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1. Introduction

For some areas of theoretical physics, such as wave mechanics, the theory of oscilla-
tions, etc., the solution of problems is reduced to the problem of eigenvalues. In addition,
the question of the unambiguous definition of a mechanical system, i.e., the Hamilton
function, through the spectrum of eigenvalues of the linear differential equation associated
with it is important.

In the case in which the string is vibrating and the boundary conditions are natural,
it was shown in [1] that the spectrum of eigenvalues uniquely determines the differential
equation, which, in Schrödinger’s theory, is called the “amplitude equation”.

The authors of [2] dealt with the problem of determining the Hill equation (or the one-
dimensional Schrödinger equation) from its spectrum, as well as deriving the Hill equation
from specific properties of its discriminant. A great deal is known about the analytic
structure of the discriminant (see, for example, [3,4]).

The present article is devoted to the asymptotic behavior (as t→ ∞) of solutions to the
initial boundary (mixed) problem for a one-dimensional second-order hyperbolic equation
with periodic coefficients. The authors of [5,6] considered similar questions for the Cauchy
problem with initial conditions, as in the case of a positive Hill operator (H0 > 0) and in
the case when the left end of the spectrum (σ(H0)) of the operator Hill (H0) is non-positive.

Consider as t→ ∞ the following initial-boundary value problem:

utt(x, t)− (p(x) ux(x, t))x + q(x) u(x, t) = 0, x > 0, t > 0, (1)

u(x, t)|t=0 = 0, ut(x, t)|t=0 = f (x), x ≥ 0, (2)

u(x, t)|x=0 = 0, t ≥ 0, (3)

Symmetry 2023, 15, 777. https://doi.org/10.3390/sym15030777 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15030777
https://doi.org/10.3390/sym15030777
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-9895-9628
https://doi.org/10.3390/sym15030777
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15030777?type=check_update&version=2


Symmetry 2023, 15, 777 2 of 22

where p(x) and q(x) are 1-periodic functions,

p(x + 1) = p(x) ≥ const > 0, q(x + 1) = q(x) ≥ 0.

Here, we assume that the functions p(x) and q(x) are continuous or have a finite number
of discontinuities of the first kind in the period f ∈ C∞

0 (R), supp f ⊂ [0, 1].
We also consider the asymptotic behavior (as t→ ∞) of solutions as the initial bound-

ary value problem for a one-dimensional second-order hyperbolic equation with periodic
coefficients p(x) and q(x) on the semi-axis x > 0.

Similarly, these results extend to the symmetric case relative to the origin of the semi-
axis, that is, when x < 0. Furthermore, the concept of symmetry is traced throughout the
text in the process of solving the problem, for example, when we define the operators H+

and H−, for which the integration contours L+ and L− and Green’s functions Γ+(x, ξ, k)
and Γ−(x, ξ, k), respectively, are defined separately.

The asymptotic properties of solutions of exterior boundary value problems were
studied in fundamental books and papers [7–9].

Let us point out one of the main books [7], which presents most of the methods
for studying the asymptotic behavior (as t → ∞) of solutions to problems of different
formulations, including problems similar to (1)–(3) with p(x) = 1 and the corresponding
multidimensional problems; provided that the potential differs from a constant by a finite
value, the function tends toward a constant at infinity rather quickly. This book contains a
large number of necessary references on the studied and actual field of modern science.

In [8], the asymptotics of the spectral function for equations in the whole space and
the semiclassical asymptotics of the solution of the scattering problem and the scattering
amplitude, as well as the asymptotic behavior with an unlimited increase in time of
solutions of external mixed problems for hyperbolic equations, were studied in detail. A
connection was also established between the departure of wave fronts and the decrease in
local energy.

In [9], the asymptotic behavior for t→ ∞ and |x| < a < ∞ of a solution of the problem
of the scattering of waves by periodically moving bodies, as well as the asymptotics of
solutions of more general exterior mixed problems, periodic with respect to t, was studied.

In [10], the asymptotic behavior (as t) of the solution of a mixed problem for a hyper-
bolic equation in the following formulation was studied:

a(x)utt(x, t) = uxx(x, t), 0 < a0 ≤ a(x) ≤ A < +∞, x > 0, t > 0,

u(x, t)|t=0 = f (x), ut(x, t)|t=0 = g(x), x ≥ 0,

u(x, t)|x=0 = 0, t ≥ 0,

It follows from the obtained asymptotic expansion that the solution to the problem
under study uniformly decreases exponentially in x on any compact set as t→ ∞.

One of the most common methods for calculating the eigenvalues of the Sturm–
Liouville problem of the type (p(x)y′(x))′ + (λr(x)− q(x))y(x) = 0 is the integration of a
differential equation with trial values for λ. After applying the appropriate boundary condi-
tion at one end, the validity of the trial value λ is judged by how closely the corresponding
function y(x) matches the boundary condition at the other end.

The authors of [11] described an alternative procedure based on a differential equation
satisfied by the phase function ϑ, where tg ϑ = y(x)/(p(x)y′(x)).

Mixed problems were considered in both bounded and unbounded domains, and the
questions of existence, uniqueness, and stability were studied under various restrictions on
the initial and boundary conditions, as well as under conditions characterizing the behavior
of the solutions of these problems. In this regard, in [12], the first mixed problem for the
wave equation in a cylindrical region was considered; using the method of characteristics,
the authors obtained an explicit formula for the classical solution of this problem and found
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conditions for matching the original functions that guarantee sufficient smoothness of the
solution in the entire region.

A huge number of both fundamental and applied scientific papers and books are
devoted to the asymptotic behavior and spectral properties of the Schrödinger operator
(see [13–22]).

In particular, in [13,14], the spectral properties of the Schrödinger operator in domains
with infinite boundaries were studied, as well as the behavior of the solution in non-
stationary problems as t→ ∞.

In [15], the problem of scattering by a one-dimensional periodic lattice (p(x)) with an
impurity potential (q(x)) was considered. Using the asymptotics of scattered waves, in
this paper, a stationary scattering matrix is constructed, and its properties are studied. In
addition, it is shown that the stationary scattering matrix coincides with the non-stationary
scattering operator, which is defined in a simple way in the quasi-momentum representation
of the unperturbed operator (H0). Here, the inverse scattering problem is also solved, i.e.,
the problem of recovering q(x) from p(x) and scattering data. To solve the inverse problem
in the presence of a periodic lattice, a significant modification of the classical reasoning is
necessary. As a result, in this paper, the conditions on the scattering data necessary with a
finite second moment and sufficient for the existence of a single impurity potential with
given scattering characteristics and a finite first moments are found.

In [16], the asymptotics of the Green’s function as t are found for the one-dimensional
diffusion equation both in the case when the potential is a function with compact support
and in the case when the potential is a periodic function of coordinates. In the first case, the
Green’s function asymptotics can be represented by the elements of the scattering matrix of
the corresponding Schrödinger operator for negative energies on the spectral plane, and in
the second case, the asymptotics can be represented by the Floquet–Bloch function of the
corresponding Hill operator for negative energy values on the spectral plane.

In [22], for a one-dimensional Schrödinger equation with a quasi-periodic potential
analytic on its shell, it was shown that the Floquet representation can be used for almost any
energy (E) in the upper part of the spectrum; it was also proven that the upper part of the
spectrum is purely absolutely continuous, i.e., the Cantor set for the general potential. It was
also shown that for a small potential, these results can be extended to the entire spectrum.

In the case of periodic p(x) and q(x), the first results of the Cauchy problem were
published in [23,24] in the form of short communications, and as noted above, complete
proofs were presented in [5,6]. Similar problems were considered in [25] with p(x) = 1,
that is, in the case of a periodic potential (q(x)).

The authors of [26] proposed a different approach to the study of differential equa-
tions and related initial and boundary value problems. In particular, they presented some
solutions to the 3D Laplace equation in terms of linear combinations of generalized hyper-
geometric functions in a prolate elliptic geometry that models current tokamak shapes. It
was also proven that the obtained solutions are comparable with the solutions obtained in
the standard toroidal geometry.

