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Abstract: The Fourier transform occupies a central place in applied mathematics, statistics, computer
sciences, and engineering. In this work, we introduce the one-dimensional quaternion Fourier
transform, which is a generalization of the Fourier transform. We derive the conjugate symmetry of
the one-dimensional quaternion Fourier transform for a real signal. We also collect other properties,
such as the derivative and Parseval’s formula. We finally study the application of this transformation
in probability theory.
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1. Introduction

The classical Fourier transform is an indispensable tool in signal and image processing
(see, e.g., [1,2]). On the one side, the quaternion Fourier transform (QFT) (for e.g., [3–9]) as
a direct extension of the classical Fourier transform (FT) in the quaternion setting is also
an indispensable tool for image processing for quaternion signals. A number of essential
properties of the QFT have been demonstrated such as convolution, correlation, energy
conservation, and inequalities. These properties are modifications of the corresponding
properties of the FT. In [10], a general form of the QFT definition was discussed and the
main properties and an application of the proposed transformation were also presented
in detail. Moreover, many the mathematical problems are formulated in the language
of quaternion algebras, such as the quaternion linear system [11] and linear quaternion
differential equations [12].

It is well-nown that the FT plays crucial roles in probability theory. It is related
to the characteristic function of any real-valued random variable used to compute the
moment and the distribution function. Although the one-dimensional quaternion Fourier
transform has been reported in [13–15] and the authors of [16] utilized it to construct the
one-dimensional quaternion linear canonical transform, we have not yet come across its
use in probability theory. Therefore, in this study, we first introduce the one-dimensional
quaternion Fourier transform (1DQFT) and state some of its main properties. We develop
its application in probability theory. In particular, we define the characteristic function
and expected value in the quaternion setting. Distinct from the characteristic function and
expected value in the real case, the quaternion characteristic function and expected value
have four components. This fact causes several properties of the classical characteristic
function to be modified in quaternion domains. We also study the relationship between
the quaternion characteristic function and the 1DQFT. We apply this relation to obtain the
moments and variance in the framework of a quaternion algebra. The results obtained play
an important role in the development of probability theory in the context of a quaternion
algebra [17,18].
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The remainder of this paper is organized as follows. In Section 2, we briefly review the
basic knowledge of quaternion used in the next section. In Section 3, we introduce some
useful properties of the 1DQFT such as its convolution and correlation. An application
of the properties of the 1DQFT is presented to obtain the inequality in that section. In
Section 4, we present the application of the 1DQFT in probability theory. Some conclusions
are drawn in Section 5.

2. Notations

Quaternions are a direct extension of complex numbers, which are associative but
noncommutative over real numbers R. Every element of a quaternion H can be written in
the following form [19]:

H = {r = ra + irb + jrc + krd : ra, rb, rc, rd ∈ R}, (1)

which obeys the following algebraic rules:

ij = −ji = k, jk = −kj = i, ki = −ik = j,

i2 = j2 = k2 = ijk = −1. (2)

For any quaternion r = ra + irb + jrc + krd ∈ H, we call ra the scalar part of r. It is
denoted by

Sc(r) = ra, (3)

and its vector part is

V(r) = irb + jrc + krd = r.

From (2) we obtain the quaternion multiplications rz in the form

rz = raza − r · z + raz + zar + r× z, (4)

where

r · z = rbzb + rczc + rdzd

r× z = i(rczd − rdzc) + j(rdzb − rbzd) + k(rbzc − rczd).

According to (4), one can verify that the scalar part (3) satisfies a cyclic multiplication
symmetry, i.e.,

Sc(rpq) = Sc(prq) = Sc(qpr), ∀r, p, q ∈ H. (5)

Analogous to the complex case, the quaternion conjugate of any quaternion r is
defined by

r = ra − irb − jrc − krd, (6)

which satisfies
rz = zr, ∀z, r ∈ H. (7)

It is easily seen from (7) that the quaternion conjugate changes the order of the multi-
plication. From (6), we obtain the norm or modulus of r ∈ H defined as

|r| =
√

rr =
√
(ra)2 + (rb)

2
+ (rc)2 + (rd)

2. (8)

It is routine to check that

|r2| = |r|2, |rz| = |r||z|, and |r + z| ≤ |r|+ |z|, ∀z, r ∈ H. (9)
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From the quaternion conjugate (6) and the modulus of r, we obtain the inverse of a
nonzero quaternion r ∈ H by

r−1 =
r
|r|2 . (10)

This shows that H is a normed division algebra. For |r| = 1, r is a unit quaternion and
ra = 0, r is called a pure quaternion.

