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Abstract: This paper addresses how to use high-order diffusion to restore the wavelet coefficients
in the wavelet domain. To avoid image distortion, wavelets with symmetry are used for image
decomposition to obtain the wavelet coefficients of each sub-band. Due to the influence of noise, it
is particularly important to obtain the wavelet coefficients, which can accurately reflect the image
information. According to the characteristics of wavelet threshold shrinkage and the advantages of
the high-order variational method in denoising, a wavelet coefficient restoration scheme is proposed.
The theoretical basis of our proposed method is established through the analysis of wavelet threshold
theory. To keep the original structure of wavelet coefficients unchanged, we introduce the concept
of state quantity of wavelet coefficients and obtain the corresponding state quantity of wavelet
coefficients using normalization. The denoising wavelet coefficient is obtained by performing a
fourth-order anisotropic diffusion of the state quantities. This paper takes image edge feature
extraction as the experimental content and image edges are detected by the module of the wavelet
coefficients. The effectiveness of the proposed algorithm is objectively verified from three aspects:
denoising effect, edge continuity, and accuracy. The experimental results show that the proposed
algorithm can obtain continuous and precise image edges. The algorithm presented in this paper also
applies to texture images. Compared with other algorithms, the edges image obtained by this scheme
shows advantages in terms of noise removal and edge protection.

Keywords: wavelet threshold; fourth-order diffusion; state quantity; normalization; edge detection

1. Introduction

As a real-time image processing technology, wavelet transform and multi-scale trans-
form based on the wavelet transform have received extensive attention [1–4]. The wavelet
transform occupies an essential theoretical and practical position while it is one of the main
methods used in image processing. The advantages of wavelet theory are reflected in the
time-frequency and multiresolution characteristics, which can present texture and structure
information at various resolution levels. In recent years, many scholars have devoted them-
selves to wavelet transform research and applied it to multiple aspects of image processing
technology, including image denoising, image restoration, image segmentation, and edge
detection [5–11]. Generally, an image is decomposed by wavelet transform to obtain the
corresponding low-frequency and high-frequency coefficients. These coefficients reflect
the details of the image, such as edges and textures. Zhang et al. used the low-frequency
and high-frequency coefficient images generated by multi-wavelet transform to learn more
powerful prior information, ensuring that the deep learning network provided by them
can obtain better image restoration effects [10]. Based on the combination of Haar wavelet
and two-dimensional discrete wavelet transform, Wang et al. proposed a watermark em-
bedding and extraction technique for color images [11]. Making full use of the wavelet
coefficients to reflect the image details is an essential factor for these methods to obtain a
better processing effect. Due to the presence of noise, the critical aspect of image processing
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technology based on wavelets is how to obtain the wavelet coefficients that accurately
reflect the information of a given image.

Wavelet shrinkage can efficiently acquire the low-frequency and high-frequency coef-
ficients for the image with noise [12–14]. However, the shrinkage of wavelet coefficients
makes the reconstructed image produce a pseudo-Gibbs phenomenon near the edges. To
improve the application effect of wavelet transforms in image restoration, edge detection,
and other technologies, it is of great practical significance to study how to obtain more
wavelet transform coefficients that can accurately reflect image information.

The nonlinear diffusion methods have been widely used in image processing through
partial differential equations (PDEs). Such methods use a piecewise continuous function to
approximate the actual signal in an image. PDE-based denoising models mainly include
second-order and high-order models (mainly fourth-order models). Examples include
the total variation model [15], the Perona–Malik model [16], and anisotropic diffusion
models [17–23]. These second-order models easily produce so-called blocky effects in the
smooth regions of denoised images. Image-denoising methods based on high-order PDEs
have been widely studied to overcome this shortcoming, such as the YK model [24], the
LLT model [25], and the model proposed by Hajiaboli [26]. Recently, some new models
have been developed [27–32]. Although high-order diffusion easily causes edge blur and
makes the smooth area of an image uneven because of over-smoothness, the fourth-order
models have achieved good results in removing noise and protecting edges.