The main results of this paper were reported in [27] in the form of brief communications.

2. Preliminaries and Auxiliary Statements
2.1. Spectrum and Green’s Function of the Schrödinger Operator with Periodic Coefficients on the
Half-Axis

We continue the function u(x, t) by zero in the region t < 0 and apply Fourier trans-
form to the variable t:

y(x, k) =
∫ ∞

0
u(x, t) eiktdt.

Then, the mixed problem (1)–(3) becomes the next problem on the semi-axis{
(p(x) y′(x, k))′ + (k2 − q(x)) y(x, k) = − f (x), x > 0,

y(0) = 0.
(4)
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In what follows, for an arbitrary function (g(x, k)) we denote its derivative with respect
to x as g′ and its derivative with respect to k as gk.

Let the Equation (4) be homogeneous, i.e., f (x) ≡ 0, and let {y = θ(x, k), y = ϕ(x, k)}
is the fundamental system of solutions of this equation such that{

θ(0, k) = 1, θ′(0, k) = 0,

ϕ(0, k) = 0, ϕ′(0, k) = 1.

It is known [17] that θ(x, k) and ϕ(x, k) are entire functions in k on the real axis and,
for |k| → ∞, take the form: θ(x, k) = cos kx + O(|k|−1e|τ|x),

ϕ(x, k) = 1
k sin kx + O(|k|−2e|τ|x), τ = Im k.

(5)

uniformly in x ∈ [0, 1]. Moreover, these expansions can be differentiated in x and in k.
Let θ(k) = θ(1, k), θ′(k) = θ′(1, k), ϕ(k) = ϕ(1, k), ϕ′(k) = ϕ′(1, k) and F(k) ≡

θ(k) + ϕ′(k). The functions θ(k), θ′(k), ϕ(k), ϕ′(k) and F(k) are on the real axis of the
complex plane of the variable k.

The one-dimensional Schrödinger operator (or Hill operator) is the differential operator

H0 := − d
dx

(
p(x)

d
dx

)
+ q(x),

generated in the Hilbert space (L2(R)) by the operation

Λ0y := −(p(x) y′)′ + q(x) y.

Let H+ (or H−) be the operator generated by the differential operation

Λ0y := −(p(x) y′)′ + q(x) y

with the boundary condition y(0) = 0 in the space L2(0;+∞) (or L2(−∞; 0)).
We formulate some statements as important information about the spectrum of the

operators H+ (or H−), the proof of which, in most cases, can be found in [3,17,19,28].
The spectrum (σ(H0)) of the Schrödinger operator (H0) is absolutely continuous and

is a finite or infinite sequence of isolated segments (zones) separated by lacunae to infinity.
Let us provide a more detailed characterization of the spectrum (σ(H0)) of the Schrödinger

operator (H0). To this end, we consider the following Sturm–Liouville problems.
Let v̂(x, λn) be an eigenfunction of the periodic problem:{ −(p(x)y′)′ + q(x)y = λny, x ∈ [0, 1],

y(0) = y(1), y′(0) = y′(1),
(6)

and let v̂(x, µn) be an eigenfunction of the antiperiodic problem:{ −(p(x)y′)′ + q(x)y = µny, x ∈ [0, 1],

y(0) = −y(1), y′(0) = −y′(1).
(7)

Let both of these functions be normalized in L2([0, 1]). The eigenvalues of the cor-
responding problems (λn = λ2

n and µn = µ2
n, n = 0, 1, 2, . . .) are numbered in ascending

order, taking into account the multiplicity.
Extending the function v̂(x, λn) (or v̂(x, µn)) to the entire real axis in a periodic (or

antiperiodic) way, we obtain the function denoted by v(x, λn) (or v(x, µn)).



Symmetry 2023, 15, 777 5 of 22

It is known [17] (§ 21.4) that if the Schrödinger operator (H0) is positive, then all
eigenvalues of the periodic (antiperiodic) Sturm–Liouville problem are positive. Moreover,
between the numbers λn = λ2

n and µn = µ2
n, n = 0, 1, 2, . . ., there is a relation,

λ0 < µ0 ≤ µ1 < λ1 ≤ λ2 < µ2 ≤ µ3 < λ3 ≤, . . . . (8)

The Schrödinger operator has only a continuous spectrum, which is located on the
real axis and is semibounded on the left [17].

Let us replace the spectral parameter (λ) with k2 and consider the spectra of the
operators H+ and H− on the complex plane of the variable k.

The continuous spectra of the operators H+ and H− are the same and coincide with
the continuous spectrum (σ(H0)) of the Schrödinger operator (H0).

Let the Schrödinger operator (H0) be positive: H0 > 0. Then, the continuous spectra of
the operators H+ and H− on the complex plane of the variable k coincide with the sequence
of segments on the real axis extending in both directions to infinity

[−λ2n+1,−µ2n+1], [−µ2n,−λ2n], [λ2n, µ2n], [µ2n+1, λ2n+1], n = 0, 1, 2, . . . .

The set of points (±λn) coincides with the set of roots of the equation F(k) = 2 (or
±µn with the set of roots of the equation F(k) = −2) , n = 0, 1, 2, . . ..

In addition to the continuous spectrum, the operators H+ and H− have eigenvalues
that are determined by the zeros of the function ϕ(k).

For gaps in the spectrum, that is, segments not included in the spectrum,

[−λ2n,−λ2n−1], [λ2n−1, λ2n], n ≥ 1, [−µ2n+1,−µ2n], [µ2n, µ2n+1], n ≥ 0,

λ2n−1 6= λ2n and µ2n 6= µ2n+1 are denoted as lacunae.
The function ϕ(k) has one simple zero in these intervals and no other zeros.
If λn = λ2

n (or µn = µ2
n) is the end of a lacuna, then (8) implies that±λn is a simple root

of the equation F(k) = 2 (or±µn is the root of the equation F(k) = −2), n = 0, 1, 2, . . ., ([18]).
As is known [17], if λn = λ2

n (or µn = µ2
n) is the end of a lacuna, then λn (or µn) is the

simple eigenvalue of the periodic (or antiperiodic) Sturm–Liouville problem (6) (or (7)).
The eigenvalues of the operator H+ are the numbers (λn = k2

n) for which the following
conditions are satisfied

ϕ(kn) = 0, sign
√

F2(kn)− 4 (ϕ′(kn)− θ(kn)) = −1. (9)

Similarly, the eigenvalues of the operator H− are the numbers (λn = k2
n) for which the

following conditions are satisfied

ϕ(kn) = 0, sign
√

F2(kn)− 4 (ϕ′(kn)− θ(kn)) = 1. (10)

The eigenvalues of the operators H+ and H− on the k plane correspond to the points
that are strictly inside the lacunae, since the ends of the lacunae are determined by the
condition F2(kn)− 4 = 0:

(ϕ′(k)− θ(k))2 − (F2(k)− 4) = −4ϕ′(k)θ(k), (11)

It follows from Equation (11) that at the zeros of the function (ϕ(k)) are located at the ends
of the lacunae (ϕ′(k)− θ(k) = 0).

It also follows from Equation (11) that if inside the lacunae, the function ϕ(k) = 0,
then the condition of Equation (9) (or (10)) is satisfied, which means that the point λ = k2

is an eigenvalue of the operator H+ (or H−).
Let γν, ν = 1, 2, . . . (or σν, ν = 1, 2, . . .) be the set of zeros of the function ϕ(k) located

inside the lacunae in which the conditions of Equation (9) (or (10)) are satisfied.
Let γ−ν = −γν, ν = 1, 2, . . . (or σ−ν = −σν, ν = 1, 2, . . .).
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Since the functions ϕ(k), ϕ′(k)− θ(k) and
√

F2(kn)− 4 are even, then on the complex
plane of the variable k, the discrete spectrum of the operator H+ (or H−) coincides with the
set {γν}, ν = ±1,±2, . . . (or {σν}, ν = ±1,±2, . . .).