Similar to a complex number, we may define the inner product for two functions
f , g : R −→ H as

( f , g)L2(R;H) =
∫
R

f (x)g(x)dx. (11)

For f = g, we get the L2(R;H)-norm as

‖ f ‖L2(R;H) =

(∫
R
| f (x)|2dx

) 1
2
. (12)

3. One-Dimensional Quaternion Fourier Transform with Properties

We start by introducing the definition of the one-dimensional quaternion Fourier
transform (1DQFT). We recall its essential properties such as Parseval’s formula and the
convolution theorem. We propose an application of the properties which is the main result
of this section. More details regarding the 1DQFT are discussed in [3].

Definition 1. The one-dimensional quaternion Fourier transform is defined by

Fi{ f }(ξ) =
∫
R

f (x)eiξxdx, (13)

for x, ξ ∈ R and f ∈ L1(R;H) ∩ L2(R;H).

Below, we present the reconstruction formula for the 1DQFT.

Definition 2. Let f ∈ L1(R;H) and Fi{ f } ∈ L1(R;H). The inverse transform of the 1DQFT is
computed by

F−1
i [Fi{ f }](x) = f (x) =

1
2π

∫
R
Fi{ f }(ξ)e−iξxdξ. (14)

The following results related to the 1DQFT are useful.

Theorem 1. Let f ∈ L2(R;H), we have∫
R
| f (x)|2dx =

1
2π

∫
R
|Fi(ξ)|2dξ, (15)

which is known as Plancherel’s formula for the 1DQFT.

Theorem 2. Let f ∈ L1(R;H) ∩ L2(R;H), one gets

Fi{ f }(ξ) = Fi{ f a}(−ξ)− iFi{ f b}(−ξ)− jFi{ f c}(ξ)− kFi{ f d}(ξ). (16)

In particular, when f (x) is a real-valued function, (16) changes to

Fi{ f }(ξ) = Fi{ f }(−ξ), (17)

which is known as the conjugate symmetry for the 1DQFT.
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Proof. It follows from (13) that

Fi{ f }(ξ)

=
∫
R

e−iξx f (x)dx

=
∫
R

e−iξx( f a(x)− i f b(x)− j f c(x)− k f d(x)
)
dx

=
∫
R

f a(x)e−iξxdx− i
∫
R

f b(x)e−iξxdx− j
∫
R

f c(x)eiξxdx− k
∫
R

f d(x)eiξxdx

=Fi{ f a}(−ξ)− iFi{ f b}(−ξ)− jFi{ f c}(ξ)− kFi{ f d}(ξ).

This is the required result.

It is known that one useful tool related to the 1DQFT is the convolution operator.
Below, we briefly recall the convolution definition and its convolution theorem.

Definition 3. The convolution of two quaternion function f , g ∈ L1(R;H) is defined by

( f ∗ g)(x) =
∫
R

f (y)g(x− y)dy. (18)

With Definition 3 above, we get the following [13].

Theorem 3. Suppose that the quaternion functions f ∈ L1(R;H) and g ∈ L1(R;H). Then, the
following holds:

Fi{ f ∗ g}(ξ) =Fi{ f }(ξ)Fi{ga}(ξ) + iFi{ f }(ξ)Fi{gb}(ξ)
+ jFi{ f }(ξ)Fi{gc}(ξ) + kFi{ f }(ξ)Fi{gd}(ξ). (19)

Moreover,

( f ∗ g)(x) =F−1
µ [Fi{ f }(ξ)Fi{ga}(ξ) + iFi{ f }(ξ)Fi{gb}(ξ)

+ jFi{ f }(ξ)Fi{gc}(ξ) + kFi{ f }(ξ)Fi{gd}(ξ)](x).

Definition 4. The correlation for the 1DQFT of two quaternion functions f , g ∈ L1(R;H) is
given by the integral

( f ◦ g)(x) =
∫
R

f (x + y)g(y)dy. (20)

The next result will be very useful for deriving the main results of this work.

