#
D-Wave Superconducting Gap Symmetry as a Model for Nb_{1−x}Mo_{x}B_{2} (x = 0.25; 1.0) and WB_{2} Diborides

^{1}

^{2}

## Abstract

**:**

**2023**, nwad034, 10.1093/nsr/nwad034) reported that ambient pressure $\beta $-MoB

_{2}(space group: $R\overline{3}m$) exhibits a phase transition to $\alpha $-MoB

_{2}(space group: $P6/mmm$) at pressure P~70 GPa, which is a high-temperature superconductor exhibiting ${T}_{c}=32\mathrm{K}$ at P~110 GPa. Although $\alpha $-MoB

_{2}has the same crystalline structure as ambient-pressure MgB

_{2}and the superconducting critical temperatures of $\alpha $-MoB

_{2}and MgB

_{2}are very close, the first-principles calculations show that in $\alpha $-MoB

_{2}, the states near the Fermi level, ${\epsilon}_{F}$, are dominated by the d-electrons of Mo atoms, while in MgB

_{2}, the p-orbitals of boron atomic sheets dominantly contribute to the states near the ${\epsilon}_{F}$. Recently, Hire et al. (Phys. Rev. B

**2022**, 106, 174515) reported that the $P6/mmm$-phase can be stabilized at ambient pressure in Nb

_{1−x}Mo

_{x}B

_{2}solid solutions, and that these ternary alloys exhibit ${T}_{c}~8\mathrm{K}$. Additionally, Pei et al. (Sci. China-Phys. Mech. Astron.

**2022**, 65, 287412) showed that compressed WB

_{2}exhibited ${T}_{c}~15\mathrm{K}$ at P~121 GPa. Here, we aimed to reveal primary differences/similarities in superconducting state in MgB

_{2}and in its recently discovered diboride counterparts, Nb

_{1−x}Mo

_{x}B

_{2}and highly-compressed WB

_{2}. By analyzing experimental data reported for P6/mmm-phases of Nb

_{1−x}Mo

_{x}B

_{2}(x = 0.25; 1.0) and highly compressed WB

_{2}, we showed that these three phases exhibit d-wave superconductivity. We deduced $\frac{2{\mathsf{\Delta}}_{m}\left(0\right)}{{k}_{B}{T}_{c}}=4.1\pm 0.2$ for $\alpha $-MoB

_{2}, $\frac{2{\mathsf{\Delta}}_{m}\left(0\right)}{{k}_{B}{T}_{c}}=5.3\pm 0.1$ for Nb

_{0.75}Mo

_{0.25}B

_{2}, and $\frac{2{\mathsf{\Delta}}_{m}\left(0\right)}{{k}_{B}{T}_{c}}=4.9\pm 0.2$ for WB

_{2}. We also found that Nb

_{0.75}Mo

_{0.25}B

_{2}exhibited high strength of nonadiabaticity, which was quantified by the ratio of $\frac{{T}_{\theta}}{{T}_{F}}=3.5$, whereas MgB

_{2}, α-MoB

_{2}, and WB

_{2}exhibited $\frac{{T}_{\theta}}{{T}_{F}}~0.3$, which is similar to the $\frac{{T}_{\theta}}{{T}_{F}}$ in pnictides, A15 alloys, Heusler alloys, Laves phase compounds, cuprates, and highly compressed hydrides.

## 1. Introduction

_{2−x}A

_{x}B

_{5}(R = Mo, Nb, A = transition metal), while Fisk [3] reported on discovery of 40 superconducting phases in rare earth and transition metals borides. The diboride of magnesium was first studied on its superconducting properties in 2001 [4].

_{2}exhibits a phase transition from the $\beta $-MoB

_{2}-phase (space group: $R\overline{3}m$) to the $\alpha $-MoB

_{2}-phase (space group: $P6/mmm$) at a critical pressure of P~70 GPa. This high-pressure phase, $\alpha $-MoB

_{2}, exhibits the same crystalline structure as the ambient-pressure MgB

_{2}. The most intriguing experimental result reported by Pei et al. [44] was that the $\alpha $-MoB

_{2}phase is a high-temperature superconductor with ${T}_{c}=32\mathrm{K}$ (at P = 109.7 GPa); this value is remarkably close to ${T}_{c}=39-42\mathrm{K}$ in MgB

_{2}[4,45].

_{2}cross the Fermi level, ${\epsilon}_{F}$, which causes the metallic type of conductivity in this phase. Pei et al. [44] also showed that molybdenum d-orbitals (especially the d

_{z2}orbital) have larger contributions than boron p-orbitals near the ${\epsilon}_{F}$. Overall, although the $\alpha $-MoB

_{2}phase exhibits the same crystal structure as MgB

_{2}and the superconducting transition temperatures for these compounds are comparable, their electronic structures are different. For instance, the out-of-plane phonon mode of molybdenum ions is strongly coupled with molybdenum d-electrons near the ${\epsilon}_{F}$ in $\alpha $-MoB

_{2}[44], whereas the in-plane B-B stretching mode in MgB

_{2}interacts intensively with the σ-bond in the boron honeycomb lattice near the ${\epsilon}_{F}$ [44]. Pei et al. [44] also calculated the electron–phonon coupling constant, ${\lambda}_{e-ph}=1.60$, in $\alpha $-MoB

_{2}at $P=90\mathrm{GPa}$. Similar findings, including ${\lambda}_{e-ph}=1.60$, were reported by Quan et al. [46], who performed first-principles calculations for a highly pressurized $\alpha $-MoB

_{2}phase.

_{2}phase can exhibit d-wave superconducting energy gap symmetry (or, at least, s+d-wave gap symmetry with a significant d-wave component), which is different from the two-band s-wave MgB

_{2}.

_{1−x}Mo

_{x}B

_{2}(x = 0.25, 0.50, 0.75, and 0.9) solid solutions. Despite the superconducting transition temperature in Nb

_{1−x}Mo

_{x}B

_{2}(x = 0.25, 0.50, 0.75 and 0.9) being significantly lower (i.e., ${T}_{c}=\left(6.5-8.1\right)\mathrm{K}$ [47]), these values are still high enough to suggest that the same pairing mechanism emerges in ambient pressure superconductors Nb

_{1−x}Mo

_{x}B

_{2}and highly-pressurized $\alpha $-MoB

_{2}.

_{1−x}Mo

_{x}B

_{2}(x = 0.25, 0.50, 0.75, and 0.9) superconductors (in particular, the Debye temperature, ${T}_{\theta}$) were determined.

_{2}(${T}_{c}~15\mathrm{K}$ at P~121 GPa) for which Pei et al. [48] proposed the space group: P6

_{3}/mmc (which is distorted P6/mmm), while Lim et al. [49] concluded that this highly pressurized superconducting phase of WB

_{2}formed by stacking faulted P6

_{3}/mmc-P6/mmm phases (which can be found to be similar to the stacking faulted 123–124 phases in the Y-Ba-Cu-O system [50,51,52]).

_{2}and in the recently discovered Nb

_{1−x}Mo

_{x}B

_{2}(x = 0.25; 1.0) and WB

_{2}, which might originate from the difference in the band structure of these materials. To do this we performed a detailed analysis of the magnetoresistance data reported by Pei et al. [44], Hire et al. [47], and Pei et al. [48] and showed that the P6/mmm-phases of Nb

_{1−x}Mo

_{x}B

_{2}(x = 0.25, 1.0) and WB

_{2}(P = 121.3 GPa) exhibit d-wave superconducting gap symmetry. We also found that ambient pressure Nb

_{1−x}Mo

_{x}B

_{2}(x = 0.25) superconductors characterized by high strength of nonadiabaticity, which can be characterized by the ratio of $\frac{{T}_{\theta}}{{T}_{F}}=3.5$ (where ${T}_{F}$ is the Fermi temperature, which exceeds the $\frac{{T}_{\theta}}{{T}_{F}}$ ratio in MgB

_{2}, α-MoB

_{2}, WB

_{2}, pnictides, A15 alloys, Heusler alloys, Laves phase compounds, cuprates, and highly-compressed hydrides by more than one order of magnitude.