This paper attempts to find a way to obtain effective wavelet coefficients and give a
good theoretical explanation. First, wavelet transform is performed on the examined image
to obtain the coefficients of each sub-band, and the image information mainly focuses on the
high-frequency part. Due to the influence of noise, the high-frequency wavelet coefficients
need to be denoised. Secondly, based on state weights, we normalize the high-frequency
coefficients to obtain the corresponding continuous state weights. To eliminate the effect of
noise on the high-frequency coefficients, we perform fourth-order anisotropic filtering on
the state weights. Finally, by applying accurate state weights to the corresponding high-
frequency wavelet coefficients, we can obtain denoised high-frequency wavelet coefficients.
Because the noise is effectively suppressed, the high-frequency wavelet coefficients we
obtained can not only accurately reflect the texture details of the image but also maintain the
edges of the image nicely, which provides good help for the subsequent image processing
method combined with wavelet transform.

This article is arranged as follows. In Section 2, we briefly introduce two methods
commonly used in image denoising: wavelet shrinkage and PDE-based diffusion filtering.
Section 3 describes methods for recovering wavelet coefficients that obtain an accurate
reflection of image information.

This method is based on the wavelet shrinkage theory and the fourth-order anisotropic
diffusion filter. In Section 4, numerical experiments are carried out, and the experimental
results are analyzed from subjective and objective viewpoints. Finally, we present the
conclusion of this article in Section 5.

2. Mathematical Framework
2.1. Wavelet Shrinkage Method

The wavelet shrinkage method is widely used in image restoration technology. The
primary purpose of this method is to accurately find the wavelet coefficients of an image
relative to the noise. The principle of the wavelet shrinkage method is to perform a wavelet
transform on the studied image to obtain wavelet coefficients. The wavelet coefficients with
the smaller amplitude are generated by the energy of noise, while the larger amplitudes are
deemed to be generated by the energy of the signal itself. Then, an appropriate threshold
value is selected to remove the noise by specifying wavelet coefficients lower than the
threshold value to achieve denoising [12–14]. The wavelet coefficients of different sub-
bands are obtained by wavelet transform so that the signal can be represented by wavelet
coefficients at different scales. In practical applications, the study of the discrete wavelet
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transform (DWT) is of great practical significance. f represents a one-dimensional signal, ϕ
is a scaling function, and ψ is a wavelet function. Given the orthogonal wavelet, the DWT
is expressed as

f = ∑
i∈Z
〈 f , ϕn

i 〉ϕn
i +

n

∑
j=−∞

∑
i∈z

〈
f , ψ

j
i

〉
ψ

j
i (1)

where ψ
j
i (x) := 2−j/2ψ(2−jx− i) and f ∈ L2(R). If the signal f contains Gaussian white

noise, all wavelet coefficients
〈

f , ψ
j
i

〉
after the wavelet transform also contain noise, and

we need to determine the effective wavelet coefficients that constitute the signal. Therefore,
according to the denoising idea of the wavelet shrinkage method, the following three steps
are performed to restore the original signal:

1. Analysis: A wavelet transform is applied to the noisy signal f , and the wavelet
coefficients dj

i =
〈

f , ψ
j
i

〉
and scaling coefficients cn

i =
〈

f , ϕn
i
〉

are obtained based on (1).
2. Shrinkage: Nonlinear threshold processing is performed on the wavelet

coefficients by using the shrinkage function Sθ with a threshold parameter θ, i.e.,
d̃j

i = Sθ(d
j
i) = Sθ(

〈
f , ψ

j
i

〉
).

3. Synthesis: The scale coefficients are reconstructed, and the wavelet coefficients are
processed by the threshold to obtain the recovered signal u.

u := ∑
i∈Z
〈 f , ϕn

i 〉ϕn
i +

n

∑
j=−∞

∑
i∈z

Sθ(
〈

f , ψ
j
i

〉
)ψ

j
i (2)

From (1) and (2), there are two important choices in the wavelet shrinkage method:
one is the wavelet function, and the other is the threshold function. The selection of wavelet
function mainly considers its symmetry, regularity, and compact support. The wavelet with
symmetry, whose corresponding filter has the characteristic of linear phase, can effectively
avoid phase distortion in image processing. The higher the regularity, the smoother
the wavelet basis function and the more stable the reconstruction of wavelet coefficients.
Moreover, the wavelet basis function with compact support has a fast convergence speed
and a strong localization ability, which is beneficial to determine the abrupt point of the
image. For the threshold function, if the selected threshold is small, some noise will be
preserved as image information. The image will still contain more noise after denoising,
and the denoising effect will not be ideal. If the selected threshold is large, although more
noise can be removed, some of the detailed features in the image will also be filtered out,
causing the image to blur. Therefore, the threshold needs to be determined according to the
magnitude of the noise. The most commonly used shrinkage functions are hard and soft
thresholding functions.