Theorem 4. Suppose f ∈ L1(R;H) such that f(x) is continuous n-time differentiable; then, for
limx−→±∞ f (x) = 0, the following holds

Fi

{
dn

dxn f
}
(ξ) = Fi{ f }ξn(−i)n, n ∈ N. (21)
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Proof. Consider first the case n = 1. Direct computations yield

Fi

{
d

dx
f
}
(ξ) =

∫
R

(
d

dx
f (x)

)
eiξx dx

=eiξx f (x) |∞−∞ −
∫
R

f (x)
d

dx
eiξx dx

=eiξx f (x) |∞−∞ −
∫
R

f (x)
(

iξ eiξx
)

dx (22)

=−
∫
R

f (x)eiξxdx ξ(i)

=
∫
R

f (x)eiξxdx ξ(−i)

=Fi{ f }ξ(−i).

Using the mathematical induction, we can finish the proof.

Let us now present the use of the properties of the 1DQFT to explore an inequality
(compare to [20]), which is the main result in this section.

Theorem 5 (Szokefalvi-Nagy’s inequality). Suppose that

∫ ∞

−∞
| f (x)|2dx = E, and

∫ ∞

−∞

∣∣∣∣d f
dx

∣∣∣∣2dx = E1; (23)

then,
| f (x)| ≤ 4

√
EE1. (24)

The equality holds for x = x0 if and only if

f (x) = 4
√

EE1e−α|x−x0|, α =

√
E1

E
. (25)

Proof. For every x0 and α > 0, we obtain from the inverse transform of the 1DQFT (14) that

| f (x0)|2 =
1

4π2

∣∣∣∣∫ ∞

−∞
Fi(ξ)e−iξx0 dξ

∣∣∣∣2.

Applying the Cauchy-Schwartz inequality, we see that

| f (x0)|2 =
1

4π2

∣∣∣∣∣
∫ ∞

−∞

√
α2 + ξ2Fi(ξ)

e−iξx0√
α2 + ξ2

dξ

∣∣∣∣∣
2

≤ 1
4π2

∫ ∞

−∞

∣∣∣∣∣
√

α2 + ξ2Fi(ξ)
e−iξx0√
α2 + ξ2

∣∣∣∣∣
2

dξ

=
1

4π2

∫ ∞

−∞

(
α2 + ξ2

)
|Fi(ξ)|2dξ

∫ ∞

−∞

dξ

α2 + ξ2

=
1

4π2

( ∫ ∞

−∞
α2|Fi(ξ)|2 dξ +

∫ ∞

−∞
ξ2|Fi(ξ)|2dξ

)
π

α
.

By (15) and (21), we obtain

| f (x0)|2 ≤
1

4π2

(
α2
∫ ∞

−∞
|Fi(ξ)|2dξ +

∫ ∞

−∞
ξ2|Fi(ξ)|2dξ

)
π

α

=
1

4π2

(
α22π

∫ ∞

−∞
| f (x)|2dx + 2π

∫ ∞

−∞

∣∣∣∣d f
dx

∣∣∣∣dx
)

π

α
.
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Hence,

| f (x0)|2 ≤
(

α2E + E1

)π

α

=
αE
2

+
E1

2α
. (26)

Since α =
√

E1
E , we get

| f (x0)|4 ≤ EE1.

The equality holds only if√
α2 + ξ2Fi(ξ) =

ke−iξx0√
α2 + ξ2

. (27)

Applying the inverse transform of the 1DQFT (14), relation (27) above leads to

f (x) =
k
α

e−α|x−x0|. (28)

Substituting (28) into relation (23), we obtain

E =
k2

4α3 , E1 =
k2

4α
. (29)

From Equation (29), it is easily checked that

α =

√
E1

E
. (30)

Inserting Equation (30) into Equation (29) gives

k2 = 4Eα3 = 4α2Eα = 4α2E

√
E1

E
. (31)

This means that

k = 2α 4
√

EE1. (32)

This ends the proof of the theorem.