## 2. Utilized Models

_{1−x}Mo

_{x}B

_{2}(x = 0.25; 1.0) and WB

_{2}.

## 3. Results

#### 3.1. P6/mmm $\alpha $-MoB_{2} ($P=109.7\mathit{GPa}$)

_{2}phase at $P=91.4\mathrm{and}109.7\mathrm{GPa}$ [44] of Equation (1), together with the deduced ${R}_{sat}$, ${T}_{\theta}$, and ${\lambda}_{e-ph}$, are shown in Figure 1 (where we utilized $\frac{R\left(T\right)}{{R}_{norm}\left(T\right)}=0.10$ criterion to define ${T}_{c}$ because the same criterion was used by Pei et al. [44] to define the upper critical field in the same $\alpha $-MoB

_{2}sample).

_{2}($P=109.7\mathrm{GPa}$) superconductor are within the weak-coupling values for d-wave superconductors.

_{2}($P=109.7\mathrm{GPa}$) phase falls in the unconventional superconductor band in the Uemura plot (Figure 3) because this phase is typical for many unconventional superconductors (for instance, iron-based, cuprates, and hydrogen-rich superconductors) ratio of $\frac{{T}_{c}}{{T}_{F}}=0.016$. Raw data for this plot were reported by many research groups (Refs. [68,69,70,71,72,73,74,75,76,77,78]).

#### 3.2. Ambient Pressure P6/mmm Nd_{0.75}Mo_{0.25}B_{2}

_{1−x}Mo

_{x}B

_{2}($x=0.25$), which was deduced from low-temperature specific heat measurements, ${T}_{\theta}=625\mathrm{K}$. Following the approach implemented in this study, we processed $R\left(T,B=0\right)$ data reported by Hire et al. [24] by utilizing the resistance criterion of $\frac{R\left(T\right)}{{R}_{norm}\left(T\right)}=0.015$. We deduced ${T}_{c,0.015}=7.2\mathrm{K}$, from which ${\lambda}_{e-ph}=0.573$ was calculated using Equations (2)–(4).

_{0.75}Mo

_{0.25}B

_{2}with better accuracy.

_{0.75}Mo

_{0.25}B

_{2}. The calculated ${T}_{F}$ implies that this phase falls in the unconventional superconductors band in the Uemura plot (Figure 3) because this phase is typical for many unconventional superconductor ratios of $\frac{{T}_{c}}{{T}_{F}}=0.042$.

_{0.75}Mo

_{0.25}B

_{2}superconductor exhibits strong nonadiabaticy, because the ratio

#### 3.3. P6_{3}/mmc WB_{2} (P = 121.3 GPa)

_{2}phase at $P=121.3\mathrm{GPa}$, which was fitted to Equation (1) in Figure 7. The fit converged at ${T}_{\theta}=440\pm 1\mathrm{K}$ and ${R}_{sat}\to \infty $. From the deduced ${T}_{\theta}$, we found ${\lambda}_{e-ph}=0.755$, for which we utilized the criterion of $\frac{R\left(T\right)}{{R}_{norm}\left(T\right)}=0.18$, which is based on the presence of the inflection point in the $R\left(T,B,P=121.3\mathrm{GPa}\right)$, as shown in Figure 2b,d of Ref. [48].

_{2}(P = 121.3 GPa). The fit of the ${B}_{c2}\left(T\right)$ dataset to the s-wave (Equations (6) and (7)) and d-wave models (Equations (8) and (9)) are shown in Figure 8.

_{2}(P = 121.3 GPa) is calculated. The calculated ${T}_{F}$ implies that this phase falls in the nearly conventional superconductors band in the Uemura plot (Figure 3), because this phase exhibits a reasonably low ratio of $\frac{{T}_{c}}{{T}_{F}}=0.0077\pm 0.0003$, while the typical range for unconventional superconductors is $0.01\le \frac{{T}_{c}}{{T}_{F}}\le 0.05$.

#### 3.4. P6/mmm MgB_{2}

_{c2}(T) model (Equations (6)–(9) [61,62,63,74]) can be considered as an alternative model to extract primary superconducting parameters from $R\left(T,B\right)$ datasets (while the B

_{c2}(T) definition criterion is $\frac{R\left(T\right)}{{R}_{norm}\left(T\right)}\to 0$) in addition to the widely used Werthamer–Helfand–Hohenberg model [79,80], we showed B

_{c2}(T) data in Figure 9. The data were reported by Zehetmayer et al. [81] for single crystal MgB

_{2}and data fits to the single band s-wave (panel

**a**, Equations (6) and (7)), the single band d-wave (panel

**b**, Equations (8) and (9)), and the so-called two-band α-model [80] under the assumption of s-wave gap symmetry for both bands (panel

**c**) [80,81]:

_{2}by other techniques [83], in particular, by point contact spectroscopy [84].

## 4. Discussion

_{c2}(T), showed that the materials exhibited d-wave gap symmetry, it is useful to show the variation in ${\lambda}_{e-ph}$ calculated in the assumption of d-wave superconductivity. Santi et al. [85] reported that d-wave superconductors exhibit much lower ${\mu}^{*}$ values in comparison with s-wave superconductors. In Table 1, we listed calculated ${\lambda}_{e-ph}$ values for all studied dibories (apart MgB

_{2}) in accordance with Equations (2)–(4), with the assumption of ${\mu}^{*}=0.00;0.05;0.10;\mathrm{and}0.13$.

_{0.75}Mo

_{0.25}B

_{2}exhibits pronounced nonadiabaticity, $\frac{{T}_{\theta}}{{T}_{F}}=3.5$. This value is well above an empirical border, $\frac{{T}_{\theta}}{{T}_{F}}\cong 0.4$. The majority of conventional and unconventional superconductors are located below this value (Figure 4 and Figure 5). We can propose that the strength of the nonadiabaticity is a primary reason for the relatively low T

_{c}in this material in comparison with other diboride counterparts. A good support for this hypothesis can be seen in Figure 5, where the T

_{c}suppression within four dibories is linked to the increase in the strength of the nonadiabaticity. It can also be seen in Figure 5 that no materials simultaneously exhibit ${T}_{c}>10\mathrm{K}$ and $\frac{{T}_{\theta}}{{T}_{F}}>0.4$.

_{c}in Nb

_{0.75}Mo

_{0.25}B

_{2}is the Abrikosov–Gor’kov [86], Anderson [87], and Openov [88,89] theory of dirty superconductors. The theory established that impurities with magnetic moments suppress the superconducting transition temperature, if the material exhibits s-wave superconductivity. However, magnetic impurities not affect the superconducting transition temperature in d-wave superconductors. From other hand, non-magnetic impurities cause the suppression of transition temperature in d-wave superconductors, and these impurities not affect the s-wave superconductors transition temperature.. Considering that the (Nb,Mo)-(0001) planes in P6/mmm-phase have chemical atomic disorder, because Hire et al. [47] did not report any evidence for the atomic ordering within Nb-Mo atoms in the (0001) planes, it appears that the T

_{c}suppression in Nb

_{0.75}Mo

_{0.25}B

_{2}(and in all materials in the Nb

_{1−x}Mo

_{x}B

_{2}(x = 0.25; 0.50; 0.75 and 0.9) system) can be interpreted as T

_{c}suppression in d-wave MoB

_{2}superconductors by nonmagnetic impurity—Nb/Mo atoms. However, we need to note that NbB

_{2}and MoB

_{2}are non-superconductors and these compounds exhibit different crystalline structures ($P6/mmm$ and $R\overline{3}m$, respectively). Thus, the influence of the Nb/Mo atoms composition in (0001) planes on band structure and phonon spectra required more detailed experimental and first-principles calculation studies.

_{0.65}Rb

_{0.35}Fe

_{2}As

_{2}(a two-band s-wave superconductor) exhibits a transition into a d-wave superconductor: “…hydrostatic pressure promotes the appearance of nodes in the superconducting gap…” [96].

_{2}—showed that d-wave gap symmetry can explain experimental data with much better consistency. However, theoretical understanding of this result is still ongoing.