A. Hard shrinkage

d̃j
i = Sθ(d

j
i) =

dj
i

∣∣∣dj
i

∣∣∣ ≥ θ

0
∣∣∣dj

i

∣∣∣ < θ
(3)

B. Soft shrinkage

d̃j
i = Sθ(d

j
i) =

sign(dj
i)(
∣∣∣dj

i

∣∣∣− θ)
∣∣∣dj

i

∣∣∣ ≥ θ

0
∣∣∣dj

i

∣∣∣ < θ
(4)

where θ = σ
√

2 ln N, σ is the standard deviation of the noise, and N is the scale or length of
the signal.

2.2. PDE-Based Diffusion Method

Nonlinear diffusion has a significant influence on image processing. It utilizes a
piecewise continuous function to approach the real image signal by the PDE. Unlike general
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linear diffusion, nonlinear diffusion not only smooths the image but also preserves its edges
and details well. According to this property, many scholars have conducted extensive
research on both the theoretical analysis and applications of PDEs in image processing. An
anisotropic diffusion model (P-M model) introduced by Perona and Malik [16] can retain
the edge features of an image by replacing the Gaussian smoothing filter with a directional
heat diffusion equation. The P-M model is represented as follows.

∂u
∂t

= div[g(|∇u|)∇u] (5)

where u denotes the noisy image, t denotes time. ∇ and div represent the gradient operator
and divergence operator, respectively. g(·) is a non-negative decreasing diffusion function.
Perona and Malik provided two diffusion functions.

A. g(|∇u|) = e−(|∇u|/k)2
B. g(|∇u|) = 1

1 + (|∇u|/k)2

where k is a parameter used to control the diffusion extension. k can be pre-set or can
be changed as a result of each iteration. You et al. [13] obtained the solution of (5) by
minimizing the following energy function.

E(u) =
∫

Ω
f (|∇u|)dxdy (6)

where f (·) is a non-negative function and f (0) = 0. The P-M model can effectively remove
noise without blurring image edges by minimizing the energy functional in (6).

An adaptive TV variational model was introduced by Strong [33] to improve the edge
detection effect, as follows

E(u) = min
∫

Ω
g(x)|∇u|+ λ

2

∫
Ω
(u− u0)

2dx (7)

where g(x) is an edge-stopping function that can adaptively control the degree of diffusion.
In [29], g(x) is defined as

g(x) =
1

1 + K|∇Gσ ∗ u0|2
(8)

where Gσ represents the Gaussian filter and σ is the standard deviation of the noise. Since
these schemes perform diffusion faster in smooth areas, they are prone to blocky effects.
To overcome this shortcoming, image restoration techniques based on high-order PDEs
(especially fourth-order PDEs) have been widely studied [24–32]. In 2000, a classical fourth-
order diffusion scheme was proposed by You and Kaveh [24], and this scheme minimizes
the following functional:

E(u) =
∫

Ω
f (
∣∣∣∇2u

∣∣∣)dxdy (9)

where ∇2 denotes the Laplacian operator and
∣∣∇2

∣∣ = ∣∣uxx + uyy
∣∣. The function f (·) ≥ 0 is

an increasing function. Different from the second-order diffusion model, the fourth-order
model uses

∣∣∇2u
∣∣ instead of |∇u| to detect the smoothness of an image. Therefore, image

smoothing is equivalent to finding the unique minimum value of the energy functional.
The fourth-order PDE corresponding to Equation (9) can be obtained by gradient descent.
The expression is depicted as

∂u
∂t

= −∇2[g(
∣∣∣∇2u

∣∣∣)∇2u] (10)

In 2003, Lysaker et al. proposed another classical fourth-order denoising model
(LLT) [25]; the paper presented two representations of the Laplacian operator and used
them as smoothing operators to process the studied images. These models can reduce
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image noise while relieving the staircase and blocky effects by using the Laplacian operator.
However, these fourth-order PDEs easily produce speckle noise and edge blur in the
restored images. Considering these issues, Hajiaboli [26] presented an anisotropic fourth-
order diffusion model that performs different degrees of diffusion in the level set and
gradient directions. ξ and η represent vectors in the level set direction and gradient
direction, respectively. They can be expressed as