4. One-Dimensional Quaternion Fourier Transform in Probability Theory

In this part, we present the utility of the one-dimensional quaternion Fourier transform
in probability theory. To begin with, we introduce the following definition:

Definition 5. [21] Let X be a real random variable. A quaternion-valued function f X(x) =
f a
X(x) + i f b

X(x) + j f c
X(x) + k f d

X(x) is called the quaternion probability density function of X if∫
R

f i
X(x)dx = 1, f i

X(x) ≥ 0, ∀x ∈ R, i = a, b, c, d.

Here, f i
X is a real probability density function. The quaternion cumulative distribution function

is expressed as

fX(x) =
d

dx
FX(x), (33)
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where the probability P is related to FX given by

FX(x) = P(X ≤ x). (34)

Definition 6 (Expected value). Let X be a real random variable with the quaternion probability
density function fX(x). The expected value m = E[X] is defined through

m = E[X]

=
∫
R

x fX(x)dx

=
∫
R

x( f a
X(x) + i f b

X(x) + j f c
X(x) + k f d

X(x))dx (35)

=
∫
R

x f a
X(x)dx + i

∫
R

x f b
X(x)dx + j

∫
R

x f c
X(x)dx + k

∫
R

x f d
X(x)dx

= E[Xa] + iE[Xb] + jE[Xc] + kE[Xd],

Here,
E[Xi] =

∫
R

x f i
X(x)dx.

The expected value of the above definition is often called the mean in the quaternion
setting. It is easily seen that

E[X] = E[Xa]− iE[Xb]− jE[Xc]− kE[Xd], (36)

and

|m|2 = |E[X]|2 = E[X]E[X] = E2[Xa] + E2[Xb] + E2[Xc] + E2[Xd]. (37)

Definition 7. Let X be a real random variable with the quaternion probability density function
fX(x). The characteristic function of X, φX : R −→ H, is defined by the formula

φX(t) = E[eitX ]

=
∫
R

fX(x)eitxdx. (38)

Relation (38) above may be expressed in the form

φX(t) =
∫
R
( f a

X(x) + i f b
X(x) + j f c

X(x) + k f d
X(x))eitxdx

=
∫
R

f a
X(x)eitxdx + i

∫
R

f b
X(x)eitxdx + j

∫
R

f c
X(x)eitxdx

+ k
∫
R

f d
X(x)eitxdx

=φa
X(t) + iφb

X(t) + jφc
X(t) + kφd

X(t),

where
φi

X(t) =
∫
R

x f i
X(x)eitxdx, i = a, b, c, d. (39)

Definition 8. Let X be a real random variable with the quaternion probability density function
fX(x). If

∫
R |φX(t)|dt < ∞, the function fX(x) can be constructed using the formula

fX(x) =
1

2π

∫
R

φX(t)e−itxdt. (40)
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Some basic properties of the quaternion characteristic function are studied in the
following results.

Lemma 1. Let X be a real random variable. Then,

φX(t) = φa
X(−t)− iφb

X(−t)− jφc
X(t)− kφd

X(t). (41)

Proof. In fact, we have

φX(t) =
∫
R

fX(x)eitxdx

=
∫
R

e−itx fX(x)dx

=
∫
R

e−itx( f a
X(x)− i f b

X(x)− j f c
X(x)− k f d

X(x)
)
dx

=
∫
R

f a
X(x)e−itxdx− i

∫
R

f b
X(x)e−itxdx− j

∫
R

f c
X(x)eitxdx− k

∫
R

f d
X(x)eitxdx

=φa
X(−t)− iφb

X(−t)− jφc
X(t)− kφd

X(t).

This is the desired result.

Lemma 2. Let X be a real random variable. Then,

φaX+b(t) = φX(−at)e−itb,

where a and b are real constants.

Proof. Simple computations yield

φaX+b(t) =
∫
R

fX(x)eit(ax+b)dx

=
∫
R

fX(x)e−itaxdx e−itb

=φX(−at) e−itb,

and the proof is complete.

It is easily seen that

|φX(t)| =
∣∣∣∣ ∫R fX(x)eitxdx

∣∣∣∣ ≤ ∫R | fX(x)|dx =
∫
R

fX(x)dx = 1. (42)

Lemma 3. For any real random variable X, one has

φaX+b(t) = φa
X(at) eitb − iφb

X(at) eitb − jφc
X(−at) e−itb − kφd

X(−at) e−itb. (43)

Proof. It follows from relation (38) that

φaX+b(t) =
∫
R

fX(x)eit(ax+b)dx

=
∫
R

eit(ax+b) fX(x)dx

=
∫
R

(
f a
X(x)− i f b

X(x)
)
eitaxdxeitb −

∫
R

(
j f c

X(x)− k f d
X(x)

)
e−itaxdxe−itb

=
(
φa

X(at)− iφb
X(at)

)
eitb −

(
jφc

X(−at) + kφd
X(−at)

)
e−itb. (44)
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This is the desired result.