## 5. Conclusions

_{2}and WB

_{2}and ambient pressure superconductors Nd

_{0.75}Mo

_{0.25}B

_{2}. It was shown that these the compounds exhibit d-wave superconducting gap symmetry. We proposed that the suppression of the superconducting transition temperature (down to ${T}_{c}=8\mathrm{K}$) in Nb

_{0.75}Mo

_{0.25}B

_{2}can be either related to strong nonadiabaticity in this phase (which exhibits the ratio $\frac{{T}_{\theta}}{{T}_{F}}=3.5$) or to the effect of the ${T}_{c}$ suppression in d-wave MoB

_{2}superconductors by nonmagnetic impurities (Nb/Mo atoms).

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Satterthwaite, C.B.; Toepke, I.L. Superconductivity of hydrides and deuterides of thorium. Phys. Rev. Lett.
**1970**, 25, 741–743. [Google Scholar] [CrossRef] - Cooper, A.S.; Corenzwit, E.; Longinotti, L.D.; Matthias, B.T.; Zachariasen, W.H. Superconductivity: The transition temperature peak below four electrons per atom. Proc. Natl. Acad. Sci. USA
**1970**, 67, 313–319. [Google Scholar] [CrossRef] [Green Version] - Fisk, Z. Superconducting borides. AIP Conf. Proc.
**1991**, 231, 155–164. [Google Scholar] - Nagamatsu, J.; Nakagawa, N.; Muranaka, T.; Zenitani, Y.; Akimitsu, J. Superconductivity at 39 K in magnesium diboride. Nature
**2001**, 410, 63–64. [Google Scholar] [CrossRef] - Drozdov, A.P.; Eremets, M.I.; Troyan, I.A.; Ksenofontov, V.; Shylin, S.I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature
**2015**, 525, 73–76. [Google Scholar] [CrossRef] [Green Version] - Drozdov, A.P.; Kong, P.P.; Minkov, V.S.; Besedin, S.P.; Kuzovnikov, M.A.; Mozaffari, S.; Balicas, L.; Balakirev, F.F.; Graf, D.E.; Prakapenka, V.B.; et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature
**2019**, 569, 528–531. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Somayazulu, M.; Ahart, M.; Mishra, A.K.; Geballe, Z.M.; Baldini, M.; Meng, Y.; Struzhkin, V.V.; Hemley, R.J. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett.
**2019**, 122, 027001. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Semenok, D.V.; Kvashnin, A.G.; Ivanova, A.G.; Svitlyk, V.; Fominski, V.Y.; Sadakov, A.V.; Sobolevskiy, O.A.; Pudalov, V.M.; Troyan, I.A.; Oganov, A.R. Superconductivity at 161 K in thorium hydride ThH
_{10}: Synthesis and properties. Mater. Today**2020**, 33, 36–44. [Google Scholar] [CrossRef] [Green Version] - Troyan, I.A.; Semenok, D.V.; Kvashnin, A.G.; Sadakov, A.V.; Sobolevskiy, O.A.; Pudalov, V.M.; Ivanova, A.G.; Prakapenka, V.B.; Greenberg, E.; Gavriliuk, A.G.; et al. Anomalous high-temperature superconductivity in YH
_{6}. Adv. Mater.**2021**, 33, 2006832. [Google Scholar] [CrossRef] - Kong, P.; Minkov, V.S.; Kuzovnikov, M.A.; Drozdov, A.P.; Besedin, S.P.; Mozaffari, S.; Balicas, L.; Balakirev, F.F.; Prakapenka, V.B.; Chariton, S.; et al. Superconductivity up to 243 K in yttrium hydrides under high pressure. Nat. Commun.
**2021**, 12, 5075. [Google Scholar] [CrossRef] [PubMed] - Semenok, D.V.; Troyan, I.A.; Ivanova, A.G.; Kvashnin, A.G.; Kruglov, I.A.; Hanfland, M.; Sadakov, A.V.; Sobolevskiy, O.A.; Pervakov, K.S.; Lyubutin, I.S.; et al. Superconductivity at 253 K in lanthanum–yttrium ternary hydrides. Mater. Today
**2021**, 48, 18–28. [Google Scholar] [CrossRef] - Mozaffari, S.; Sun, D.; Minkov, V.S.; Drozdov, A.P.; Knyazev, D.; Betts, J.B.; Einaga, M.; Shimizu, K.; Eremets, M.I.; Balicas, L. Superconducting phase-diagram of H
_{3}S under high magnetic fields. Nat. Commun.**2019**, 10, 2522. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Sun, D.; Minkov, V.S.; Mozaffari, S.; Sun, Y.; Ma, Y.; Chariton, S.; Prakapenka, V.B.; Eremets, M.I.; Balicas, L.; Balakirev, F.F. High-temperature superconductivity on the verge of a structural instability in lanthanum superhydride. Nat. Commun.
**2021**, 12, 6863. [Google Scholar] [CrossRef] [PubMed] - Chen, W.; Semenok, D.V.; Kvashnin, A.G.; Huang, X.; Kruglov, I.A.; Galasso, M.; Song, H.; Duan, D.; Goncharov, A.F.; Prakapenka, V.B.; et al. Synthesis of molecular metallic barium superhydride: Pseudocubic BaH
_{12}. Nat. Commun.**2021**, 12, 273. [Google Scholar] [CrossRef] - Bi, J.; Nakamoto, Y.; Zhang, P.; Shimizu, K.; Zou, B.; Liu, H.; Zhou, M.; Liu, G.; Wang, H.; Ma, Y. Giant enhancement of superconducting critical temperature in substitutional alloy (La,Ce)H
_{9}. Nat. Commun.**2022**, 13, 5952. [Google Scholar] [CrossRef] [PubMed] - Wang, Y.; Wang, K.; Sun, Y.; Ma, L.; Wang, Y.; Zou, B.; Liu, G.; Zhou, M.; Wang, H. Synthesis and superconductivity in yttrium superhydrides under high pressure. Chinese Physics B
**2022**, 31, 106201. [Google Scholar] [CrossRef] - Ma, L.; Wang, K.; Xie, Y.; Yang, X.; Wang, Y.; Zhou, M.; Liu, H.; Yu, X.; Zhao, Y.; Wang, H.; et al. High-temperature superconducting phase in clathrate calcium hydride CaH
_{6}up to 215 K at a pressure of 172 GPa. Phys. Rev. Lett.**2022**, 128, 167001. [Google Scholar] [CrossRef] - Zhou, D.; Semenok, D.V.; Duan, D.; Xie, H.; Chen, W.; Huang, X.; Li, X.; Liu, B.; Oganov, A.R.; Cui, T. Superconducting praseodymium superhydrides. Sci. Adv.
**2020**, 6, eaax6849. [Google Scholar] [CrossRef] [Green Version] - Hong, F.; Shan, P.F.; Yang, L.X.; Yue, B.B.; Yang, P.T.; Liua, Z.Y.; Sun, J.P.; Dai, J.H.; Yu, H.; Yin, Y.Y.; et al. Possible superconductivity at ∼70 K in tin hydride SnH
_{x}under high pressure. Mater. Today Phys.**2022**, 22, 100596. [Google Scholar] [CrossRef] - Chen, W.; Semenok, D.V.; Huang, X.; Shu, H.; Li, X.; Duan, D.; Cui, T.; Oganov, A.R. High-temperature superconducting phases in cerium superhydride with a T
_{c}up to 115 K below a pressure of 1 Megabar. Phys. Rev. Lett.**2021**, 127, 117001. [Google Scholar] [CrossRef] - Osmond, I.; Moulding, O.; Cross, S.; Muramatsu, T.; Brooks, A.; Lord, O.; Fedotenko, T.; Buhot, J.; Friedemann, S. Clean-limit superconductivity in Im3m H
_{3}S synthesized from sulfur and hydrogen donor ammonia borane. Phys. Rev. B**2022**, 105, L220502. [Google Scholar] [CrossRef] - Semenok, D.V.; Troyan, I.A.; Sadakov, A.V.; Zhou, D.; Galasso, M.; Kvashnin, A.G.; Ivanova, A.G.; Kruglov, I.A.; Bykov, A.A.; Terent’ev, K.Y.; et al. Effect of magnetic impurities on superconductivity in LaH
_{10}. Adv. Mater.**2022**, 34, 2204038. [Google Scholar] [CrossRef] [PubMed] - Li, Z.; He, X.; Zhang, C.; Wang, X.; Zhang, S.; Jia, Y.; Feng, S.; Lu, K.; Zhao, J.; Zhang, J.; et al. Superconductivity above 200 K discovered in superhydrides of calcium. Nat. Commun.
**2022**, 13, 2863. [Google Scholar] [CrossRef] [PubMed] - Minkov, V.S.; Bud’ko, S.L.; Balakirev, F.F.; Prakapenka, V.B.; Chariton, S.; Husband, R.J.; Liermann, H.P.; Eremets, M.I. Magnetic field screening in hydrogen-rich high-temperature superconductors. Nat. Commun.
**2022**, 13, 3194. [Google Scholar] [CrossRef] - Minkov, V.S.; Prakapenka, V.B.; Greenberg, E.; Eremets, M.I. A boosted critical temperature of 166 K in superconducting D
_{3}S synthesized from elemental sulfur and hydrogen. Angew. Chem. Int. Ed.**2020**, 59, 18970–18974. [Google Scholar] [CrossRef] - Liu, Z.Y.; Dong, Q.X.; Yang, P.T.; Shan, P.F.; Wang, B.S.; Sun, J.P.; Dun, Z.L.; Uwatoko, Y.; Chen, G.F.; Dong, X.L.; et al. Pressure-induced superconductivity up to 9 K in the quasi-one-dimensional KMn