Let us consider the following eigenvalue problem{ −(p(x)y′)′ + q(x)y = k2y, 0 < x < 1,

y(0) = y(1).
(12)

It is known [17,19] that if the Schrödinger operator (H0) is positive, then all eigenvalues
(λ = k2) of the problem described in Equation (12) are positive and simple. We enumerate
the eigenvalues of the problem described in Equation (12) in ascending order and let
{κn}, n = 1, 2, . . . be the set of eigenvalues.

Furthermore, v(x, κn) denotes the eigenfunction corresponding to the eigenvalue
κn = κ2

n normalized by the condition ||v; L2([0, 1])|| = 1.
If we introduce the notation κ−ν = −κν, then the set {κν}, ν = ±1,±2, . . . coincides

with the set of all zeros of the function ϕ(k), and the following inequalities hold:

µ2n ≤ κ2n+1 ≤ µ2n+1, λ2n+1 ≤ κ2n+2 ≤ λ2n+2, n = 0, 1, 2, . . . (13)

The sets {γν}, ν = ±1,±2, . . . and {σν}, ν = ±1,±2, . . . are disjoint subsets of the set
{κν}, ν = ±1,±2, . . ..

Generally speaking, they do not exhaust all {κν}, ν = ±1,±2, . . ., since the last set
may contain zeros of the function ϕ(k) located on the boundaries of the lacuna in which
ϕ′(k)− θ(k) = 0.

Since the function ϕ(x, κn) satisfies the equation and boundary conditions of the
problem described in Equation (12), then

v(x, κn) =
ϕ(x, κn)√∫ 1

0 |ϕ(x, κn)|2dx
=

ϕ(x,−κn)√∫ 1
0 |ϕ(x, κn)|2dx

,

and the set {v(x, κn)}, n = 1, 2, . . . is complete in the space L2([0, 1]).
C′ denotes the complex plane of the variable k with cuts along the vertical rays lying

in the lower half-plane and starting at the ends of the lacunae.
Furthermore,

m1(k) =
ϕ′(k)− θ(k)

2ϕ(k)
+

√
(θ(k) + ϕ′(k))2 − 4

2ϕ(k)
, k ∈ C′,

m2(k) =
ϕ′(k)− θ(k)

2ϕ(k)
−

√
(θ(k) + ϕ′(k))2 − 4

2ϕ(k)
, k ∈ C′,

where the branch of the root is determined by the condition
√

F(k)2 − 4 > 0 for k = 0.
Note that the function

√
F(k)2 − 4 branches only at the ends of the lacunae [17], so

m1(k) and m2(k) are single-valued in C′. Then, for any k, Im k > 0

ψ1(x, k) ≡ θ(x, k) + m1(k) ϕ(x, k) ∈ L2(−∞, 0),

ψ2(x, k) ≡ θ(x, k) + m2(k) ϕ(x, k) ∈ L2(0,+∞).
(14)

For Im k > 0 the Green’s function of the operator H+ is equal to

Γ+(x, ξ, k) =
ψ2(x, k)ψ2(ξ, k)
m1(k)−m2(k)

+ T(x, ξ, k). (15)
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Similarly, for Im k > 0, the Green’s function of the operator H− is equal to

Γ−(x, ξ, k) =
ψ1(x, k)ψ1(ξ, k)
m1(k)−m2(k)

+ T(x, ξ, k). (16)

From the identities presented in Equation (14) and from the obvious consequence of
the following equations,

Λψi = −(p(x)ψ′i)
′ + q(x)ψi ≡ 0, i = 1, 2,

it follows that the constructed functions, Γ+(x, ξ, k) and Γ−(x, ξ, k), are Green’s functions
of the operators H+ and H−, respectively, where ψ1 ∈ L2(−∞, 0) and ψ2 ∈ L2(0,+∞) for
Im k > 0. Then,

ψi
∣∣
x=0 = 1, (ψi)

′∣∣
x=0 = mi, i = 1, 2.

The function

T(x, ξ, k) =
1

m2(k)−m1(k)

{
ψ1(ξ, k)ψ2(x, k) for ξ < x,

ψ1(x, k)ψ2(ξ, k) for ξ > x,

coincides with the Green’s function Γ(x, ξ, k) of the Hill operator H0:

Γ(x, ξ, k) =


ψ1(ξ,k)ψ2(x,k)
m2(k)−m1(k)

for ξ < x,

ψ1(x,k)ψ2(ξ,k)
m2(k)−m1(k)

for ξ > x,

Given the identities presented in Equation (14) and the following equation,

θ(x, k) ϕ′(x, k)− θ′(x, k) ϕ(x, k) = 1 for x ∈ R,

we obtain

Γ(x, ξ, k) =


− h(x,ξ,k)√

(ϕ′(k)+θ(k))2−4
+ 1

2 (θ(ξ, k) ϕ(x, k)− θ(x, k) ϕ(ξ, k)) for ξ < x,

− h(x,ξ,k)√
(ϕ′(k)+θ(k))2−4

+ 1
2 (θ(x, k) ϕ(ξ, k)− θ(ξ, k) ϕ(x, k)) for ξ > x,

with
h(x, ξ, k) = ϕ(k) θ(x, k) θ(ξ, k)− θ′(k) ϕ(ξ, k)ϕ(x, k)+

+ ϕ′(k)−θ(k)
2 (θ(ξ, k) ϕ(x, k) + θ(x, k) ϕ(ξ, k)).

In Equations (15) and (16), instead of the functions ψi and mi, i = 1, 2, we write their
expressions in terms of the functions ϕ and θ and obtain:

ψ2(x, k)ψ2(ξ, k)
m1(k)−m2(k)

=
h(x, ξ, k)√

(ϕ′(k) + θ(k))2 − 4
− 1

2
(θ(x, k) ϕ(ξ, k) + θ(ξ, k) ϕ(x, k))−

−
ϕ′(k)− θ(k)−

√
(ϕ′(k) + θ(k))2 − 4

2ϕ(k)
· ϕ(x, k)ϕ(ξ, k).

Therefore, the Green’s function of the operator H+ is equal to

Γ+(x, ξ, k) = −
ϕ′(k)− θ(k)−

√
(ϕ′(k) + θ(k))2 − 4

2ϕ(k)
· ϕ(x, k)ϕ(ξ, k)−

{
θ(x, k) ϕ(ξ, k) for ξ < x,

θ(ξ, k) ϕ(x, k) for ξ ≥ x.
(17)

Similarly, for the Green’s function of the operator H−, we obtain
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Γ−(x, ξ, k) = −
ϕ′(k)− θ(k) +

√
(ϕ′(k) + θ(k))2 − 4

2ϕ(k)
· ϕ(x, k)ϕ(ξ, k) +

{
θ(x, k) ϕ(ξ, k) for ξ ≥ x,

θ(ξ, k) ϕ(x, k) for ξ < x.
(18)

In Equations (17) and (18), the single-valued branch of the root√
G(k) =

√
(ϕ′(k) + θ(k))2 − 4

is determined by the condition
√

G(k)
∣∣
k=0 > 0. The singularities of the function Γ+(x, ξ, k)

(or Γ−(x, ξ, k)) on the complex plane of the variable k are branch points that coincide with
ends of lacunae in the spectrum of the Schrödinger operator (H0), that is, the points where
(ϕ′(k) + θ(k))2 − 4 = 0, and poles located at points γν (or σν). Therefore, the functions
Γ+(x, ξ, k) (or Γ−(x, ξ, k)) can be extended metaphoricallyto the domain C′.