ξ =
[−uy,ux]

|∇u| η =
[ux,uy]

|∇u|

The anisotropic fourth-order diffusion formulated by Hajiaboli can be presented as

∂u
∂t

= −∇2(c(|∇u|)2uηη + c(|∇u|)uξξ) (11)

uηη is the second derivative of the image in the gradient direction. uξξ is the second
derivative in the direction orthogonal to the gradient. c(·) is a diffusivity function.

c(|∇u|) = k2/(k2 + |∇u|2) (12)

uηη =
u2

xuxx + u2
yuyy + 2uxuyuxy

|∇u|2
uξξ =

u2
xuyy + u2

yuxx − 2uxuyuxy

|∇u|2
(13)

The model performs different degrees of diffusion in different directions: in the flat
region, in the directions of the gradient and the level set, the diffusion coefficients are
relatively close, and at the edge of the image, the diffusion coefficient in the gradient
direction is always less than the diffusion coefficient in the level set direction. Therefore,
anisotropic diffusion is performed on the image. The diffusion method improves the ability
of a PDE-based model to remove noise and protect the edges of the image while also
leading to a relative reduction in speckle noise. However, due to the uneven diffusion of
the model in the gradient direction and level set direction, the denoised image will appear
uneven, reducing the image quality.

3. State-Aware Wavelet Coefficients Acquisition Method Based on Anisotropic
Fourth-Order Diffusion
3.1. The Equivalent Expression of the Proposed Method

In recent years, image restoration technology combining wavelets and nonlinear
diffusion has attracted much attention [34–40]. These methods are based on second-order
diffusion in the wavelet domain. To obtain the recovered image from accurate wavelet
coefficients, in this section, we present a continuous state wavelet shrinkage method based
on nonlinear fourth-order diffusion. This method has a good theoretical explanation.
Specifically, the main idea of our scheme is based on the two-state denoising method.
Denoised wavelet coefficients are obtained by performing anisotropic diffusion on the state
weights, and the wavelet coefficients can be used to further improve image restoration and
edge detection.

Based on the idea of state weight, we analyze the wavelet-based hard thresholding
method theoretically and give an equivalent expression for hard thresholding in the form of
state weight. First, we perform discrete wavelet transform (DWT) on noisy images to obtain
the wavelet coefficients dj,k. Based on the size of the wavelet coefficients dj,k, we determine

the state of each wavelet coefficient. That is, when
∣∣∣dj,k

∣∣∣ ≥ λ is satisfied, the state of the
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wavelet coefficient is 1, while when
∣∣∣dj,k

∣∣∣ < λ, the state of the wavelet coefficient is set to

be 0. Thus, we obtain the state quantity vλ
j,k corresponding to all the wavelet coefficients.

vλ
j,k =

1
∣∣∣dj,k

∣∣∣ ≥ λ

0
∣∣∣dj,k

∣∣∣ < λ
(14)

where λ is the threshold. Second, according to the state of the wavelet coefficients, the
weights wλ

j,k can be determined.

wλ
j,k =

{
1 vλ

j,k = 1

0 vλ
j,k = 0

(15)

Finally, weights are applied to the wavelet coefficients.

wλ
j,k(dj,k) =

{
dj,k |dj, k| ≥ λ

0
∣∣∣dj,k

∣∣∣ < λ
(16)

The restored image is constructed by the denoised wavelet coefficients. We call the
above denoising method a two-state weight denoising method, which happens to be a
wavelet-based hard thresholding method. The two-state weight denoising method can
remove noise well, but since there are only two states for the wavelet coefficients, which
belong to the discrete state, it causes the ringing and pseudo-Gibbs phenomena. To this
end, a continuous state weights denoising method is further proposed.

Since noise is mainly distributed in the high frequencies of an image, according
to Section 2.1, the high-frequency subbands of the first layer after performing wavelet
transform are HL subbands, LH subbands, and HH subbands, and the corresponding
wavelet coefficients of these subbands are d11, d12, and d13, respectively. Then, we normalize
the wavelet coefficients d11, d12, and d13, and the continuous state vj,k is obtained.

vj,k =
dj,k −mindj,k

maxdj,k −mindj,k
(17)

In (17), on the one hand, vj,k is obtained by the normalization of wavelet coefficients
and, thus, can maintain some structural properties of the image; on the other hand, the
state variables cannot be accurately estimated due to the presence of noise. Then, under
the premise of maintaining the structure of the state variables, nonlinear diffusion is
implemented to remove the noise effectively. Thus, more accurate state variables are
obtained.