_{6}Bi_{5}. Phys. Rev. Lett.**2022**, 128, 187001. [Google Scholar] [CrossRef] - Minkov, V.S.; Ksenofontov, V.; Budko, S.L.; Talantsev, E.F.; Eremets, M.I. Trapped magnetic flux in hydrogen-rich high-temperature superconductors. arXiv
**2022**, arXiv:2206.14108. [Google Scholar] [CrossRef] - He, X.; Zhang, C.L.; Li, Z.W.; Zhang, S.J.; Min, B.S.; Zhang, J.; Lu, K.; Zhao, J.F.; Shi, L.C.; Peng, Y.; et al. Superconductivity observed in tantalum polyhydride at high pressure. arXiv
**2022**, arXiv:2212.13739. [Google Scholar] [CrossRef] - Wang, H.; Tse, J.S.; Tanaka, K.; Iitaka, T.; Ma, Y. Superconductive sodalite-like clathrate calcium hydride at high pressures. Proc. Natl. Acad. Sci. USA
**2012**, 109, 6463–6466. [Google Scholar] [CrossRef] [Green Version] - Lyakhov, A.O.; Oganov, A.R.; Stokes, H.T.; Zhu, Q. New developments in evolutionary structure prediction algorithm USPEX. Comput. Phys. Commun.
**2013**, 184, 1172–1182. [Google Scholar] [CrossRef] - Li, Y.; Hao, J.; Liu, H.; Li, Y.; Ma, Y. The metallization and superconductivity of dense hydrogen sulphide. J. Chem. Phys.
**2014**, 140, 174712. [Google Scholar] [CrossRef] [Green Version] - Duan, D.; Liu, Y.; Tian, F.; Li, D.; Huang, X.; Zhao, Z.; Yu, H.; Liu, B.; Tian, W.; Cui, T. Pressure-induced metallization of dense (H
_{2}S)_{2}H_{2}with high-T_{c}superconductivity. Sci. Rep.**2014**, 4, 6968. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Heil, C.; di Cataldo, S.; Bachelet, G.B.; Boeri, L. Superconductivity in sodalite-like yttrium hydride clathrates. Phys. Rev. B
**2019**, 99, 220502. [Google Scholar] [CrossRef] [Green Version] - Flores-Livas, J.A.; Boeri, L.; Sanna, A.; Profeta, G.; Arita, R.; Eremets, M. A perspective on conventional high-temperature superconductors at high pressure: Methods and materials. Phys. Rep.
**2020**, 856, 1–78. [Google Scholar] [CrossRef] - Struzhkin, V.; Li, B.; Ji, C.; Chen, X.-J.; Prakapenka, V.; Greenberg, E.; Troyan, I.; Gavriliuk, A.; Mao, H.-k. Superconductivity in La and Y hydrides: Remaining questions to experiment and theory. Matter Radiat. Extrem.
**2020**, 5, 028201. [Google Scholar] [CrossRef] [Green Version] - Errea, I.; Belli, F.; Monacelli, L.; Sanna, A.; Koretsune, T.; Tadano, T.; Bianco, R.; Calandra, M.; Arita, R.; Mauri, F.; et al. Quantum crystal structure in the 250-kelvin superconducting lanthanum hydride. Nature
**2020**, 578, 66–69. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Gregoryanz, E.; Ji, C.; Dalladay-Simpson, P.; Li, B.; Howie, R.T.; Mao, H.-K. Everything you always wanted to know about metallic hydrogen but were afraid to ask. Matter Radiat. Extrem.
**2020**, 5, 038101. [Google Scholar] [CrossRef] [Green Version] - Boeri, L.; Hennig, R.; Hirschfeld, P.; Profeta, G.; Sanna, A.; Zurek, E.; Pickett, W.E.; Amsler, M.; Dias, R.; Eremets, M.I.; et al. The 2021 room-temperature superconductivity roadmap. J. Phys. Condens. Matter
**2021**, 34, 183002. [Google Scholar] - Shao, M.; Chen, W.; Zhang, K.; Huang, X.; Cui, T. High-pressure synthesis of superconducting clathratelike YH
_{4}. Phys. Rev. B**2021**, 104, 174509. [Google Scholar] [CrossRef] - Amiel, Y.; Kafle, G.P.; Komleva, E.V.; Greenberg, E.; Ponosov, Y.S.; Chariton, S.; Lavina, B.; Zhang, D.; Palevski, A.; Ushakov, A.V.; et al. Silvanite AuAgTe
_{4}: A rare case of gold superconducting material. arXiv**2023**, arXiv:2301.08033. [Google Scholar] [CrossRef] - Mao, H.-K. Hydrogen and related matter in the pressure dimension. Matter Radiat. Extrem.
**2022**, 7, 063001. [Google Scholar] [CrossRef] - Zhang, Z.; Cui, T.; Hutcheon, M.J.; Shipley, A.M.; Song, H.; Du, M.; Kresin, V.Z.; Duan, D.; Pickard, C.J.; Yao, Y. Design principles for high-temperature superconductors with a hydrogen-based alloy backbone at moderate pressure. Phys. Rev. Lett.
**2022**, 128, 047001. [Google Scholar] [CrossRef] [PubMed] - Du, M.; Song, H.; Zhang, Z.; Duan, D.; Cui, T. Room-temperature superconductivity in Yb/Lu substituted clathrate hexahydrides under moderate pressure. Research
**2022**, 2022, 9784309. [Google Scholar] [CrossRef] [PubMed] - Pei, C.; Zhang, J.; Wang, Q.; Zhao, Y.; Gao, L.; Gong, C.; Tian, S.; Luo, R.; Li, M.; Yang, W.; et al. Pressure-induced superconductivity at 32 K in MoB
_{2}. Natl. Sci. Rev.**2023**, 10, nwad034, in press. [Google Scholar] [CrossRef] - Zhuang, C.G.; Meng, S.; Zhang, C.Y.; Feng, Q.R.; Gan, Z.Z.; Yang, H.; Jia, Y.; Wen, H.H.; Xi, X.X. Ultrahigh current-carrying capability in clean MgB
_{2}films. J. Appl. Phys.**2008**, 104, 013924. [Google Scholar] [CrossRef] - Quan, Y.; Lee, K.-W.; Pickett, W.E. MoB
_{2}under pressure: Superconducting Mo enhanced by boron. Phys. Rev. B**2021**, 104, 224504. [Google Scholar] [CrossRef] - Hire, A.C.; Sinha, S.; Lim, J.; Kim, J.S.; Dee, P.M.; Fanfarillo, L.; Hamlin, J.J.; Hennig, R.G.; Hirschfeld, P.J.; Stewart, G.R. High critical field superconductivity at ambient pressure in MoB
_{2}stabilized in the P6/mmm structure via Nb substitution. Phys. Rev. B**2022**, 106, 174515. [Google Scholar] [CrossRef] - Pei, C.; Zhang, J.; Gong, C.; Wang, Q.; Gao, L.; Zhao, Y.; Tian, S.; Cao, W.; Li, C.; Lu, Z.-Y.; et al. Distinct superconducting behaviours of pressurized WB
_{2}and ReB_{2}with different local B layers. Sci. China-Phys. Mech. Astron.**2022**, 65, 287412. [Google Scholar] [CrossRef] - Lim, J.; Hire, A.C.; Quan, Y.; Kim, J.S.; Xie, S.R.; Sinha, S.; Kumar, R.S.; Popov, D.; Park, C.; Hemley, R.J.; et al. Creating superconductivity in WB
_{2}through pressure-induced metastable planar defects. Nat. Commun.**2022**, 13, 7901. [Google Scholar] [CrossRef] - Zandbergen, H.W.; Gronsky, R.; Wang, K.; Thomas, G. Structure of (CuO)
_{2}double layers in superconducting YBa_{2}Cu_{3}O_{7}. Nature**1988**, 331, 596–599. [Google Scholar] [CrossRef] [Green Version] - Specht, E.D.; Goyal, A.; Li, J.; Martin, P.M.; Li, X.; Rupich, M.W. Stacking faults in YBa
_{2}Cu_{3}O_{7−x}: Measurement using X-ray diffraction and effects on critical current. Appl. Phys. Lett.**2006**, 89, 162510. [Google Scholar] [CrossRef] - Talantsev, E.F.; Strickland, N.M.; Wimbush, S.C.; Storey, J.G.; Tallon, J.L.; Long, N.J. Hole doping dependence of critical current density in YBa
_{2}Cu_{3}O_{7−δ}conductors. Appl. Phys. Lett.**2014**, 104, 242601. [Google Scholar] [CrossRef] - Bloch, F. Zum elektrischen Widerstandsgesetz bei tiefen Temperaturen. Z. Phys.