2.2. Auxiliary Statements

The solution to the problem presented in Equations (1)–(3) is expressed in terms of the
function Γ+(x, ξ, k) by the following formula

u(x, t) = − 1
2π

∫
Im k=a

∫ 1

0
Γ+(x, ξ, k) f (ξ) e−iktdξ dk, (19)

where a is a positive constant.
The Green’s function (Γ+(x, ξ, k) (or Γ−(x, ξ, k))) for each x, ξ ∈ [0, 1] continues analyt-

ically to C′.
To study the properties of the Equation (19) integral, we introduce the following

notation:
L+ := {k : Im k = a, a > 0}, L− = {k : Im k = −d, d > 0},

and through ql , the segment Re k = lπ + π
3 ,−d ≤ Im k ≤ a, l is any real number.

Proposition 1. For the integrals

J1 ≡
∫

L+

1∫
0

θ(ξ, k) ϕ(x, k) f (ξ) e−iktdξ dk, x ∈ [0, 1],

J2 ≡
∫

L+

1∫
0

θ(x, k) ϕ(ξ, k) f (ξ) e−iktdξ dk, x ∈ [0, 1].
(20)

the following estimates hold:

|J1| ≤ Ce−td|| f ; L2||, x ∈ [0, 1],

|J2| ≤ Ce−td|| f ; L2||. x ∈ [0, 1].
(21)

Proof. From Equation (5), it follows that∫
ql

∫ x

0
θ(ξ, k) ϕ(x, k) f (ξ) e−iktdξ dk→ 0 for |l| → ∞,

Moreover, |l| can tend toward infinity in any way, so in Equation (20), the straight line
L+ can be replaced by L−. From Equation (5), it also follows that

θ(ξ, k) ϕ(x, k) = S1(x, ξ, k) + S2(x, ξ, k),

where
S1(x, ξ, k) =

1
k

cos kξ sin kx
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is an entire function (k ∈ C′) for each x, ξ ∈ [0, 1], and the function S2(x, ξ, k) for k → ∞
uniformly in x, ξ ∈ [0, 1] has the form

S2(x, ξ, k) = O
(
|k|−2e|τ|(x+ξ)

)
.

Hence,
J1 = J(1)1 + J(2)1 ,

with

J(1)1 = −
∫

L−

∫ 1

0

1
k

cos kξ sin kx f (ξ) e−iktdξ dk, J(2)1 = −
∫

L−

∫ 1

0
S2(x, ξ, k) f (ξ) e−iktdξ dk.

To investigate the integrals J(1)1 and J(2)1 , we use the technique developed in [5,6]. Let
k = σ− id for k ∈ L−; then,

J(1)1 = −
∫ +∞

−∞

1
σ− id

sin(σ− id)x e−iσ te−dtΦ(σ, x) dσ, x ∈ [0, 1], (22)

where

Φ(σ, x) ≡
∫ x

0
cos(σ− id)ξ f (ξ) dξ =

1
2

∫ x

0
eiσξedξ f (ξ) dξ +

1
2

∫ x

0
e−iσξ e−dξ f (ξ) dξ. (23)

To investigate the first term on the right side of Equation (23), we single out the function

w(x, ξ) =

{
edξ f (ξ) for ξ ≤ x,

0 for ξ > x.

For any fixed x ∈ [0, 1], w ∈ L2(−∞,+∞), and

||w; L2|| =
(∫ x

0
e2dξ f 2(ξ) dξ

)1/2
≤
(∫ 1

0
e2dξ f 2(ξ) dξ

)1/2

≤ C1|| f ; L2||,

where C1 does not depend on f and x.
According to the Parseval equality for the Fourier transform,

||
∫ x

0
eiσξ edξ f (ξ) dξ; L2(R1

σ)|| =
√

2π||w; L2(R1
ξ)|| ≤ C1

√
2π|| f ; L2||, x ∈ [0, 1].

Similarly, the second term of the right-hand side of Equation (23) is investigated.
Consequently,

||Φ(σ, x); L2(R1
σ)|| ≤ C2|| f ; L2||, for any fixed x ∈ [0, 1], (24)

where C2 does not depend on f and x.
Due to the Cauchy–Schwarz inequality and the inequality of Equation (24) from the

expression (22), we obtain

|J(1)1 | ≤ C3e−td|| f ; L2||, C3 = const > 0. (25)

To study J(2)1 , note that

J(2)1 = −
∫

L−

∫ 1

0
S2(x, ξ, k) f (ξ) e−iktdξ dk =

= −
∫ +∞

−∞

1
σ− id

e−iσ te−dt

(∫ x

0
f (ξ)O

(
ed(x+ξ)

|σ− id|

)
dξ

)
dσ.
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We can easily show that∣∣∣∣∣
∫ x

0
f (ξ)O

(
ed(x+ξ)

|σ− id|

)
dξ

∣∣∣∣∣
2

≤ C
|σ− id|2 || f ; L2||.

Next, by applying the Cauchy–Schwarz inequality, we obtain the estimate

|J(2)1 | ≤ C5e−td|| f ; L2||, C4 = const > 0. (26)

The estimates (25) and (26) for J(1)1 and J(2)1 imply the first inequality (21):

|J1| ≤ Ce−td|| f ; L2||.

Similarly, for the second integral (20)

J2 ≡
∫

L+

∫ 1

0
θ(x, k) ϕ(ξ, k) f (ξ) e−iktdξ dk, x ∈ [0, 1],

we obtain the second inequality (21):

|J2| ≤ Ce−td|| f ; L2||.

Thus, the integrals J1 and J2 decay exponentially as t→ ∞.

Let δ be some finite contour in C′, and Jδ denotes the integral

Jδ =
∫

δ

∫ 1

0
m2(k) ϕ(x, k) ϕ(ξ, k) f (ξ) e−iktdξ dk, x ∈ [0, 1].

Now, let the contour (∆) be unbounded. Furthermore,

J∆ = lim
j→∞

J∆∩{k: |Rek|≤π j+ π
2 }, j ∈ N.

Proposition 2. The solution to the problem expressed in Equations (1)–(3) has the form

u(x, t) =
1

2π
JL − i J3 + v1(x, t), x ∈ [0, 1], t > 0, (27)

where

J3 =
∫ 1

0

(
∑

ν=−∞, ν 6=0
resk=γν

m2(k) ϕ(x, k) ϕ(ξ, k) e−ikt

)
f (ξ) dξ,

while the function v1(x, t) for x ∈ [0, 1] and t > 0 satisfies the following estimate

|v1(x, t)| ≤ C e−td|| f ; L2||, C = const > 0. (28)

Proof. From the formulas (17), (19) and the estimates (20), it follows that

u(x, t) =
1

2π
JL+ + v1(x, t),

where the estimate (28) is valid for the function v1.
Based on Equation (5), it is easy to show that

Jqj ≡
∫

qj

∫ 1

0
m2(k) ϕ(x, k) ϕ(ξ, k) f (ξ) e−iktdξ dk→ 0 for |j| → ∞, j ∈ N. (29)
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The features of the function m2(k) are the points where (ϕ′(k) + θ(k))2 − 4 = 0, that
is, the branch points that coincide with the ends of the lacunae in the spectrum of the
operator H0, as well as points where ϕ(k) = 0, that is, simple poles located at points γν.
The function m2(k) has no other singular points. According to Equation (29), the validity
of the Proposition follows.

From the point (k = p) lying on the real axis, we draw a vertical cut into the lower
half-plane of the variable k. Consider a contour consisting of the left edge of this cut from
point p− id, d > 0 to point p, then from the right edge of the same cut from point p to
point p− id; this contour is denoted by lp.

Consider on the plane C′ a contour (L), which is the union of the following
three contours

L = L1 ∪ L2 ∪ L3, (30)

where

L1 =

(
∞⋃

n=0
lλn

)⋃( ∞⋃
n=0

l−λn

)
, L2 =

(
∞⋃

n=0
lµn

)⋃( ∞⋃
n=0

l−µn

)
,

L3 = L− ∩C′,

Moreover, if λj+1 = λj (or µj+1 = µj) for some non-negative integer (j), then these
unions do not include lλj , lλj+1 , l−λj , l−λj+1 (or lµj , lµj+1 , l−µj , l−µj+1 ).