We use the diffusion method proposed by Hajiaboli to diffuse the state quantity vj,k;
here, we take v1,2 as an example.

v1,2
∆
=

d1,2 −mind1,2

maxd1,2 −mind1,2
(18)

The x-direction and y-direction have equal steps ∆x = ∆y = 1, where ∆t = τ, vn
i,j is an

approximation of v1,2(i, j, nτ). The difference operators are given by

vx ≈ ∂xvi,j = (vi−1,j − vi+1,j)/2 vy ≈ ∂yvi,j = (vi,j−1 − vi,j+1)/2

vxx ≈ ∂2
xxvi,j = vi−1,j + vi+1,j − 2vi,j vyy ≈ ∂2

yyvi,j = vi,j−1 + vi,j+1 − 2vi,j

vxy ≈ ∂2
xyvi,j = (vi−1,j−1 + vi+1,j+1)/4− (vi−1,j+1 + vi+1,j−1)/4
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Thus, the gradient magnitude can be expressed as

Λi,j =
√
(∂xvi,j)

2 + (∂yvi,j)
2 (19)

For Equation (13), ∂2
ηη and ∂2

ξξ can be used to derive the corresponding discrete
approximation expressions via the above difference operators. Utilizing Equation (11) for
the diffusion of v1,2, the difference equation is given by

vn+1
i,j = vn

i,j − τ[∂2
xx(c(Λ

n
i,j)

2∂2
ηηvn

i,j + c(Λn
i,j)∂

2
ξξvn

i,j) + ∂2
yy(c(Λ

n
i,j)

2∂2
ηηvn

i,j + c(Λn
i,j)∂

2
ξξvn

i,j)] (20)

In this way, the noise can be removed, and the edge can be protected while a more
accurate state variable ṽj,k can be obtained. Next, the value of the continuous state weight
coefficients wj,k can be calculated according to the value of ṽj,k.

wj,k = ṽj,k (21)

By a similar method, the corresponding weights wj,k of each high-frequency sub-
band are obtained for the wavelet decomposition layer. Then, by applying wj,k to the
wavelet coefficients of the corresponding high-frequency sub-bands, the denoised wavelet
coefficients are obtained, and their structure remains unchanged. The above methods can
be expressed as

d̃j,k = wj,k(dj,k) (22)

where d̃j,k denotes the denoised wavelet coefficients.
Based on the above analysis, our proposed wavelet coefficient acquisition algorithm

can be summarized as follows, where 2-scale wavelet decomposition is taken as an example.

3.2. The Implementation Steps

The steps of our proposed method are as follows:
Step 1. The noise image is decomposed by a 2-scale wavelet, and the LL1,2, LH1,2,

HL1,2, and HH1,2 sub-bands are obtained.
Step 2. The high-frequency coefficients of LH1,2, HL1,2, and HH1,2 are normalized by

Equation (17) to obtain the corresponding continuous state variables vj,k.
Step 3. The fourth-order diffusion method is conducted on the state quantity vj,k

according to Equation (20).
Step 4. By using Equation (21), the weight coefficients wj,k are obtained as determined

by ṽj,k.
Step 5. By using Equation (22), wj,k is applied to the high-frequency wavelet coefficients.
At this point, the wavelet coefficients that remove the noise and can reflect the image

features are obtained.

4. Numerical Experiments

The wavelet coefficients can better reflect the edge and detail information of the image,
so we study the edge information of the image to reflect the effectiveness of the wavelet
coefficients obtained by our proposed method. In this paper, the mode of the wavelet
coefficients is used to get the edge information of the image. The module of the wavelet
coefficients is defined as

Mu(x, y) = (d2
j,H

+ d2
j,V

+ d2
j,D
)

1/2
(23)

According to Section 2.1, we obtain the wavelet coefficients dj,k by discrete wavelet
transform of the noise image u(x, y), j represents scale. The edge information and noise are
mainly concentrated in the high-frequency subbands, thus dj,H , dj,V , and dj,D represent the
horizontal, vertical, and diagonal high-frequency wavelet coefficients, respectively.
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In many high-order diffusion models, the edge is detected by using the diffusion
function composed of the module of the image gradient (see Equations (5) and (12)) or the
module of the gradient of the image convolved with a Gaussian function (see Equation (8)).
The gradient is easily disturbed by noise, which affects the detection of image edge in-
formation. We further illustrate the effectiveness of our method by comparing it with
three commonly used edge detection operators, including the module of the gradient, the
module of the gradient of the image convolved with a Gaussian function, and the module
of the unprocessed wavelet coefficients. Canny is the most commonly used edge detection
operator. In recent years, many scholars put forward many edge detection algorithms
based on the Canny operator [41,42]. We select [41] for experimental verification.