**1930**, 59, 208–214. [Google Scholar] [CrossRef] - Grüneisen, E. Die abhängigkeit des elektrischen widerstandes reiner metalle von der temperatur. Ann. Phys.
**1933**, 408, 530–540. [Google Scholar] [CrossRef] - Fisk, Z.; Webb, G.W. Saturation of the high-temperature normal-state electrical resistivity of superconductors. Phys. Rev. Lett.
**1976**, 36, 1084–1086. [Google Scholar] [CrossRef] [Green Version] - Wiesmann, H.; Gurvitch, M.; Lutz, H.; Ghosh, A.; Schwarz, B.; Strongin, M.; Allen, P.B.; Halley, J.W. Simple model for characterizing the electrical resistivity in A-15 superconductors. Phys. Rev. Lett.
**1977**, 38, 782–785. [Google Scholar] [CrossRef] - Matsumoto, R.; Song, P.; Adachi, S.; Saito, Y.; Hara, H.; Yamashita, A.; Nakamura, K.; Yamamoto, S.; Tanaka, H.; Irifune, T.; et al. Pressure-induced superconductivity in tin sulfide. Phys. Rev. B
**2019**, 99, 184502. [Google Scholar] [CrossRef] [Green Version] - Kudo, K.; Hiiragi, H.; Honda, T.; Fujimura, K.; Idei, H.; Nohara, M. Superconductivity in Mg
_{2}Ir_{3}Si: A fully ordered Laves phase. J. Phys. Soc. Jpn.**2020**, 89, 013701. [Google Scholar] [CrossRef] - Talantsev, E.F. Advanced McMillan’s equation and its application for the analysis of highly-compressed superconductors. Supercond. Sci. Technol.
**2020**, 33, 094009. [Google Scholar] [CrossRef] - Talantsev, E.F. The electron–phonon coupling constant and the Debye temperature in polyhydrides of thorium, hexadeuteride of yttrium, and metallic hydrogen phase III. J. Appl. Phys.
**2021**, 130, 195901. [Google Scholar] [CrossRef] - Talantsev, E.F. Classifying superconductivity in compressed H
_{3}S. Mod. Phys. Lett. B**2019**, 33, 1950195. [Google Scholar] [CrossRef] [Green Version] - Talantsev, E.F. In-plane p-wave coherence length in iron-based superconductors. Results Phys.
**2020**, 18, 103339. [Google Scholar] [CrossRef] - Talantsev, E.F.; Mataira, R.C.; Crump, W.P. Classifying superconductivity in Moiré graphene superlattices. Sci. Rep.
**2020**, 10, 212. [Google Scholar] [CrossRef] [Green Version] - Gross, F.; Chandrasekhar, B.S.; Einzel, D.; Andres, K.; Hirschfeld, P.J.; Ott, H.R.; Beuers, J.; Fisk, Z.; Smith, J.L. Anomalous temperature dependence of the magnetic field penetration depth in superconducting UBe
_{13}. Z. Phys. B**1986**, 64, 175–188. [Google Scholar] [CrossRef] [Green Version] - Gross-Alltag, F.; Chandrasekhar, B.S.; Einzel, D.; Hirschfeld, P.J.; Andres, K. London field penetration in heavy fermion superconductors. Z. Phys. B
**1991**, 82, 243–255. [Google Scholar] [CrossRef] - Bardeen, J.; Cooper, L.N.; Schrieffer, J.R. Theory of superconductivity. Phys. Rev.
**1957**, 108, 1175–1204. [Google Scholar] [CrossRef] [Green Version] - Carbotte, J.P. Properties of boson-exchange superconductors. Rev. Mod. Phys.
**1990**, 62, 1027–1157. [Google Scholar] [CrossRef] - Talantsev, E.F.; Crump, W.P.; Tallon, J.L. Thermodynamic parameters of single- or multi-band superconductors derived from self-field critical currents. Ann. Phys.
**2017**, 529, 1700197. [Google Scholar] [CrossRef] [Green Version] - Pietronero, L.; Boeri, L.; Cappelluti, E.; Ortenzi, L. Conventional/unconventional superconductivity in high-pressure hydrides and beyond: Insights from theory and perspectives. Quantum Stud. Math. Found.
**2018**, 5, 5–21. [Google Scholar] [CrossRef] - Talantsev, E.F. Quantifying nonadiabaticity in major families of superconductors. Nanomaterials
**2023**, 13, 71. [Google Scholar] [CrossRef] - Talantsev, E.F.; Tallon, J.L. Universal self-field critical current for thin-film superconductors. Nat. Commun.
**2015**, 6, 7820. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Cappelluti, E.; Ciuchi, S.; Grimaldi, C.; Pietronero, L.; Strässler, S. High T
_{c}superconductivity in MgB_{2}by nonadiabatic pairing. Phys. Rev. Lett.**2002**, 88, 117003. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Papagelis, K.; Arvanitidis, J.; Margiolaki, I.; Brigatti, K.; Prassides, K.; Schenck, A.; Lappas, A.; Amato, A.; Iwasa, Y.; Takenobu, T. μSR studies of superconducting MgB
_{1.96}C_{0.04}. Phys. B**2003**, 326, 346–349. [Google Scholar] [CrossRef] - Talantsev, E.F. Electron–phonon coupling constant and BCS ratios in LaH
_{10−y}doped with magnetic rare-earth element. Supercond. Sci. Technol.**2022**, 35, 095008. [Google Scholar] [CrossRef] - Patra, C.; Agarwal, T.; Chaudhari, R.R.; Singh, R.P. Two-dimensional multigap superconductivity in bulk 2H-TaSeS. Phys. Rev. B
**2022**, 106, 134515. [Google Scholar] [CrossRef] - Park, S.; Kim, S.Y.; Kim, H.K.; Kim, M.J.; Kim, T.; Kim, H.; Choi, G.S.; Won, C.J.; Kim, S.; Kim, K.; et al. Superconductivity emerging from a stripe charge order in IrTe
_{2}nanoflakes. Nat. Commun.**2021**, 12, 3157. [Google Scholar] [CrossRef] - Szczesniak, D.; Kaczmarek, A.Z.; Drzazga-Szczesniak, E.A.; Szczesniak, R. Phonon-mediated superconductivity in bismuthates by nonadiabatic pairing. Phys. Rev. B
**2021**, 104, 094501. [Google Scholar] [CrossRef] - Szczesniak, D.; Szczesniak, R. Signatures of nonadiabatic superconductivity in lithium-decorated graphene. Phys. Rev. B
**2019**, 99, 224512. [Google Scholar] [CrossRef] [Green Version] - Helfand, E.; Werthamer, N.R. Temperature and purity dependence of the superconducting critical field, H
_{c2}. II. Phys. Rev.**1966**, 147, 288–294. [Google Scholar] [CrossRef] - Werthamer, N.R.; Helfand, E.; Hohenberg, P.C. Temperature and purity dependence of the superconducting critical field, H
_{c2}. III. Electron spin and spin-orbit effects. Phys. Rev.**1966**, 147, 295–302. [Google Scholar] [CrossRef] - Zehetmayer, M.; Eisterer, M.; Jun, J.; Kazakov, S.M.; Karpinski, J.; Wisniewski, A.; Weber, H.W. Mixed-state properties of superconducting MgB
_{2}single crystals. Phys. Rev. B**2002**, 66, 052505. [Google Scholar] [CrossRef] [Green Version] - Bouquet, F.; Wang, Y.; Fisher, R.A.; Hinks, D.G.; Jorgensen, J.D.; Junod, A.; Phillips, N.E. Phenomenological two-gap model for the specific heat of MgB
_{2}. Europhys. Lett.**2001**, 56, 856. [Google Scholar] [CrossRef] [Green Version] - Talantsev, E.F.; Crump, W.P.; Island, J.O.; Xing, Y.; Sun, Y.; Wang, J.; Tallon, J.L. On the origin of critical temperature enhancement in atomically thin superconductors. 2D Mater.
**2017**, 4, 025072. [Google Scholar] [CrossRef] [Green Version] - Szabó, P.; Samuely, P.; Kačmarčík, J.; Klein, T.; Marcus, J.; Fruchart, D.; Miraglia, S.; Marcenat, C.; Jansen, A.G.M. Evidence for two superconducting energy gaps in MgB
_{2}by point-contact spectroscopy. Phys. Rev. Lett.**2001**, 87, 137005. [Google Scholar] [CrossRef] [Green Version] - Santi, G.; Jarlborg, T.; Peter, M.; Weger, M. Existence of both s and d-wave solutions of Eliashberg equations. J. Supercond.
**1995**, 8, 405–408. [Google Scholar] [CrossRef] [Green Version] - Gor’kov, L.P. Superconductivity: Conventional and Unconventional Superconductors; Bennemann, K.H., Ketterson, J.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 201–224. [Google Scholar]
- Anderson, P.W. Theory of dirty superconductors. J. Phys. Chem. Solids