Taking into account Equation (30), we write the integral JL as

JL = JL1 + JL2 + JL3 ,

with

JL1 =
∞

∑
n=0

(Jlλn
+ Jl−λn

), JL2 =
∞

∑
n=0

(Jlµn
+ Jl−µn

). (31)

Here, summation is carried out only over those n values for which the points λn (or
µn) are the ends of lacunae.

Proposition 3. The following estimate takes place

|JL3 | ≤ C e−td|| f ; L2|| for x ∈ [0, 1], t > 0. (32)

Proof. According to Equation (5) in the strip −d ≤ Im k ≤ a for |k| → ∞ uniformly in
x, ξ ∈ [0, 1], the following expression holds

ϕ(x, k) ϕ(ξ, k) =
1
k2

(
sin kx sin kξ + O

(
|k|−1

))
. (33)

Taking into account Equation (33), we rewrite JL3 as

JL3 =

= 1
2

∫
L−

∫ 1
0

ϕ′(k)−θ(k)−
√

(ϕ′(k)+θ(k))2−4
1
k (sin k+O(|k|−1))

· 1
k2

(
sin kx sin kξ + O

(
|k|−1)) f (ξ) e−iktdξ dk =

= 1
2

∫
L−

∫ 1
0

1
k ·

ϕ′(k)−θ(k)−
√

(ϕ′(k)+θ(k))2−4
sin k+O(|k|−1)

· sin kx sin kξ f (ξ) e−iktdξ dk+

+ 1
2

∫
L−

∫ 1
0

ϕ′(k)−θ(k)−
√

(ϕ′(k)+θ(k))2−4
sin k+O(|k|−1)

·O
(
|k|−2) f (ξ) e−iktdξ dk

(34)

According to the Equation (5), it follows that there is a constant (C1 > 0) such that∣∣∣∣ϕ′(k)− θ(k)−
√
(ϕ′(k) + θ(k))2 − 4

∣∣∣∣ ≤ C1 for k ∈ L−.
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Since there exists C2 > 0 such that | sin k| ≥ C2 > 0 for k ∈ L−, then

| sin k + O
(
|k|−1

)
| ≥ C3 > 0 for k ∈ L− and k� 1. (35)

Furthermore, the function ϕ(k) does not vanish on L−, that is, it has only real zeros.
Hence, taking into account Equation (35) and the integral of Equation (34), the denom-

inator (sin k + O
(
|k|−1)) equal to k ϕ(k) is modulo-limited to L−, that is,

|k ϕ(k)| = | sin k + O
(
|k|−1

)
| ≥ C4 > 0 for k ∈ L−.

Furthermore, just as in deriving the estimates of Equations (25) and (26) for the
integrals J(1)1 and J(2)1 in Proposition 1, we are convinced of the validity of this Proposition
with the estimate of Equation (32) for the integral JL3 .

Let B(a) be the circle B(a) = {k : |k− πa| ≤ π
4 } and G(k) ≡ (θ(k) + ϕ′(k))2 − 4.

Let there exist n1 ∈ N such that the following formulas hold for n > n1 (see [17,19,28])

λ2n−1 = 2nπ + O
(

1
n

)
, λ2n = 2nπ + O

(
1
n

)
,

µ2n+1 = (2n + 1)π + O
(

1
n

)
, µ2n+1 = (2n + 1)π + O

(
1
n

)
.

(36)

The number (d > 0) with the presence of which the contours L−, l±λi and l±µi are
determined is chosen so that d < π

4 .
Therefore, according to Equation (36), we conclude that there exists n2 > n1, n2 ∈ N

such that for n > n2, the contours lλ2n and lλ2n−1 (or lµ2n and lµ2n+1) belong to the circle
B(2n) (or the circle B(2n + 1)).

In the same way, we conclude that the contours l−λ2n and l−λ2n−1 (or l−µ2n and l−µ2n+1 )
belong to the circle B(−2n) (or the circle B(−(2n + 1))).

Proposition 4. The following representations are valid:

G(k) = (k− λ2m−1)(k− λ2m) g2m(k), |g2m(k)| ≤ C2m for k ∈ lλ2m−1 ∪ lλ2m ,

G(k) = (k + λ2m+1)(k + λ2m) g−2m(k), |g−2m(k)| ≤ C−2m for k ∈ l−λ2m−1 ∪ l−λ2m ,

m = 1, 2, 3, . . . ,

G(k) = (k− µ2m)(k− µ2m+1) g2m+1(k), |g2m+1(k)| ≤ C2m+1 for k ∈ lµ2m ∪ lµ2m+1 ,

G(k) = (k + µ2m)(k + µ2m+1) g−(2m+1)(k), |g−(2m+1)(k)| ≤ C−(2m+1) for k ∈ l−µ2m ∪ l−µ2m+1 ,

m = 0, 1, 2, . . . ,

where the constants C±2m and C±(2m+1) depend only on m.

Proof. The validity of the first of the equalities follows from the fact that the entire function
(G(k)) on the contours lλ2m−1 and lλ2m has no zeros other than λ2m−1 and λ2m.

The other equalities are proven similarly.

Proposition 5. For sufficiently large n > n2, the following equalities hold

G(k) = (k− λ2n−1)(k− λ2n) g2n(k), |g2n(k)| ≤ C for k ∈ B(2n),

G(k) = (k + λ2n−1)(k + λ2n) g−2n(k), |g−2n(k)| ≤ C for k ∈ B(−2n),

G(k) = (k− µ2n)(k− µ2n+1) g2n+1(k), |g2n+1(k)| ≤ C for k ∈ B(2n + 1),

G(k) = (k + µ2n)(k + µ2n+1) g−(2n+1)(k), |g−(2n+1)(k)| ≤ C for k ∈ B(−(2n + 1)),

where the constant (C) does not depend on n.
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Proof. Here, we will prove the first equality. The case of other equalities is proven similarly.
Based on the definition of the number n2 for n > n2, we can conclude that the numbers

λ2n−1 and λ2n belong to the circle B(2n), and in this circle, the function G(k) has no other
zeros [17]. Therefore, the function G(k) for k ∈ B(2n) can be represented as

G(k) = (k− λ2n−1)(k− λ2n) g2n(k),

with g2n(k) 6= 0 for k ∈ B(2n).
In the circle B(0) = {k : |k| ≤ π

4 }, the function h0(k) = − 4sin2k
k2 has no zeros, so there

exists C1 > 0 such that |h0(k)| < C1 for k ∈ B(0).
Having made the change of variable (k = k′ + 2nπ, k′ ∈ B(0)), the functions G(k)

and g2n(k) become functions with new variables (G2n(k′) = G(k′ + 2nπ) and g̃2n(k′) =
g2n(k′ + 2nπ)).

From the Formula (5), it follows that:

G(k) = −4sin2k + O
(
|k|−1e2|τ|

)
as |k| → ∞,

G2n(k′) = −4sin2k′ + O
(

n−1e2|τ|
)

as n→ ∞. (37)

Hence,

g̃2n(k′) = g2n(k′ + 2nπ) =
G(k′ + 2nπ)

(k′ + 2nπ − λ2n−1)(k′ + 2nπ − λ2n)
.

Based on Equations (36) and (37), we can conclude that on the circle |k′| = π
4 , the

sequence g̃2n(k′) tends uniformly toward h0(k′) as n→ ∞.

Remark 1. Since in a sufficiently small neighborhood of the contour lλ0 (or l−λ0), the function
G(k) has a single zero k = λ0 (or k = −λ0), the following equalities hold

G(k)| = (k− λ0) g0(k) |g0(k)| ≤ C for k ∈ lλ0 ,

G(k)| = (k + λ0) g̃0(k) |g̃0(k)| ≤ C for k ∈ l−λ0 .