With Definition 7, we obtain the following important result.

Theorem 6. If the quaternion characteristic functions φX and ψX of the random variable X are
defined by

φX(t) =
∫
R

fX(x)eitxdx, ψX(x) =
∫
R

gX(t)eitxdt, (45)

then the following holds:∫
R

gX(t)φX(t)e−itydt =
∫
R

fX(x)ψa
X(x− y) dx + i

∫
R

fX(x)ψb
X(x− y)dx

+ j
∫
R

fX(x)ψc
X(y− x)dx + k

∫
R

fX(x)ψd
X(y− x))dx. (46)

Proof. By virtue of the characteristic function (40), we obtain

φX(t)e−ity =
∫
R

fX(x)eitxdxe−ity

=
∫
R

fX(x)eit(x−y)dx. (47)

Multiplying both sides of the above identity by gX(t) and then integrating with respect
to dt, we see that∫

R
gX(t)φX(t)e−itydt =

∫
R

gX(t)
(∫

R
fX(x)eit(x−y)dx

)
dt

=
∫
R

∫
R

(
ga

X(t) + igb
X(t) + jgc

X(t) + kgd
X(t)

)
fX(x)eit(x−y)dxdt

=
∫
R

∫
R

(
ga

X(t) + igb
X(t) + j gc

X(t) + kgd
X(t)

)
fX(x)eit(x−y)dxdt.

Fubini’s theorem allows us to obtain∫
R

gX(t)φX(t)e−itydt

=
∫
R

( ∫
R

fX(x)ga
X(t)e

it(x−y)dt + i fX(x)
∫
R

gb
X(t) eit(x−y)dt

)
dx

+
∫
R

(
j fX(x)

∫
R

gc
X(t) eit(y−x)dt + k fX(x)

∫
R

gd
X(t) eit(y−x)dt

)
dx

=
∫
R

(
fX(x)ψa

X(x− y) + i fX(x)ψb
X(x− y)

)
dx

+
∫
R

(
j fX(x)ψc

X(y− x) + k fX(x)ψd
X(y− x)

)
dx

=
∫
R

fX(x)ψa
X(x− y)dx + i

∫
R

fX(x)ψb
X(x− y)dx

+ j
∫
R

fX(x) ψc
X(y− x)dx + k

∫
R

fX(x)ψd
X(y− x))dx.

This is the desired result.

It follows from (33) that

Fi

{
d

dx
FX

}
(t) = Fi{ fX}(t) = φX(t), (48)
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where FX(x) is the quaternion distribution function of random variable X. Furthermore,
the application of (21) leads to

φX(t) = Fi{FX}(t)t(−i), (49)

and thus
Fi{FX}(t) =

i
t
φX(t), t 6= 0. (50)

Based on (35), we define the nth moment of a real random variable X as

mn = E[Xn] =
∫
R

xn fX(x)dx, n = 1, 2, 3, · · · , (51)

provided the integral exists. It is obvious that for n = 1 in (51), we obtain the first moment
m1, which is called the expectation of X.

Theorem 7. If X is a real random variable, then there exists nth continuous derivatives for the
quaternion characteristic function φX(t) which is given by the formula

dk

dtk φX(t) =
∫
R

fX(x) eitxxkdx ik. (52)

Moreover,

mk = E
[
Xk] = dk

dtk φX(0)(−i)k, k = 1, 2, 3, ....n. (53)

Proof. For k = 1, direct computations reveal that

d
dt

φX(t) =
d
dt

∫
R

fX(x)eitxdx

=
∫
R

fX(x)
(

d
dt

eitx
)

dx (54)

=
∫
R

fX(x) eitx xdx i.