**1959**, 11, 26–30. [Google Scholar] [CrossRef] - Openov, L.A. Critical temperature of an anisotropic superconductor containing both nonmagnetic and magnetic impurities. Phys. Rev. B
**1998**, 58, 9468–9478. [Google Scholar] [CrossRef] [Green Version] - Openov, L.A. Effect of nonmagnetic and magnetic impurities on the specific heat jump in anisotropic superconductors. Phys. Rev. B
**2004**, 69, 224516. [Google Scholar] [CrossRef] [Green Version] - Gu, Q.; Li, Y.; Wan, S.; Li, H.; Guo, W.; Yang, H.; Li, Q.; Zhu, X.; Pan, X.; Nie, Y.; et al. Single particle tunnelling spectrum of superconducting Nd
_{1-x}Sr_{x}NiO_{2}thin films. Nat. Commun.**2020**, 11, 6027. [Google Scholar] [CrossRef] - Chow, L.E.; Sudheesh, S.K.; Nandi, P.; Zeng, S.W.; Zhang, Z.T.; Du, X.M.; Lim, Z.S.; Chia, E.E.M.; Ariando, A. Pairing symmetry in infinite-layer nickelate superconductor. arXiv
**2022**, arXiv:2201.10038. [Google Scholar] [CrossRef] - Harvey, S.P.; Wang, B.Y.; Fowlie, J.; Osada, M.; Lee, K.; Lee, Y.; Li, D.; Hwang, H.Y. Evidence for nodal superconductivity in infinite-layer nickelates. arXiv
**2022**, arXiv:2201.12971. [Google Scholar] [CrossRef] - Wang, Z.; Zhang, G.-M.; Yang, Y.-f.; Zhang, F.-C. Distinct pairing symmetries of superconductivity in infinite-layer nickelates. Phys. Rev. B
**2020**, 102, 220501. [Google Scholar] [CrossRef] - Uemura, Y.J.; Luke, G.M.; Sternlieb, B.J.; Brewer, J.H.; Carolan, J.F.; Hardy, W.N.; Kadono, R.; Kempton, J.R.; Kiefl, R.F.; Kreitzman, S.R. Universal correlations between T
_{c}and $\frac{{n}_{s}}{{m}_{*}}$ (carrier density over effective mass) in high-T_{c}cuprate. Phys. Rev. Lett.**1989**, 62, 2317–2320. [Google Scholar] [CrossRef] - Uemura, Y.J.; Keren, A.; Le, L.P.; Luke, G.M.; Wu, W.D.; Kubo, Y.; Manako, T.; Shimakawa, Y.; Subramanian, M.; Cobb, J.L.; et al. Magnetic-field penetration depth in Tl
_{2}Ba_{2}CuO_{6+δ}in the overdoped regime. Nature**1993**, 364, 605–607. [Google Scholar] [CrossRef] - Guguchia, Z.; Amato, A.; Kang, J.; Luetkens, H.; Biswas, P.K.; Prando, G.; von Rohr, F.; Bukowski, Z.; Shengelaya, A.; Keller, H.; et al. Direct evidence for a pressure-induced nodal superconducting gap in the Ba
_{0.65}Rb_{0.35}Fe_{2}As_{2}superconductor. Nat. Commun.**2015**, 6, 8863. [Google Scholar] [CrossRef] [PubMed] [Green Version] - in ’t Veld, Y.; Katsnelson, M.I.; Millis, A.J.; Rösner, M. Screening induced crossover between phonon- and plasmon-mediated pairing in layered superconductors. arXiv
**2023**, arXiv:2303.06220. [Google Scholar] [CrossRef] - Talantsev, E.F. Classifying hydrogen-rich superconductors. Mater. Res. Express
**2019**, 6, 106002. [Google Scholar] [CrossRef] [Green Version] - Jorba, P.; Regnat, A.; Tong, A.; Seifert, M.; Bauer, A.; Schulz, M.; Franz, C.; Schneidewind, A.; Kunkemöller, S.; Jenni, K.; et al. High-pressure studies of correlated electron systems. Phys. Status Solidi B
**2022**, 259, 2100623. [Google Scholar] [CrossRef] - Ruangrungrote, S.; Chanpoom, T.; Thaninworapak, R.; Udomsamuthirun, P. Investigation of the gap-to-T
_{c}ratio of LaH_{10}and LaD_{10}superconductors. Int. J. Mod. Phys. B**2023**, 37, in press. [Google Scholar] [CrossRef] - Chanilkul, G.; Changjan, A.; Nilkamjon, T.; Udomsamuthirun, P. External pressure effects on superfluid density of isotropic s-wave superconductors. J. Phys. Conf. Ser.
**2023**, 2431, 012043. [Google Scholar] [CrossRef] - Talantsev, E.F. Universal Fermi velocity in highly compressed hydride superconductors. Matter Radiat. Extrem.
**2022**, 7, 058403. [Google Scholar] [CrossRef] - Malik, G.P.; Varma, V.S. On the generalized BCS equations incorporating chemical potential for the T
_{c}and the calculation of the coherence length of some elements and compressed H_{3}S. J. Low Temp. Phys.**2023**, in press. [Google Scholar] [CrossRef] - van de Bund, S.; Ackland, G.J. Competition between superconductivity and molecularization in quantum nuclear behavior of Lanthanum Hydride. arXiv
**2023**, arXiv:2303.01441. [Google Scholar] [CrossRef] - Feng, X.Y.; Zhao, Z.; Luo, J.; Yang, J.; Fang, A.F.; Yang, H.T.; Gao, H.J.; Zhou, R.; Zheng, G.-Q. Commensurate-to-incommensurate transition of charge-density-wave order and a possible quantum critical point in pressurized kagome metal CsV
_{3}Sb_{5}. arXiv**2023**, arXiv:2303.01225. [Google Scholar] [CrossRef] - He, X.; Zhang, C.; Li, Z.; Liua, C.; Feng, S.; Zhao, J.; Lu, K.; Bin, B.; Zhang, S.; Peng, Y.; et al. Superconductivity above 30 K achieved in dense scandium. arXiv
**2023**, arXiv:2303.01062. [Google Scholar] [CrossRef] - Yang, W.; Xiao, G.; Zhu, Q.; Song, S.; Cao, G.-H.; Ren, Z. Effect of carbon doping on the structure and superconductivity in AlB
_{2}-type (Mo_{0.96}Ti_{0.04})_{0.8}B_{2}. arXiv**2023**, arXiv:2302.14272. [Google Scholar] [CrossRef] - Lim, J.; Sinha, S.; Hire, A.C.; Kim, J.S.; Dee, P.M.; Kumar, R.S.; Popov, D.; Hemley, R.J.; Hennig, R.G.; Hirschfeld, P.J.; et al. Suppression of superconductivity in Nb-substituted MoB
_{2}at high pressure. arXiv**2023**, arXiv:2302.13936. [Google Scholar] [CrossRef] - Zhang, W.; Liu, X.; Wang, L.; Tsang, C.W.; Wang, Z.; Lam, S.T.; Wang, W.; Xie, J.; Zhou, X.; Zhao, Y.; et al. Nodeless superconductivity in Kagome metal CsV
_{3}Sb_{5}with and without time reversal symmetry breaking. Nano Lett.**2023**, 23, 872–879. [Google Scholar] [CrossRef] [PubMed] - Troyan, I.A.; Semenok, D.V.; Ivanova, A.G.; Sadakov, A.V.; Zhou, D.; Kvashnin, A.G.; Kruglov, I.A.; Sobolevskiy, O.A.; Lyubutina, M.V.; Helm, T.; et al. Non-Fermi-liquid behavior of superconducting SnH
_{4}. arXiv**2023**, arXiv:2303.06339. [Google Scholar] [CrossRef] - Jung, S.G.; Seo, S.; Lee, S.; Bauer, E.D.; Lee, H.-O.; Park, T. A peak in the critical current for quantum critical superconductors. Nat. Commun.
**2018**, 9, 434. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Kim, Y.H.; Park, S.; Kwon, C.I.; Kim, S.Y.; Watanabe, K.; Taniguchi, T.; Kim, J.S. Two-dimensional multiband superconductivity of the optimally and uniformly Li-intercalated FeSe nanoflakes. Curr. Appl. Phys.
**2023**, 46, 27–33. [Google Scholar] [CrossRef] - Liu, X.; Zhang, W.; Lai, K.T.; Moriyama, K.; Tallon, J.L.; Yoshimura, K.; Goh, S.K. Peak in the critical current density in (Ca
_{x}Sr_{1−x})_{3}Rh_{4}Sn_{13}tuned towards the structural quantum critical point. Phys. Rev. B**2022**, 105, 214524. [Google Scholar] [CrossRef] - Nobukane, H.; Yanagihara, K.; Kunisada, Y.; Ogasawara, Y.; Isono, K.; Nomura, K.; Tanahashi, K.; Nomura, T.; Akiyama, T.; Tanda, S. Co-appearance of superconductivity and ferromagnetism in a Ca
_{2}RuO_{4}nanofilm crystal. Sci. Rep.**2020**, 10, 3462. [Google Scholar] [CrossRef] [Green Version] - Jung, S.-G.; Han, Y.; Kim, J.H.; Hidayati, R.; Rhyee, J.-S.; Lee, J.M.; Kang, W.N.; Choi, W.S.; Jeon, H.-R.; Suk, J.; et al. High critical current density and high-tolerance superconductivity in high-entropy alloy thin films. Nat. Commun.
**2022**, 13, 3373. [Google Scholar] [CrossRef] - Li, C.; Zhao , Y.-F.; Vera, A.; Lesser, O.; Yi, H.; Kumari, S.; Yan, Z.; Dong, C.; Bowen, T.; Wang, K.; et al. Proximity-induced superconductivity in epitaxial topological insulator/graphene/gallium heterostructures. Nat. Mater.
**2023**, 22. in press. [Google Scholar] [CrossRef] [PubMed]