Proposition 6. The following representations are valid:

ϕ(k) = (k− κ2m) ϕ2m(k), |ϕ2m(k)| ≥ C2m > 0 for k ∈ lλ2m−1 ∪ lλ2m ,

ϕ(k) = (k + κ2m) ϕ−2m(k), |ϕ−2m(k)| ≥ C−2m > 0 for k ∈ l−λ2m−1 ∪ l−λ2m ,

m = 1, 2, 3, . . . ,

ϕ(k) = (k− κ2m+1) ϕ2m+1(k), |ϕ2m+1(k)| ≥ C2m+1 > 0 for k ∈ lµ2m ∪ lµ2m+1 ,

ϕ(k) = (k + κ2m+1) ϕ−(2m+1)(k), |ϕ−(2m+1)(k)| ≥ C−(2m+1) > 0 for k ∈ l−µ2m ∪ l−µ2m+1 ,

m = 0, 1, 2, . . . .

(38)

where the constants C±2m and C±(2m+1) depend only on m.

Proof. The validity of the first of the equalities follows from the fact that the entire function
(ϕ(k)) on the contours lλ2m−1 and lλ2m has no zeros other than κ2m.

The case of the remaining equalities is proven in a similar way.

Proposition 7. For sufficiently large n > n2, the following equalities hold
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k ϕ(k) = (k− κ2n) ϕ2n(k), |ϕ2n(k)| ≥ C > 0 for k ∈ B(2n),

k ϕ(k) = (k + κ2n) ϕ−2n(k), |ϕ−2n(k)| ≥ C > 0 for k ∈ B(−2n),

k ϕ(k) = (k− κ2n+1) ϕ2n+1(k), |ϕ2n+1(k)| ≥ C > 0 for k ∈ B(2n + 1),

k ϕ(k) = (k + κ2n+1) ϕ−(2n+1)(k), |ϕ−(2n+1)(k)| ≥ C > 0 for k ∈ B(−(2n + 1)),

(39)

where the constant C does not depend on n.

Proof. We will prove the first equality. The case of the remaining equalities is proven in a
similar way.

Based on the definition of the number n2, for n > n2, the numbers κ2n belong to the
circle B(2n), and the function k ϕ(k) has no other zeros in this circle [17]. This implies that
the function k ϕ(k) for k ∈ B(2n) can be written as

k ϕ(k) = (k− κ2n) ϕ2n(k),

where ϕ2n(k) 6= 0 for k ∈ B(2n).
The functions ϕ(k) and θ′(k) each have one simple zero in the segments [λ2n−1, λ2n],

n ≥ 1 and [µ2n, µ2n+1], n ≥ 0.
The zeros of the function ϕ(k) lying in the segments [λ2n−1, λ2n] are denoted by κ2n,

and the zeros lying in the segments [µ2n, µ2n+1] are denoted by κ2n+1.
Similarly, the zeros of the function θ′(k), which lies in the segments [λ2n−1, λ2n] are

denoted by σ2n, and zeros lying in the segments [µ2n, µ2n+1] are denoted by σ2n+1.
Therefore, in the same way as for Proposition 5, we can prove that for sufficiently large

n ∈ N in the circle (B(n)), the equalities

k ϕ(k) = (k− k′n) ϕn(k) and
1
k

θ′(k) = (k− k
′′
n) θ′n(k),

where k′n and k
′′
n are the zeros of the functions ϕ(k) and θ′(k), respectively, and |ϕn(k)| ≥

C > 0, |θ′n(k)| ≥ C > 0 for k ∈ B(n).

Remark 2. Since the function ϕ(k) has no zeros in sufficiently small neighborhoods of the contours
(l±λ0 ), the following inequality holds:

|ϕ(k)| ≥ C > 0 for k ∈ lλ0 ∪ l−λ0 .

Equalities in systems (38) (or (39)) are also valid for the function θ′(k) (or 1
k θ′(k)) if σi is substituted

in for κi.

Lemma 1. The following inequalities hold:

|JL1 | ≤
C√

t
· || f ; L2(R)||, x ∈ [0, 1], t > 1,

|JL2 | ≤
C√

t
· || f ; L2(R)||, x ∈ [0, 1], t > 1.

(40)

Proof. Let us write out in detail the first integral from Equation (31):

JL1 =
∞
∑

n=0
(Jlλn

+ Jl−λn
) =

= Jlλ0
+ Jl−λ0

+
∞
∑

n=1
(Jlλ2n

+ Jlλ2n−1
) +

∞
∑

n=1
(Jl−λ2n

+ Jl−λ2n−1
).

(41)

First, consider the sum

I =
∞

∑
n=1

Jlλ2n
. (42)
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Note that based on the form of the contour lλ2n and given that the function

ϕ′(k)− θ(k)
2ϕ(k)

ϕ(x, k)ϕ(ξ, k)e−ikt

has no singular points on lλ2n , the following equality follows.

∫
lλ2n

∫ 1

0

ϕ′(k)− θ(k)
2ϕ(k)

ϕ(x, k)ϕ(ξ, k) f (ξ)e−iktdξdk = 0. (43)

Let the number n2 be the same as in Propositions 5 and 7. Taking into account
Propositions 4–7, Equations (33) and (43) and the fact that k = λ2n + iτ , −d ≤ τ ≤ 0 for
k ∈ lλ2n , the sum (42) can be rewritten as

I =

= −i
∞
∑

n=1
e−iλ2nt

d∫
0

1∫
0

√
(ϕ′(λ2n−iτ)+θ(λ2n−iτ))2−4

ϕ(λ2n−iτ) ϕ(x, λ2n − iτ)ϕ(ξ, λ2n − iτ) f (ξ)e−tτdξdτ =

= I1 + I2 + I3,

where

−I1 =

i
n2
∑

n=1
e−iλ2nt

d∫
0

1∫
0

√
−iτ((λ2n−λ2n−1)−iτ) g2n(λ2n−iτ)
((λ2n−κ2n)−iτ)ϕ2n(λ2n−iτ) ϕ(x, λ2n − iτ)ϕ(ξ, λ2n − iτ) f (ξ)e−tτdξdτ,

−I2 =

i
∞
∑

n=n2+1

(
e−iλ2nt

d∫
0

√
−iτ((λ2n−λ2n−1)−iτ) g2n(λ2n−iτ)
((λ2n−κ2n)−iτ)ϕ2n(λ2n−iτ) · e−tτ

λ2n−iτ sin(λ2n − iτ)x

(
1∫

0
f (ξ) sin(λ2n − iτ)ξ dξ

)
dτ

)
,

−I3 =

i
∞
∑

n=n2+1

(
e−iλ2nt

d∫
0

√
−iτ((λ2n−λ2n−1)−iτ) g2n(λ2n−iτ)
((λ2n−κ2n)−iτ)ϕ2n(λ2n−iτ) · e−tτ

(
1∫

0
f (ξ)O(|λ2n − iτ|−2) dξ

)
dτ

)
.

According to Propositions 4 and 6 and the relations of Equation (13), for those n values
over which summation is carried out in I1, the following inequalities hold:∣∣∣∣∣

√
−iτ((λ2n − λ2n−1)− iτ) g2n(λ2n − iτ)
((λ2n − κ2n)− iτ)ϕ2n(λ2n − iτ)

∣∣∣∣∣ ≤ C1√
τ

for 0 < τ ≤ d, (44)

where the constant C1 can be chosen independent of n.
We also note that for k ∈ {k : |Rek| ≤ λ2n2} ∩ {k : −d ≤ Imk ≤ 0}, the following

estimate is valid
|ϕ(x, k)| ≤ C2, x ∈ [0, 1]. (45)

Based on Equations (44) and (45), is easy to obtain

|I1| ≤ C3|| f ; L2||
d∫

0

e−tτ
√

τ
dτ ≤ C√

t
· || f ; L2||, x ∈ [0, 1]. (46)

Let us study the sum I2. From Propositions 5 and 7, it follows∣∣∣∣∣
√
−iτ((λ2n − λ2n−1)− iτ) g2n(λ2n − iτ)
((λ2n − κ2n)− iτ)ϕ2n(λ2n − iτ)

∣∣∣∣∣ ≤ C4√
τ

for 0 < τ ≤ d, n > n2, (47)
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where the constant C4 > 0 does not depend on n. Given λ2n = 2nπ + O
(

1
n

)
for n > n2 >

n1, then for n > n2:

1∫
0

f (ξ) sin(λ2n − iτ)ξ dξ = 1
2i

(
1∫

0
f (ξ)eiλ2n ξ eτξ dξ −

1∫
0

f (ξ)e−iλ2n ξ e−τξ dξ

)
=

= 1
2i

1∫
0

f (ξ)ei2nπeτξ dξ − 1
2i

1∫
0

f (ξ)e−i2nπe−τξ dξ +
1∫

0
f (ξ)O

(
1
n

)
dξ.

