y)N(φz, φx, ξ)}.

(38)

Then, bearing in mind (7) and (10), we obtain by direct verification that (33) holds for
D̈. Therefore, (34) and (35) determine the natural connection D̈, which is the second natural
connection on (M, φ, ξ, η, g).

Taking into account (34), (35) and the corresponding form of Q̇ and N from (19) and
(12), we have an explicit expression of D̈ in terms of F. This fact uniquely defines the
considered manifold and proves the uniqueness of the second natural connection.

Using (12), the formula in (38) takes the following form:

T̈(x, y, z) =− 1
2
{F(x, φy, z)− F(y, φx, z)}

− 1
2

η(z){F(x, φy, ξ)− F(y, φx, ξ)}

+ η(y)F(x, φz, ξ)− η(x)F(y, φz, ξ)

− 1
8

{
2F(φ2z, φ2x, φy) + F(φx, φ2z, φ2y)− F(φy, φ2z, φ2x)

−F(φ2x, φ2z, φy) + F(φ2y, φ2z, φx)
}

− 1
4

η(x)
{

F(φ2z, φy, ξ)− F(φ2y, φz, ξ)

+F(φz, φ2y, ξ)− F(φy, φ2z, ξ)
}

+
1
4

η(y)
{

F(φ2z, φx, ξ)− F(φ2x, φz, ξ)

+F(φz, φ2x, ξ)− F(φx, φ2z, ξ)
}

.

(39)

Similarly to (16), we define the torsion forms ẗ, ẗ∗, and ̂̈t for T̈ with respect to a basis
{ξ; ei} of TpM (i = 1, 2, . . . , 2n; p ∈ M):

ẗ(x) = gijT̈(x, ei, ej), ẗ∗(x) = gijT̈(x, ei, φej), ̂̈t(x) = T̈(x, ξ, ξ). (40)

By dint of (36), (39), (40), (29), and η(ei) = 0 (i = 1, . . . , 2n), we obtain the following
expression of ẗ in terms of θ, θ∗ and ω of (M, φ, ξ, η, g):

ẗ(x) = ṫ(x) =
1
2

θ(φx)− θ∗(ξ)η(x). (41)

By an analogous approach, we calculate the form of ẗ∗ and ̂̈t:
ẗ∗(x) = ṫ∗(x) =

1
2

θ∗(φx)− θ(ξ)η(x), ̂̈t(x) = ̂̇t(x) = ω(φx). (42)
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Thus, we obtained that the torsion forms of the first and second natural connection co-
incide.

Similarly to (30), we obtain the following relation between ẗ and ẗ∗:

ẗ∗ ◦ φ = ẗ ◦ φ2.

Theorem 3. The first natural connection Ḋ coincides with the second natural connection D̈ if and
only if (M, φ, ξ, η, g) ∈ U1.

Proof. From (35), we immediately establish that a necessary and sufficient condition for
Ḋ and D̈ to coincide is N(φ·, φ·) = 0. According to Lemma 2, the latter equality defines
the class U1 of the Riemannian Π-manifolds. Thus, we proved the truthfulness of the
theorem.

Let us remark that the assertions proved in [21] for Ḋ are also valid for D̈ when (M, φ,
ξ, η, g) belongs to U1, bearing in mind Theorem 3.

Considering (24), we obtain the following formula for the torsions of Ḋ and D̈ on (M,
φ, ξ, η, g) ∈ U1:

T̈(x, y, z) = Ṫ(x, y, z) =− 1
8
{

N̂(yh, zh, xh)− N̂(zh, xh, yh)
}

− 1
4
{

N(yh, zv, xh) + N(zv, xh, yh)

− N̂(zv, xh, yh)− N̂(zh, xh, yv)
}

− 1
2
{

N(xv, yh, zh) + N(xh, yv, zh)

+ N̂(yh, zh, xv)− N̂(zv, xv, yh) + N̂(yv, zv, xh)
}

.