**Figure 1.**R(T) data for highly compressed $\alpha $-MoB

_{2}(P = 109.7 GPa) and data fit to Equation (1) (raw data reported by Pei et al. [44]). The green balls indicate the bounds for which R(T) data were used to fit data to Equation (1). (

**a**) Deduced ${T}_{\theta}=301\pm 1\mathrm{K}$, ${T}_{c,0.10}=26.6\mathrm{K}$, ${\lambda}_{e-ph}=1.42$, ${R}_{sat}=0.61\pm 0.02\mathsf{\Omega}$, fit quality is 0.9998. (

**b**) Deduced ${T}_{\theta}=321\pm 1\mathrm{K}$, ${T}_{c,0.10}=28.2\mathrm{K}$, ${\lambda}_{e-ph}=1.41$, ${R}_{sat}=0.50\pm 0.01\mathsf{\Omega}$; fit quality is 0.9998. The 95% confidence bands are indicated by pink shadowed areas.

**Figure 2.**Temperature-dependent upper critical field, B

_{c2}(T), and data (left Y-axes) (defined by $\frac{R\left(T\right)}{{R}_{norm}\left(T\right)}=0.10$ criterion), calculated by Equation (5). The coherence length $\xi \left(T\right)$ (right Y-axes) for $\alpha $-MoB

_{2}($P=109.7\mathrm{GPa}$) reported by Pei et al. [44] and data fits to s-wave (panel

**a**) and d-wave (panel

**b**) single-band models. Deduced parameters are (for both panels the critical temperature was fixed to the observed value of T

_{c}= 28.2 K): (

**a**) s-wave fit, $\mathsf{\xi}\left(0\right)=6.5\left(2\right)\mathrm{nm}$, $\mathsf{\Delta}\left(0\right)=2.8\pm 0.1\mathrm{meV}$, $\mathsf{\Delta}C/\gamma {T}_{c}=1.5\pm 0.8$, $\frac{2\mathsf{\Delta}\left(0\right)}{{k}_{B}{T}_{c}}=2.3\pm 0.2$, the goodness of fit is 0.8267; (

**b**) d-wave fit, $\mathsf{\xi}\left(0\right)=6.2\left(5\right)\mathrm{nm}$, $\mathsf{\Delta}\left(0\right)=5.0\pm 0.2\mathrm{meV}$, $\mathsf{\Delta}C/\gamma {T}_{c}=0.8\pm 0.1$, $\frac{2\mathsf{\Delta}\left(0\right)}{{k}_{B}{T}_{c}}=4.1\pm 0.2$, the goodness of fit is 0.9842.

**Figure 4.**Plot of $\frac{{T}_{\theta}}{{T}_{F}}$ vs. ${\lambda}_{e-ph}$ for several superconducting families and diborides. This type of plot was proposed by Pietronero et al. [69]. References to the original data can be found in Refs. [68,69,70,71,72,73,74]. In this plot, we assumed that $\alpha $-MoB

_{2}, WB

_{2}, and the Nb

_{1−x}Mo

_{x}B

_{2}($x=0.25$) exhibit the Coulomb pseudopotential parameter, ${\mu}^{*}=0.13$.