This paper does experiments on images with rich texture details. We use the Figure 1
standard image for our experiments and give detailed experimental results. Daubechies
(dbN) wavelet has advantages in symmetry, regularity, and compact support. At the same
time, the support length of the dbN wavelet is 2N − 1, and the support length of the
wavelet in most applications is generally between 5 and 9. Therefore, so we choose N = 3,
namely db3 wavelet, as the wavelet base for the experiments. To obtain the initial wavelet
coefficients, we use db3 to perform two-layer wavelet decomposition for the edge detection
method based on the module of the wavelet coefficients. According to the following figures
and tables, we compare and analyze the effects of several edge detection algorithms from
the visual aspects and evaluation indicators.
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Figure 1. Testing images. The first row: Airplane, Lena, Clock, Baboo, and Peppers; the second row:
Cell, Flower, Toys, Starfish, and House.

4.1. Visual Comparison

We divide the experiment into three groups. First, we perform experiments on the
original acquisition images in Figure 1. Richly detailed images “airplane” and “flower” are
used for the demonstration experiments, as shown in Figures 2a and 3a. Figures 2b and 3b
show the edge detection results obtained by using the gradient detection method. The
image edges or texture details detected by the gradient detection method are blurred, such
as the edges of the patterns on the wings and the texture on the leaves of flowers are unclear.
The experimental effect of the Gaussian smoothed gradient detection method is shown in
Figures 2c and 3c, where the clarity of the detected image is improved. However, the edge
and texture information of the pattern is still unclear. For the [41] method, the edges of the
pattern on the airplane’s wing in Figure 2d are blurred, while false edges are produced
in Figure 3d, which affects the visual effect. Moreover, this method has a poor effect on
texture detection. Compared with the above three methods, the detection method based
on the module of the wavelet coefficients improves the display of the pattern edges and
texture details. However, from the experimental results in Figures 2f and 3f, we can see
that our proposed method can obtain more apparent pattern edges and details, such as the
lines of the pattern on the airplane wing and the texture of the petals.
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Second, since most of the images we obtained contain noise, we added Gaussian white
noise with standard deviations of 10 and 30 to the test images, respectively. We carry out the
demonstration experiments with the images “Toys” and “house”. The “Toys” image with
a standard deviation of 10 is shown in Figure 4a, and the “house” image with a standard
deviation of 30 is shown in Figure 5a. For the edge detection images obtained by the [41]
method, the edges of the baby elephant’s body are missing, and the texture of the bear’s
clothes is not well detected in Figure 4b. In Figure 5b, there are spurious and intermittent
edges in the detection results of the method described in the literature [41]; for example,
the edge of the eaves is as described. Poor noise suppression and the edges of the detected
image information are not clear, including the clothes of the bear in Figure 4c and the lines
of the eaves in Figure 5c. The Gaussian smoothed gradient detection method suppresses
the noise and improves the clarity of the edge of the image, such as the lines of the small
elephant body in Figure 4d. However, the texture detection effect of the images is not good.
Compared with the Gaussian smoothed gradient detection method, the detection method
based on the module of the wavelet coefficients can detect more clear and more continuous
image edges. Because the method does not preprocess the decomposed wavelet coefficients,
the edge image still contains more noise, as shown in Figures 4e and 5e. The experimental
results of our proposed method are shown in Figures 4f and 5f. In the detection results, we
can not only see accurate and clear object edges but also see that the proposed method has
an obvious noise suppression effect, and the obtained edge image has less noise and high
definition. In Figure 4f, the lines and edges of the toy elephant’s body are visible.
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proposed method.