(48)

The number

λ2n =

1∫
0

f (ξ)ei2nπeτξ dξ (or λ−2n =

1∫
0

f (ξ)e−i2nπe−τξ dξ)

is the expansion coefficient of the function f (x)eτξ (or f (x)e−τξ) in a Fourier series in the
{einπξ}∞

n=−∞ system. It is clear that∣∣∣∣∣∣
1∫

0

f (ξ)O
(

1
n

)
dξ

∣∣∣∣∣∣ ≤ C
n
· || f ; L2||. (49)

We also note that for 0 ≤ τ ≤ d and 0 ≤ ξ ≤ 1, the following inequalities hold:

1∫
0

∣∣∣ f (ξ)eτξ
∣∣∣2dξ ≤ C|| f ; L2||2,

1∫
0

∣∣∣ f (ξ)e−τξ
∣∣∣2dξ ≤ C|| f ; L2||2. (50)

Since the functions sin(λ2n − iτ)x are uniformly bounded in n for x ∈ [0, 1] and
0 ≤ τ ≤ d, then based on the Cauchy–Schwartz inequality for an infinite sum and according
to Equations (47)–(50), we obtain

|I2| ≤ C5

d∫
0

e−tτ
√

τ

√
∞
∑

n=n2+1
λ1/2

2n

√
∞
∑

n=n2+1

(
d2

2n + d2
−2n +

1
n2 · || f ; L2||2

)
dτ ≤

≤ C6|| f ; L2||
d∫

0

e−tτ
√

τ
dτ ≤ C√

t
· || f ; L2||, x ∈ [0, 1], t > 0.

(51)

Similarly, we obtain

|I3| ≤
C√

t
· || f ; L2||, x ∈ [0, 1], t > 0. (52)

It follows from Equations (46), (51) and (52) that

|I| =
∣∣∣∣∣ ∞

∑
n=1

Jlλ2n

∣∣∣∣∣ ≤ C√
t
· || f ; L2||, x ∈ [0, 1], t > 0. (53)

By analogous reasoning, we obtain∣∣∣∣∣ ∞

∑
n=1

Jlλ2n−1

∣∣∣∣∣ ≤ C√
t
· || f ; L2||, x ∈ [0, 1], t > 0.
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Hence, ∣∣∣∣ ∞
∑

n=1

(
Jlλ2n

+ Jlλ2n−1

)∣∣∣∣ ≤ C√
t
· || f ; L2||, x ∈ [0, 1], t > 0,∣∣∣∣ ∞

∑
n=1

(
Jl−λ2n

+ Jl−λ2n−1

)∣∣∣∣ ≤ C√
t
· || f ; L2||, x ∈ [0, 1], t > 0.

(54)

From Remark 2 and from the estimate (45), we can easily obtain∣∣∣Jlλ0

∣∣∣ ≤ C√
t
· || f ; L2||, x ∈ [0, 1], t > 0,∣∣∣Jl−λ0

∣∣∣ ≤ C√
t
· || f ; L2||, x ∈ [0, 1], t > 0.

(55)

From Equations (41) and (53)–(55), the validity of the first inequality (40) follows.
The second inequality (40) is proven similarly. Lemma 1 is completely proven.

Lemma 2. The following equality holds

J3 =
1∫

0

(
∑

ν=−∞, ν 6=0
resk=γν

m2(k) ϕ(x, k) ϕ(ξ, k) e−ikt

)
f (ξ) dξ =

= i
∞
∑

ν=1
bν fν v(x, nν) sin(γνt),

(56)

where v(x, nν) is the normalized eigenfunction of the problem corresponding to the eigenvalue γ2
ν,

bν = −b−ν = −

(
ϕ′(k)− θ(k)−

√
(ϕ′(k) + θ(k))2 − 4

)∣∣∣
k=γν

ϕk(γν)
·

1∫
0

|ϕ(x, γν)|2dx. (57)

For numbers bν with n > n2, the following estimates hold:

|bν| ≤ C λ2n−λ2n−1
γν

for λ2n−1 < γν < λ2n,

|bν| ≤ C µ2n+1−µ2n
γν

for µ2n < γν < µ2n+1.
(58)

Proof. Let γ2
ν be an eigenvalue of the operator H+. Then, given that γν is a simple zero of

the function ϕ and

ϕ(x, γν) = v(x, nν)

√∫ 1

0
|ϕ(x, γν)|2dx

where v(x, nν) is the normalized eigenfunction of Problem (12) corresponding to the eigen-
value γ2

ν, we have

resk=γν
m2(k) ϕ(x, k) ϕ(ξ, k) e−ikt =

= resk=γν

ϕ′(k)−θ(k)−
√

(ϕ′(k)+θ(k))2−4
2ϕ(k) ϕ(x, k) ϕ(ξ, k) e−ikt =

= − 1
2 bνv(x, nν)v(ξ, nν) e−iγνt,

(59)

where

bν = −

(
ϕ′(k)− θ(k)−

√
(ϕ′(k) + θ(k))2 − 4

)∣∣∣
k=γν

ϕk(γν)
·
∫ 1

0
|ϕ(x, γν)|2dx
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Carrying out a similar calculation algorithm for k = −γν, we obtain

resk=−γν
m2(k) ϕ(x, k) ϕ(ξ, k) e−ikt = −1

2
b−νv(x, nν)v(ξ, nν) eiγνt, (60)

where

b−ν = −

(
ϕ′(k)− θ(k)−

√
(ϕ′(k) + θ(k))2 − 4

)∣∣∣
k=−γν

ϕk(−γν)
·
∫ 1

0
|ϕ(x, γν)|2dx.

Since ϕ′(k)− θ(k)−
√
(ϕ′(k) + θ(k))2 − 4 and ϕ(k) are even functions, we have

b−ν = −bν. (61)

Furthermore, according to Equations (59) and (60), it follows that

1∫
0

(
resk=γν

m2(k) ϕ(x, k) ϕ(ξ, k) e−ikt
)

f (ξ) dξ = − 1
2 bν fν v(x, nν)e−iγνt,

1∫
0

(
resk=−γν

m2(k) ϕ(x, k) ϕ(ξ, k) e−ikt
)

f (ξ) dξ = − 1
2 b−ν fν v(x, nν)eiγνt,

where

fν =

1∫
0

f (ξ) v(ξ, nν) dξ,

fν are the expansion coefficients of the function f in a Fourier series in the system
{v(x, n)}∞

n=1.
Taking into account Equation (61), we have

− 1
2 bν fν v(x, nν)e−iγνt − 1

2 b−ν fν v(x, nν)eiγνt =,

= 1
2 bν fν v(x, nν)

(
eiγνt − e−iγνt) = ibν fν v(x, nν) sin(γνt).

(62)

This implies the validity of Equation (56) in the statement of Lemma, that is,

1∫
0

(
∑

ν=−∞, ν 6=0
resk=γν

m2(k) ϕ(x, k) ϕ(ξ, k) e−ikt

)
f (ξ) dξ = i

∞

∑
ν=1

bν fν v(x, nν) sin(γνt).