**Figure 6.**Temperature dependent upper critical field, B

_{c2}(T), data (left Y-axes) (defined by $\frac{R\left(T\right)}{{R}_{norm}\left(T\right)}=0.015$ criterion) and calculated by Equation (5). The coherence length $\xi \left(T\right)$ (right Y-axes) for P6/mmm Nb

_{0.75}Mo

_{0.25}B

_{2}reported by Hire et al. [47], and data fit to s-wave (panel

**a**) and d-wave (panel

**b**) single-band models. Deduced parameters are (for both panels the critical temperature was fixed to the observed value of T

_{c}= 7.2 K) (

**a**) s-wave fit, $\mathsf{\xi}\left(0\right)=8.0\left(7\right)\mathrm{nm}$, $\mathsf{\Delta}\left(0\right)=0.987\pm 0.038\mathrm{meV}$, $\mathsf{\Delta}C/\gamma {T}_{c}=1.6\pm 0.2$, $\frac{2\mathsf{\Delta}\left(0\right)}{{k}_{B}{T}_{c}}=3.2\pm 0.1$, the goodness of fit is 0.9534; (

**b**) d-wave fit, $\mathsf{\xi}\left(0\right)=7.5\left(0\right)\mathrm{nm}$, $\mathsf{\Delta}\left(0\right)=1.65\pm 0.05\mathrm{meV}$, $\mathsf{\Delta}C/\gamma {T}_{c}=1.13\pm 0.03$, $\frac{2\mathsf{\Delta}\left(0\right)}{{k}_{B}{T}_{c}}=5.3\pm 0.1$, the goodness of fit is 0.9959.

**Figure 7.**R(T) data for highly compressed WB

_{2}(P = 121.3 GPa) and data fit to Equation (1) (raw data reported by Pei et al. [48]). Green balls indicate the bounds for which R(T) data was used for the fit to Equation (1). Deduced ${T}_{\theta}=440\pm 1\mathrm{K}$, ${T}_{c,0.18}=12.5\mathrm{K}$, ${\lambda}_{e-ph}=0.755$, ${R}_{sat}=\infty $; fit quality is 0.9997. 95% confidence bands are shown by pink shadow areas.

**Figure 8.**Temperature-dependent upper critical field, B

_{c2}(T), data (left Y-axes) (defined by $\frac{R\left(T\right)}{{R}_{norm}\left(T\right)}=0.015$ criterion). Calculated by Equation (5): coherence length $\xi \left(T\right)$ (right Y-axes) for P6

_{3}/mmc WB

_{2}(P = 121.3 GPa) reported by Pei et al. [48] and data fits to s-wave (panel

**a**) and d-wave (panel

**b**) single-band models. Deduced parameters are (

**a**) s-wave fit, T

_{c}= 12.45 K (fixed), $\xi \left(0\right)=13.8\mathrm{nm}$, $\mathsf{\Delta}\left(0\right)=1.48\pm 0.06\mathrm{meV}$, $\mathsf{\Delta}C/\gamma {T}_{c}=1.6\pm 0.4$, $\frac{2\mathsf{\Delta}\left(0\right)}{{k}_{B}{T}_{c}}=2.8\pm 0.1$, the goodness of fit is 0.9019; (

**b**) d-wave fit, ${T}_{c}=12.2\pm 0.2\mathrm{K}$, $\xi \left(0\right)=13.0\mathrm{nm}$, $\mathsf{\Delta}\left(0\right)=2.58\pm 0.02\mathrm{meV}$, $\mathsf{\Delta}C/\gamma {T}_{c}=1.19\pm 0.07$, $\frac{2\mathsf{\Delta}\left(0\right)}{{k}_{B}{T}_{c}}=4.9\pm 0.1$, the goodness of fit is 0.9986.

**Figure 9.**Temperature-dependent upper critical field, B

_{c2}(T), data (left Y-axes). Calculated by Equation (5): coherence length $\xi \left(T\right)$ (right Y-axes) for P6/mmm MgB

_{2}reported by Zehetmayer et al. [81] and data fits to single band s-wave (panel

**a**, Equations (6) and (7)), single band d-wave (panel

**b**, Equations (8) and (9)), and two-band s-wave [82,83] (panel

**c**, Equations (6) and (7), Equations (13)–(15)) models. Deduced parameters are: (

**a**) s-wave fit, ${T}_{c}=36.7\pm 0.4\mathrm{K}$, $\xi \left(0\right)=10.4\mathrm{nm}$ $\mathsf{\Delta}\left(0\right)=5.22\pm 0.09\mathrm{meV}$, $\mathsf{\Delta}C/\gamma {T}_{c}=2.3\pm 0.3$, $\frac{2\mathsf{\Delta}\left(0\right)}{{k}_{B}{T}_{c}}=3.3\pm 0.1$, the goodness of fit is 0.9887; (

**b**) d-wave fit, ${T}_{c}=37.8\pm 0.3\mathrm{K}$, $\xi \left(0\right)=10.0\mathrm{nm}$, ${\mathsf{\Delta}}_{m}\left(0\right)=11.6\pm 0.5\mathrm{meV}$, $\mathsf{\Delta}C/\gamma {T}_{c}=1.15\pm 0.07$, $\frac{2{\mathsf{\Delta}}_{m}\left(0\right)}{{k}_{B}{T}_{c}}=7.1\pm 0.3$, the goodness of fit is 0.9975. (

**c**) two conditions where used: ${T}_{c1}={T}_{c2}=37.2\pm 0.2\mathrm{K}$ and $\frac{\mathsf{\Delta}{C}_{1}}{{\gamma}_{1}{T}_{c1}}=\frac{\mathsf{\Delta}{C}_{2}}{{\gamma}_{2}{T}_{c2}}=1.8\pm 0.1$, and other free-fitting parameters are: ${\xi}_{total}\left(0\right)=10.3\mathrm{nm}$, $\alpha =0.77\pm 0.06$, ${\mathsf{\Delta}}_{1}\left(0\right)=6.5\pm 0.4\mathrm{meV}$, $\frac{2{\mathsf{\Delta}}_{1}\left(0\right)}{{k}_{B}{T}_{c}}=4.1\pm 0.3$, ${\mathsf{\Delta}}_{2}\left(0\right)=2.7\pm 0.4\mathrm{meV}$, $\frac{2{\mathsf{\Delta}}_{2}\left(0\right)}{{k}_{B}{T}_{c}}=1.7\pm 0.2$, the goodness of fit is 0.9984.

**Table 1.**Calculated the electron–phonon coupling constant, ${\lambda}_{e-ph}$, for assumed ${\mu}^{*}=0.00;0.05;0.10;\mathrm{and}0.13$ for studied diboride compounds α-MoB

_{2}, Nb

_{0.75}Mo

_{0.25}B

_{2}, and WB

_{2}.

Compound | T_{θ} (K) | T_{c} (K) | Assumed μ* | λ_{e−ph} |
---|---|---|---|---|

α-MoB_{2} | 321 | 28.2 | 0.00 | 0.935 |

(109.7 GPa) | 0.05 | 1.10 | ||

0.10 | 1.29 | |||

0.13 | 1.41 | |||

Nb_{1−x}MoxB_{2} | 625 | 7.2 | 0.00 | 0.337 |

(x = 0.25) | 0.05 | 0.422 | ||

0.10 | 0.514 | |||

0.13 | 0.573 | |||

WB_{2} | 440 | 12.5 | 0.00 | 0.475 |

(121.3 GPa) | 0.05 | 0.575 | ||

0.10 | 0.685 | |||

0.13 | 0.755 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Talantsev, E.F.
*D*-Wave Superconducting Gap Symmetry as a Model for Nb_{1−x}Mo_{x}B_{2} (x = 0.25; 1.0) and WB_{2} Diborides. *Symmetry* **2023**, *15*, 812.
https://doi.org/10.3390/sym15040812

**AMA Style**

Talantsev EF.
*D*-Wave Superconducting Gap Symmetry as a Model for Nb_{1−x}Mo_{x}B_{2} (x = 0.25; 1.0) and WB_{2} Diborides. *Symmetry*. 2023; 15(4):812.
https://doi.org/10.3390/sym15040812

**Chicago/Turabian Style**

Talantsev, Evgeny F.
2023. "*D*-Wave Superconducting Gap Symmetry as a Model for Nb_{1−x}Mo_{x}B_{2} (x = 0.25; 1.0) and WB_{2} Diborides" *Symmetry* 15, no. 4: 812.
https://doi.org/10.3390/sym15040812