Finally, we experiment with the texture-informative image “finger”, which contains
noise when acquired, as shown in Figure 6a. As can be seen from Figure 6b,c, the gradi-
ent detection method and the Gaussian smoothed gradient detection method are greatly
affected by the noise, and the detected edges are blurred. In Figure 6d, pseudo edges
and intermittent edges are present in the image obtained by the [41] method. The edges
obtained by the detection method based on the module of the wavelet coefficients are
presented in lines, which better reflect the edge details of the original image. However,
the effect of the noise suppression is not apparent, and the detection results contain noise,
as shown in Figure 6e. In Figure 6f, the image detected by our proposed method has
good edge continuity and accurate edge positioning, which genuinely reflects the details
information of the original image. At the same time, our proposed method can effectively
suppress the noise and obtain clear edge images.

4.2. Evaluation Indicators Comparison

Not only are the five edge detection operators comparable in visual effects, but the
advantages of our proposed operator in edge detection can also be demonstrated objectively
by the given data. In Tables 1–3 the performance of the five edge detection operators is
objectively compared according to the quality of the detected images.
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Table 1. Comparison of PSNR (dB) for different methods on 2 levels of Gaussian noise.

Image σ
Gradient
Detection

Gaussian Smoothed
Gradient [41] Method The Module of

Wavelet Coefficients
Our

Method

Airplane 10 30.7249 31.8325 31.3462 32.4273 32.8672
30 27.9326 28.6239 28.1938 29.3281 29.9341

Lena 10 32.1682 32.7963 32.3252 33.5754 34.6057
30 29.1543 29.6572 29.3836 30.3693 31.1639

Clock 10 29.7719 30.5395 30.9467 31.4836 32.3742
30 27.3164 28.3604 28.5319 29.4625 30.5837

Baboo 10 30.8356 31.7462 31.2953 32.6931 33.7269
30 28.7427 29.4985 29.1438 30.3438 31.5725

Peppers 10 32.4639 33.3262 33.6423 34.4716 35.3842
30 29.4241 30.5451 30.7962 31.3932 32.4254

Cell 10 31.7396 32.6835 31.6364 33.8249 34.6028
30 29.4037 30.2363 29.2038 31.1637 31.6546

Flower 10 30.7063 31.6307 31.2840 32.8438 33.7143
30 28.2458 29.3352 28.8629 30.3625 31.3264

Toys 10 31.2642 31.9451 31.6672 32.8340 33.7932
30 27.6385 28.3443 27.8957 29.1716 30.2537

Starfish 10 30.6396 31.5381 30.4852 32.4633 33.5749
30 27.5167 28.2706 27.2178 28.9368 29.7472

House 10 32.1474 33.7206 32.5643 34.5352 35.7385
30 26.3628 27.8583 26.9348 28.4119 29.6768

Average 29.7099 30.6245 30.1679 31.5048 32.4360
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Table 2. Edge connectivity statistics table.

Image
Gradient
Detection

B/A

Gaussian
Smoothed
Gradient

B/A

[41] Method
B/A

The Module
of Wavelet

Coefficients
B/A

Our Method
B/A

Airplane 0.0396 0.0274 0.0529 0.0208 0.0153
Lena 0.0325 0.0291 0.0472 0.0194 0.0137
Clock 0.0421 0.0382 0.0557 0.0315 0.0263
Baboo 0.0396 0.0317 0.0469 0.0248 0.0195

Peppers 0.0268 0.0228 0.0335 0.0171 0.0120
Cell 0.0375 0.0294 0.0572 0.0269 0.0218

Flower 0.0282 0.0216 0.0394 0.0187 0.0116
Toys 0.0379 0.0325 0.0718 0.0275 0.0224

Starfish 0.0274 0.0238 0.0522 0.0182 0.0139
House 0.0395 0.0251 0.0693 0.0196 0.0127

Due to the presence of noise, the amount of noise in the obtained edge detection images
can indicate the level of denoising performance of the different detection algorithms. We
utilize two evaluation indicators: the mean squared error (MSE), and peak signal-to-noise
ratio (PSNR). The expressions for the relevant definitions are as follows.

MSE(u, u) =
1

M× N

M

∑
i

N

∑
j
(ui,j − ui,j)

2 (24)

PSNR = 10 log10(
2552

MSE
) (25)

where u and u are the restored image and the observed image, respectively. Here, we record
the PSNR values for the second set of experimental results, as shown in Table 1.

From Table 1, the noise resistance of the five edge detection algorithms is shown. At the
same noise level, the detection images acquired by the gradient detection method contain
more noise and have poor noise resistance, with the lowest PSNR values obtained. This
result can also be seen through the comparison of average PSNR values. The smoothing
effect of the Gaussian smoothed gradient detection method improves the PSNR values.
The detection method of [41] has the effect of noise suppression, but the PSNR values
obtained are not as good as that of the Gaussian smoothed gradient detection method.
Compared with the detection method based on the module of the wavelet coefficients, our
proposed method has higher PSNR values, thus enabling the detection images to obtain
more precise edges.