The torsion tensors Ṫ and T̈ differ from each other when the Riemannian Π-manifold
belongs to the classes F3 and F7 or to their direct sums with other classes. Using (26) and (37),
we obtain the form of T̈ when (M, φ, ξ, η, g) is from the class Û0, as well as when the
considered manifold is from the separate two basic classes F3 and F7:

Û0 : T̈(x, y, z) =− 1
4

N(xh, yh, zh)− 1
2

N(xh, yh, zv),

F3 : T̈(x, y, z) =− 1
4

N(xh, yh, zh),

F7 : T̈(x, y, z) =− 1
2

N(xh, yh, zv).

The latter three formulae, using Lemma 1, (9), (10) and (25), take the following shorter
form:

Û0 : T̈ = −1
4

Nh + dη ⊗ η,

F3 : T̈ = −1
4

Nh,

F7 : T̈ = dη ⊗ η.

Theorem 4. Let (M, φ, ξ, η, g) be a (2n + 1)-dimensional Riemannian Π-manifold. Then, the
basic classes Fi (i = 1, . . . , 11) are characterized by the following properties of the torsion tensor T̈
of the second natural connection D̈:
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F1 : T̈(x, y) = − 1
2n
{

ẗ(φ2y)φ2x− ẗ(φ2x)φ2y + ẗ(φx)φy− ẗ(φy)φx
}

;

F2 : T̈(ξ, y) = 0, η
(
T̈(x, y)

)
= 0, T̈(x, y) = −T̈(φx, φy), ẗ = 0;

F3 : T̈(ξ, y) = 0, η
(
T̈(x, y)

)
= 0, T̈(x, y) = −φT̈(x, φy);

F4 : T̈(x, y) = − 1
2n

ẗ∗(ξ){η(y)φx− η(x)φy};

F5 : T̈(x, y) = − 1
2n

ẗ(ξ)
{

η(y)φ2x− η(x)φ2y
}

;

F6 : T̈(x, y) = η(x)T̈(ξ, y)− η(y)T̈(ξ, x)− η
(
T̈(x, y)

)
ξ,

T̈(ξ, y, z) = −T̈(ξ, z, y) = T̈(ξ, φy, φz) =
1
2

T̈(y, z, ξ) =
1
2

T̈(φy, φz, ξ);

F7 : T̈(x, y) = η(x)T̈(ξ, y)− η(y)T̈(ξ, x) + η
(
T̈(x, y)

)
ξ,

T̈(ξ, y, z) = −T̈(ξ, z, y) = T̈(ξ, φy, φz), T̈(y, z, ξ) = T̈(φy, φz, ξ);

F8 : T̈(x, y) = η(x)T̈(ξ, y)− η(y)T̈(ξ, x)− η
(
T̈(x, y)

)
ξ,

T̈(ξ, y, z) = −T̈(ξ, z, y) = −T̈(ξ, φy, φz) =
1
2

T̈(y, z, ξ) = −1
2

T̈(φy, φz, ξ);

F9 : T̈(x, y) = η(x)T̈(ξ, y)− η(y)T̈(ξ, x),

T̈(ξ, y, z) = T̈(ξ, z, y) = −T̈(ξ, φy, φz);

F10 : T̈(x, y) = η(x)T̈(ξ, y)− η(y)T̈(ξ, x),

T̈(ξ, y, z) = −T̈(ξ, z, y) = −T̈(ξ, φy, φz);

F11 : T̈(x, y) =
{

η(y)̂ẗ(x)− η(x)̂ẗ(y)
}

ξ.

Proof. In the cases when (M, φ, ξ, η, g) ∈ U1, Ḋ coincides with D̈, according to Theorem 3.
Then, the conditions for T̈ coincide with the corresponding conditions for Ṫ from Theorem 1.

Let us now suppose that (M, φ, ξ, η, g) ∈ F3. Taking into account (9) in the considered
class, the expression of T̈ from (39) takes the following form:

T̈(x, y, z) =− 1
2
{F(x, φy, z)− F(y, φx, z)}

+
1
8

{
F(φy, φz, φx) + F(φ2y, z, φx)

−F(φx, φz, φy)− F(φ2x, z, φy)
}

.