In view of relation (54), we further get

d2

dt2 φX(t) =
d
dt

( ∫
R

fX(x) eitx xdxi
)

=
∫
R

fX(x) eitx x2dx i2. (55)

This means that

dk

dtk φX(t) =
∫
R

fX(x) eitxxkdx ik, (56)

and

dk

dtk φX(0) =
∫
R

fX(x) xkdx ik. (57)

Hence,

dk

dtk φX(0)(ik)−1 =
∫
R

fX(x) xkdx.
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Or, equivalently,

dk

dtk φX(0)(−i)k =
∫
R

xk fX(x)dx

=E[Xk].

The assertion is proved.

Definition 9. Let X be a any real random variable. The variance of X in the quaternion setting is
defined by

σ2 = E
[
(X− E[X])(X− E[X])

]
= E

[
(X− E[X])(X− E[X])

]
= E

[
(X2 − XE[X]− XE[X] + |E[X]|2

]
(58)

= E
[
X2]− E[X]E[X]− E[X]E[X] + |E[X]|2

]
= E

[
X2]− (E[X])2.

The variance σ2 of a real random variable in terms of the quaternion characteristic
function can be obtained as

σ2 =
d2

dt2 φX(0)(−i)2 −
(

d2

dt2 φX(0)(−i)
)2

. (59)

The following example illustrates the use of the results mentioned above.

Example 1. The random variable X has the probability density function

f (x) =
1

|σ|
√

2π
e
− (x−|m|)2

2|σ|2 . (60)

We find the first and second moments of X.

It follows from (40) that

φX(t) =
∫
R

1
|σ|
√

2π
e
− (x−|m|)2

2|σ|2 eitxdx.

Performing a change of variable x− |m| = y, it is easily seen that

φX(t) =
∫
R

1
|σ|
√

2π
e
− y2

2|σ|2 eit(|m|+y)dy

=
eit|m|

|σ|
√

2π

∫
R

e
− y2

2|σ|2
+ity

dy. (61)
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We further obtain

φX(t) =
eit|m|

σ
√

2π

∫
R

e
− 1

2|σ|2 (y2−2σ2ity)
dy

=
eit|m|

|σ|
√

2π

∫
R

e
− 1

2|σ|2

(
(y−|σ|2it)

2−(|σ|2it)
2)

dy

=
eit|m|

|σ|
√

2π

∫
R

e
(|σ|2it)

2

2|σ|2 e−
1

2σ2 (y−|σ|2it)
2

dy

=
eit|m|

|σ|
√

2π
e
(|σ|2it)

2

2|σ|2
∫
R

e
− 1

2|σ|2 (y−|σ|2it)
2

dy (62)

=
eit|m|

|σ|
√

2π
e
|σ|2i2t2

2

∫
R

e−ax2
dx

=
eit|m|

|σ|
√

2π
e
−|σ|2t2

2

√
2π|σ|2

= eit|m|− |σ|
2t2
2 .

Therefore,

d
dt φX(t) =

(
i|m| − t|σ|2

)
eit|m|− |σ|

2t2
2

d2

dt2 φX(t) =
(

i|m| −
(
t|σ|2

)2 − |σ|2
)

eit|m|− |σ|
2t2
2

d3

dt3 φX(t) =
(

i|m| −
(
t|σ|2

)3 − 3|σ|2(i|m| − t|σ|2)
)

eit|m|− |σ|
2t2
2

d4

dt4 φX(t) =
(

i|m| −
(
t|σ|2

)4 − 6|σ|2(i|m| − t|σ|2) + 3|σ|4
)

eit|m|− |σ|
2t2
2 .

(63)

Combining (53) and (63) yields

m1 = E[X] =
d
dt

φX(0)(−i) = (i|m|)(−i) =
(
−i2

)
|m| = |m|. (64)

Similarly,
m2 = E[X2]

= d2

dt2 φX(0)(−i)2

=
(
−σ2 + i|m|

)
(−i)2

=
(
σ2 − i2|m|

)
.

(65)

5. Conclusions

In this paper, we introduced the one-dimensional quaternion Fourier transform
(1DQFT) and utilized its properties for deriving the inequality related to this transforma-
tion. We demonstrated its use in probability theory. The characteristic function, expected
value, and variance in the quaternion setting were studied in detail. These results play
an important role in the development of probability theory in the context of quaternion
algebra. In the future, uncertainty principles relating the quaternion probability density
function and its characteristic function will be investigated.
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