To complete the proof of the Lemma, the validity of Equation (58) must be verified.
Let λ2n−1 < γν < λ2n, n > n2. Taking into account Propositions 5 and 7, the numbers

bν can be written as

bν = −
γν

(
(ϕ′(k)− θ(k))

∣∣
k=γν
−
√
(γν − λ2n−1)(γν − λ2n)g2n(γν)

)
ϕ2n(γν)

·
∫ 1

0
|ϕ(x, γν)|2dx (63)

According to Equation (11),

|(ϕ′(k)− θ(k))
∣∣
k=γν
| = |

√
(ϕ′(γν) + θ(γν))2 − 4| = |

√
(γν − λ2n−1)(γν − λ2n)g2n(γν)|. (64)

We also note that Equation (5) for n > n2 yields∫ 1

0
|ϕ(x, γν)|2dx ≤ C

γ2
ν

, (65)

where the constant (C) can be chosen independent of n.
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It is clear that
|
√
(γν − λ2n−1)(γν − λ2n)| ≤ λ2n − λ2n−1. (66)

The validity of the first inequality in Equation (58) follows from Equations (63)–(66)
and Propositions 5 and 7. The second inequality in Equation (58) is obtained similarly.

3. Main Results

In this section, we present the main results of this paper, the essence of which is
the asymptotic behavior of the initial boundary value problem for a one-dimensional
second-order hyperbolic equation with periodic coefficients.

All auxiliary statements and lemmas that used in the proof of the theorem are pre-
sented in the previous section.

Theorem 1. If the one-dimensional Schrödinger operator (Hill operator) (H0) is positive, i.e.,
p(x) ≥ const > 0, q(x) ≥ 0, then there is a compact operator

M : L2[0, 1] 7−→ L2[0, 1]

such that for x ∈ [0, 1] and t > 0, the solution to the initial boundary value problem, i.e.,
Equations (1)–(3), has the form

u(x, t) = u1(x, t) + v(x, t),

where u1(x, t) is the solution to the following mixed problem
utt(x, t)− (p(x) ux(x, t))x + q(x) u(x, t) = 0, x ∈ [0, 1], t > 0,

u(x, t)|t=0 = 0, ut(x, t)|t=0 = M[ f (x)], x ∈ [0, 1],
u(x, t)|x=0 = u(x, t)|x=1 = 0, t ≥ 0,

while the function v(x, t) for x ∈ [0, 1], t > 0 satisfies the estimate

|v(x, t)| ≤ C
t
|| f ; L2(R)||;

the function u1(x, t) has the form

u1(x, t) =
∞

∑
ν=1

bν fν v(x, nν) sin(γνt);

where v(x, nν) is the normalized eigenfunction of the problem presented in Equation (12) corre-
sponding to the eigenvalue γ2

ν,

fν =
∫ 1

0
v(x, nν) f (ξ) d ξ, ν = 1, 2, . . . ,

fν are the coefficients of the expansion of the function f (x) in the Fourier series in the system
{v̂(x, nν)}∞

n=1 and bν are constants of order o( 1
ν ) as ν→ ∞, as expressed by Equation (57).

Proof. By virtue of Proposition 2, the solution to the problem presented in Equations (1)–(3)
has the form of Equation (27):

u(x, t) =
1

2π
JL − i J3 + v1(x, t),

where the function v1(x, t) for x ∈ [0, 1] and t > 0 satisfies the following estimate

|v1(x, t)| ≤ C e−td|| f ; L2||.
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According to Proposition 3, Lemmas 1 and 2,

1
2π

JL − i J3 =
∞

∑
ν=1

bν fν v(x, nν) sin(γνt) + v2(x, t), (67)

where the function v2(x, t) for x ∈ [0, 1] and t > 0 satisfies the estimate

|v2(x, t)| ≤ C e−td|| f ; L2||.

Based on Equations (27) and (67), it follows that for x ∈ [0, 1] and t > 1, the solution
to the problem presented in Equations (1)–(3) has the form

u(x, t) = u1(x, t) + v(x, t),

where

u1(x, t) =
∞

∑
ν=1

bν fν v(x, nν) sin(γνt)

and the function v(x, t) satisfies the estimate

|v(x, t)| ≤ C
t
|| f ; L2(R)||, x ∈ [0, 1], t > 1;

where the constant C does not depend on the function f .
To complete the proof of the theorem, it remains to be observed that

M f =
∞

∑
ν=1

γν bν fν v(x, nν),

and the compactness of the operator (M) follows from the estimate of Equation (58) for the
numbers bν.

The representation bν = o( 1
ν ) with ν → ∞ follows from the fact that the set γν, ν =

±1,±2, . . . , is a subset of the set κν, ν = ±1,±2, . . . , and from relations in Equation (13).

4. Applications

Numerical study for the one-dimensional Schrödinger operator of the form

−1
2

∂xx + αq(x) with q(x) = cos(x) + ε cos(kx), α ∈ R, ε > 0

for irrational k was carried out in [29]. Furthermore, this determines the quantum wave
function of an independent electron in a crystal lattice perturbed by impurities, the scatter-
ing of which induces only long-range order and which is transmitted using a quasi-periodic
potential (q). The authors studied all the phenomena for different values of k and ε in detail
and found that for k > 1 and ε� 1, i.e., when more than one impurity of the elementary
cell of the original lattice appears inside “impurity bands”, they appear to be k-periodic.
Furthermore, when ε > 1, the opposite occurs.

As an application, we also note [30], in which the authors investigated a simple one-
dimensional model of an incommensurable “harmonic crystal” in terms of the spectrum
of the corresponding Schrödinger equation. Here, it is shown that the lower spectrum of
the operator is divided into “Cantor-like bands” and “impurity bands”, which correspond
to critical and extended eigenstates, respectively. For the results obtained in the paper,
numerical experiments were carried out, which were performed both for stationary and
non-stationary problems.
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As usual, the problem of the asymptotic behavior of solutions reduces to solving
Sturm–Liouville eigenvalue problems and obtaining asymptotic estimates for the Sturm–
Liouville spectrum. In this regard, the authors of [31] showed that the differential equation

y′′ + q2(x)y = 0

can be solved under suitable conditions, taking the solution of the form y = A(x) sin ϕ(x),
where

ϕ′(x) =
√

λ + q(x) +
1
4

q′(x)
λ + q(x)

sin 2ϕ(x), A′(x) = −A(x)
2

q′(x)
λ + q(x)

cos2 ϕ(x).

When applying the boundary conditions, the use of the first equation leads to asymptotic
estimates of the eigenvalues. In particular, in the case of the Hill equation, it is shown that
the instability intervals vanish faster than any inverse power of k, as k is the order of the
corresponding eigenvalues when q(x) is an analytic function.

5. Conclusions

In this paper, an explicit formula for the asymptotic expansion of solutions to a mixed
problem for a one-dimensional wave equation with periodic coefficients on the semi-axis
for large values of the time parameter t was obtained. To study this initial boundary value
problem with the corresponding Schrödinger operator, we applied the entire apparatus of
spectral theory and the properties of the spectrum one-dimensionally to the Schrödinger
operator for both finite and infinite segments of the real axis.

The next step in the development of these problems will be to consider the problem of
finding the asymptotic behavior of a mixed problem in cases in which the left end of the
spectrum of the Schrödinger operator is negative.

In addition, it is also important to establish the principle of the limiting amplitude
of the Cauchy problem in Equations (1) and (2) for a hyperbolic equation with periodic
coefficients p(x) and q(x) as t→ ∞.

As a basis for further applied research, we also note [32], in which the authors showed
that a Fuchsian differential equation with five regular singular points admits solutions in
terms of one generalized hypergeometric function for an infinite set of particular variants
of the equation parameters. Each solution also assumes four restrictions imposed on
the parameters.
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