(43)

Therefore, using (32) and (2), we find that the following identities hold:

T̈(ξ, y) = 0, η
(
T̈(x, y)

)
= 0.

By virtue of (43), (7) and (9), we obtain

T̈(x, φy, φz) =
1
2
{F(x, φy, z)− F(y, φx, z)}

− 1
8

{
F(φy, φz, φx) + F(φ2y, z, φx)

−F(φx, φz, φy)− F(φ2x, z, φy)
}

.

So, comparing the latter equality and (43), it immediately follows that

T̈(x, y) = −T̈(φx, φy),

with which we established the characteristics of F3 with respect to T̈.
Similarly, we obtain the conditions for T̈ in the case when (M, φ, ξ, η, g) ∈ F7.
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4. Example

In [21], a 5-dimensional Lie group G equipped with an invariant Riemannian Π-
structure (φ, ξ, η, g) is considered. The constructed Riemannian Π-manifold belongs to the
basic class F4. Therefore, (G, φ, ξ, η, g) is a manifold from the class U1, i.e., by virtue of
Theorem 3, the first natural connection Ḋ and the second natural connection D̈ coincide.
Therefore, all of the assertions made for Ḋ in this example also hold for D̈.

Let us consider a Lie group L of dimension 5 that has a basis {e0, . . . , e4} of left-
invariant vector fields on L, and let the corresponding Lie algebra be defined by the
following commutators:

[e1, e2] = [e3, e4] = λ1e1 + λ2e2 + λ3e3 + λ4e4 + 2µ1e0,

[e1, e4] = −[e2, e3] = λ3e1 + λ4e2 + λ1e3 + λ2e4 + 2µ2e0,

where λi, µj ∈ R (i = 1, 2, 3, 4; j = 1, 2) and [ek, el ] = 0 in the other cases.
Let (φ, ξ, η) be an invariant Π-structure defined by

ξ = e0, φe1 = e3, φe2 = e4, φe3 = e1, φe4 = e2,

η(e1) = η(e2) = η(e3) = η(e4) = 0, η(e0) = 1.
(44)

Let g stand for a Riemannian metric determined by

g(ei, ei) = 1, g(ei, ej) = 0, i, j ∈ {0, 1, . . . , 4}, i 6= j. (45)

Thus, by virtue of (1) and (2), the constructed manifold (L, φ, ξ, η, g) is a Riemannian
Π-manifold.

Theorem 5. The Riemannian Π-manifold (L, φ, ξ, η, g) belongs to the class F7.

Proof. By dint of (1), (2) and the well-known Koszul equality regarding g and∇, we obtain
the components of ∇ as follows:

∇e0 e0 = 0,

∇e0 e1 = ∇e1 e0 = −µ1e2 − µ2e4,

∇e0 e2 = ∇e2 e0 = µ1e1 + µ2e3,

∇e0 e3 = ∇e3 e0 = −µ2e2 − µ1e4,

∇e0 e4 = ∇e4 e0 = µ2e1 + µ1e3,

∇e1 e1 = ∇e3 e3 = −λ1e2 − λ3e4,

∇e1 e3 = ∇e3 e1 = −λ3e2 − λ1e4,

∇e2 e2 = ∇e4 e4 = λ2e1 + λ4e3,

∇e2 e4 = ∇e4 e2 = λ4e1 + λ2e3,

∇e1 e2 = ∇e3 e4 = λ1e1 + λ3e3 + µ1e0,

∇e1 e4 = ∇e3 e2 = λ3e1 + λ1e3 + µ2e0,

∇e2 e1 = ∇e4 e3 = −λ2e2 − λ4e4 − µ1e0,

∇e2 e3 = ∇e4 e1 = −λ4e2 − λ2e4 − µ2e0.