To further illustrate the reliability of the algorithm, the edge detection effect is eval-
uated using the evaluation criteria proposed in [41,42]. The evaluation criteria based on
the connectivity components are given in the [41]. Where A represents the total number
of detected edge points, that is, the number of pixel values of 1 in the edge image; B
represents the number of edge points that meet the 8-connectivity condition. The ratio
B/A can represent the edge integrity. The smaller the value, the fewer discontinuity points,
the better the edge connectivity, and the higher the edge integrity. Taking the first set of
experiments to obtain edge detection images as an example, we present the B/A values of
their edge detection results below, as shown in Table 2. The values in Table 2 show that the
ratio of our proposed algorithm B/A is smaller, with higher accuracy of edge detection and
higher completeness of edge.

The quality factor is a metric proposed by Pratt to evaluate the quality of edge detection
results objectively [42]. The quality factor is determined by the three factors of missed
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detection of true edges, misjudging noise as edges, and positioning error of edges. The
general expression for the quality factor is as follows.

Q =
1

max(Ia, Ib)

Ib

∑
k=1

1
1 + ad2(k)

(26)

where Ia, Ib, and d denote the number of reference edge points, the number of detected edge
points, and the vertical distance between the detected edge point and the reference edge
point, respectively. a is a constant factor, generally taken as 1/9. A quality factor is a positive
number in the range [0, 1]. When the quality factor is larger, it means that the localization
accuracy of the edge points is higher, and the accuracy of the edge detection results is better.
We experiment with the edge detection results obtained for images with a noise variance of
30, and the quality factors for the various methods are shown in Table 3 below.

Table 3. Quality factor statistics table.

Image Gradient
Detection

Gaussian
Smoothed
Gradient

[41] Method
The Module
of Wavelet

Coefficients
Our Method

Airplane 0.6845 0.7251 0.5264 0.7958 0.8343
Lena 0.7364 0.7826 0.6215 0.8353 0.8736
Clock 0.6258 0.6931 0.5803 0.7238 0.7614
Baboo 0.5982 0.6348 0.5174 0.6793 0.6937

Peppers 0.6647 0.6903 0.5293 0.7218 0.7649
Cell 0.6105 0.6529 0.4937 0.6926 0.7795

Flower 0.7322 0.7851 0.6218 0.8139 0.8726
Toys 0.5937 0.6429 0.5242 0.6873 0.7284

Starfish 0.6584 0.7233 0.6149 0.7582 0.7936
House 0.6846 0.7361 0.5264 0.7843 0.8159

As can be seen from the experimental data in Table 3, the quality factor values of the
edge detection results obtained by this method are higher than the quality factor values
of the edge detection results obtained by the other methods. This also demonstrates the
higher accuracy of the edge detection results obtained by the method in this paper.

5. Conclusions

In this paper, a wavelet coefficient recovery method combining the advantages of
wavelet shrinkage and fourth-order anisotropic diffusion is proposed. The low-frequency
and high-frequency wavelet coefficients are obtained by performing a discrete wavelet
transform on the test images. Based on the analysis of the wavelet threshold denoising
method, we propose the state-aware wavelet coefficient acquisition method, in which the
focus is to obtain the state quantity corresponding to the wavelet coefficient by normal-
ization and to conduct the fourth-order anisotropic diffusion of the state quantity. These
establish the foundation for the implementation of the present method. This method avoids
the direct diffusion of the wavelet coefficients and has a good theoretical interpretation. The
information on image edge details can be well reflected by the module of the wavelet coef-
ficients. The effectiveness of our proposed method is demonstrated by detecting the edge
of the image. Objective experiments are based on PSNR values, B/A values (continuity
judgment), and quality factor Q values (accuracy judgment). In terms of subjective vision
and specific experimental data, the module of the wavelet coefficients obtained by the
algorithm in this paper can accurately locate the image edges and maintain the continuity
and clarity of the image edge. It provides good help for the image processing method
combined with wavelet transform. The method in this paper is a real-time edge detection
algorithm that plays a great role in face recognition, image segmentation, and engineering
defect detection and has wide application prospects.
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