(46)

Using (6), (44)–(46), we calculate the components Fijk = F(ei, ej, ek). Additionally, we
obtain the components of θ, θ∗, and ω by (8). The nonzero ones of them are determined by
the following equalities and their well-known symmetries from (7):

F104 = F302 = −F203 = −F401 = µ1,

F102 = F304 = −F201 = −F403 = µ2.
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By virtue of the latter equalities, (9) and the following form of the components of F in
F7, given in [2],

F7(x, y, z) =
1
4
{
[F(φ2x, φ2y, ξ)− F(φ2y, φ2x, ξ)

+ F(φx, φy, ξ)− F(φy, φx, ξ)]η(z)

+ [F(φ2x, φ2z, ξ)− F(φ2z, φ2x, ξ)

+ F(φx, φz, ξ)− F(φz, φx, ξ)]η(y)
}

,

we establish the truthfulness of the theorem.

Let us remark that, according to Theorem 5, (L, φ, ξ, η, g) is a manifold from Û0, i.e.,
bearing in mind Theorem 3, Ḋ and D̈ on the constructed manifold do not coincide.

Let us consider Ḋ on (L, φ, ξ, η, g) defined by (19). Then, using (19), (44), and (46), we
obtain the components of Ḋ. The nonzero ones are the following:

Ḋe0 e1 = −µ1e2 − µ2e4, Ḋe0 e2 = µ1e1 + µ2e3,

Ḋe0 e3 = −µ2e2 − µ1e4, Ḋe0 e4 = µ2e1 + µ1e3,

Ḋe1 e1 = Ḋe3 e3 = −λ1e2 − λ3e4, Ḋe1 e2 = Ḋe3 e4 = λ1e1 + λ3e3,

Ḋe1 e3 = Ḋe3 e1 = −λ3e2 − λ1e4, Ḋe1 e4 = Ḋe3 e2 = λ3e1 + λ1e3,

Ḋe2 e1 = Ḋe4 e3 = −λ2e2 − λ4e4, Ḋe2 e2 = Ḋe4 e4 = λ2e1 + λ4e3,

Ḋe2 e3 = Ḋe4 e1 = −λ4e2 − λ2e4, Ḋe2 e4 = Ḋe4 e2 = λ4e1 + λ2e3.

Using (20), (21), and (44)–(46), we calculate the components Ṫijk = Ṫ(ei, ej, ek) of Ṫ.
The nonzero ones of them are determined by the following equalities and their well-known
antisymmetries by the first and second argument:

Ṫ102 = Ṫ021 = Ṫ304 = Ṫ043 =
1
2

Ṫ210 =
1
2

Ṫ430 = µ1,

Ṫ104 = Ṫ023 = Ṫ302 = Ṫ041 =
1
2

Ṫ410 =
1
2

Ṫ230 = µ2.
(47)

Taking into account (28) and (47), we obtain ṫ, ṫ∗, and ̂̇t and obtain that they are all
zero, i.e.,

ṫ = ṫ∗ = ̂̇t = 0.

Let us now consider D̈ on (L, φ, ξ, η, g) defined by (32) and (33). By virtue of (36)
and (47), we obtain the components T̈ijk = T̈(ei, ej, ek) of T̈. The nonzero ones of them are
determined by the following equalities and their well-known antisymmetries by the first
and second argument:

T̈210 = T̈430 = 2µ1, T̈410 = T̈230 = 2µ2.

As it is proved in (41) and (42), the torsion forms of the first and second natural
connection coincide, i.e., ẗ, ẗ∗, and ̂̈t also vanish on (L, φ, ξ, η, g) and the following equalities
hold:

ẗ = ẗ∗ = ̂̈t = 0.

The obtained results regarding the torsion properties of the constructed Riemannian
Π-manifold (L, φ, ξ, η, g) confirm the statements made in Theorems 1 and 4 in the case of
the class F7.
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5. Conclusions

In the present work, we introduced and studied a natural connection D̈ determined
by a property of its torsion tensor T̈ and we called it the second natural connection on a
Riemannian Π-manifold (M, φ, ξ, η, g). The most significant results obtained in this work
are as follows. We proved the uniqueness of D̈ and determined a necessary and sufficient
condition for its coincidence with the known first natural connection Ḋ. We obtained the
form of T̈ in the classes of the Riemannian Π-manifolds in which it differs from the torsion
tensor Ṫ of Ḋ and we characterized the basic classes of (M, φ, ξ, η, g) regarding T̈. At the
end, we confirmed the results made by an explicit example of dimension 5.

The obtained results enrich the differential geometry of the Riemannian Π-manifolds.
Moreover, the investigated theory for Ḋ and D̈ provides a field for further research on new
natural connections on considered manifolds. A future task could be to single out those
connections among them that have important additional geometric properties and have an
algebraic relation with Ḋ and D̈.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Manev, M.; Staikova, M. On almost paracontact Riemannian manifolds of type (n, n). J. Geom. 2001, 72, 108–114. [CrossRef]
2. Manev, M.; Tavkova, V. On the almost paracontact almost paracomplex Riemannian manifolds. Facta Univ. Ser. Math. Inform.

2018, 33, 637–657.
3. Ivanov, S.; Manev, H.; Manev, M. Para-Sasaki-like Riemannian manifolds and new Einstein metrics. Rev. Real Acad. Cienc. Exactas

Fis. Nat. Ser. Mat. Racsam. 2021, 115, 112. [CrossRef]
4. Manev, H.; Manev, M. Pair of associated Schouten-van Kampen connections adapted to an almost paracontact almost paracomplex

Riemannian structure. Mathematics 2021, 9, 736. [CrossRef]
5. Manev, H.; Manev, M. Para-Ricci-like solitons on Riemannian manifolds with almost paracontact structure and almost paracom-

plex structure. Mathematics 2021, 9, 1704. [CrossRef]
6. Kobayashi, S.; Nomizu, K. Foundations of Differential Geometry; Wiley-Interscience: Hoboken, NJ, USA, 1963; Volume 1.
7. Alexiev, V.; Ganchev, G. Canonical Connection on a Conformal Almost Contact Metric Manifolds. Ann. Univ. Sofia-Math 1987, 81, 29–38.
8. Ganchev, G.; Mihova, V. Canonical connection and the canonical conformal group on an almost complex manifold with B-metric.

Ann. Univ. Sofia-Math. 1987, 81, 195–206.
9. Mekerov, D. P-connection on Riemannian almost product manifolds. Comptes Rendus L’Academie Bulg. Des. Sci. 2009, 62, 1363–1370.
10. Manev, M.; Gribachev, K. Conformally invariant tensors on almost contact manifolds with B-metric. Serdica Math. J. 1994, 20,

133–147.
11. Staikova, M.; Gribachev, K. Canonical connections and their conformal invariants on Riemannian P-manifolds. Serdica Math. J.

1992, 18, 150–161.
12. Slovak, J. On natural connections on Riemannian manifolds. Comment. Math. Univ. Carol. 1989, 30, 389–393.
13. Munoz Masque, J.; Valdes, A. Characterizing the Blaschke connection. Differ. Geom. Its Appl. 1999, 11, 237–243. [CrossRef]
14. Blaga, A.; Crasmareanu, M. Special connections in almost paracontact metric geometry. Bull. Iran. Math. Soc. 2015, 41, 1345–1353.
15. Blaga, A.; Nannicini, A. On the geometry of metallic pseudo-Riemannian structures. Riv. Mat. Della Univ. Parma 2020, 11, 69–87.
16. Chern, S.S. Complex Manifolds Without Potential Theory; Springer: Berlin/Heidelberg, Germany, 1979.
17. Gauduchon, P. Hermitian connections and Dirac operators. Boll. Dell’Unione Mat. Ital. 1997, 11, 257–288.
18. Lichnerowicz, A. Un théorème sur les espaces homogènes complexes. Arch. Der Math. 1954, 5, 207–215. [CrossRef]
19. Lichnerowicz, A. Généralisation de la géométrie kählérienne globale. Colloq. Géométrie Differ. 1955, 1955, 99–122.
20. Lichnerowicz, A. Théorie Globale des Connections et des Groupes d’Homotopie; Edizioni Cremonese: Roma, Italy, 1962.
21. Manev, H. First natural connection on Riemannian Π-manifolds. Mathematics 2023, 11, 1146. [CrossRef]
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