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Abstract: The current study deals with the reduced gravity and radiation effects on the magneto-
hydrodynamic natural convection past a solid sphere. The studied configuration is modeled using
coupled and nonlinear partial differential equations. The obtained model is transformed to dimen-
sionless form using suitable scaling variables. The finite difference method is adopted to solve the
governing equation and determine the velocity and temperature profiles in addition to the skin
friction coefficient and Nusselt number. Furthermore, graphic and tabular presentations of the results
are made. The verification of the numerical model is performed by comparing with results presented
in the literature and a good concordance is encountered. The main objective of this investigation is
to study the effect of the buoyancy force caused by the density variation on natural convective heat
transfer past a solid sphere. The results show that the velocity increases with the reduced gravity
parameter and solar radiation but decreases with Prandtl number and magnetic field parameter. It is
also found that the temperature increases the with solar radiation and magnetic field but decreases
with the reduced gravity parameter and Prandtl number.

Keywords: reduced gravity; magnetohydrodynamics; natural convection; solar radiation; finite
difference method; sphere

1. Introduction

Natural convection has become the interest of researchers and engineering due to
its manifestation in several natural phenomena and engineering applications. This can
be seen in the plume rising from the hot air from fire, oceanic currents, etc. Its principal
applications in the industrial field are natural cooling and ventilation without the assis-
tance of fans. The physics of reduced gravity is of great interest and the spherical-shaped
components are significant in industry and engineering applications. Potter and Rily [1]
investigated the free convection model for high Grashof number values. For fixed values of
Prandtl and Grashof numbers, Riley [2] investigated natural convection around a stationary
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sphere. Heat Transfer process due to heated bar under the consideration of reduced gravity
influence has been carried out by Kay [3]. An oscillatory heat transport process past a
stationary sphere was performed by Ashraf et al. [4]. Ashraf and Fatima [5] numerically
solved the unsteady fluid flow and heat transfer along a sphere by considering the fluid
dissipation effect. Ashraf et al. [6] considered the nanofluid free convection in the plume
region above a stationary sphere. The effects of thermophoretic transportation on convec-
tive heat transfer by taking different fluid characteristics along a sphere have been explored
in [7–12]. Ahmad et al. [13] used the finite difference method to numerically study the
combined effect of chemical reaction and convective heat transfer along a curved surface.
Abbas et al. [14] numerically studied the MHD Sakiadis flow using variable density influ-
ence on an inclined surface. Rashad et al. [15] analyzed the energy transport in a nanofluid
due to convection along cylindrical geometry inserted in porous media. Khan et al. [16]
studied the MHD free convection in a vapor plume formed as a result of a fluid eruption
while considering the effect of heat generation.

Bulinda et al. [17] investigated the magnetohydrodynamic free convective flow process
along a corrugated vibrating bottom surface with a focus on the effects of Hall currents.
Molla et al. [18] considered the impact of varying conductivity on the natural convection
over a sphere immersed in quiescent fluid. Alwawi et al. [19] presented a study on the MHD
natural convection flow of a Casson nanofluid around a solid sphere. Jenifer et al. [20]
proposed a model of unsteady mixed convection past a sphere with the consideration
of magnetic field and variable fluid property effects. Ahmad et al. [21] considered the
chemically reacting natural convection past a curved surface with varying of the thermal
conductivity and dynamic viscosity. Salleh et al. [22] considered the mixed convective
flow around a sphere by considering the Newtonian heating effect. The effects of varying
viscosity and chemical reaction on the natural convection process were investigated by
Molla and Hossain [23]. Chamkha et al. [24] numerically modeled a non-Darcy heat transfer
of a nanofluid past a porous vertical cone inserted in a permeable medium. Chamkha [25]
investigated the MHD double diffusion natural convection past a sphere. Sparrow and
Gregg [26] studied the free and forced convection flows over a flat plate for low Prandtl
number values. Zhang et al. [27] studied the thermal-mechanical coupling propagation and
transient thermal fracture in multilayer coatings. Liu et al. [28] considered a 3D solid-air
model to simulate heat and mass transfer in vertical double tube heat exchangers. Some
other relevant studies related to the current subject can be found in the literature [29–45].

Based on the above described literature review, it can be concluded that combined
effects of magnetohydrodynamic, reduced gravity, and solar radiation on natural convec-
tion past a sphere have not been the subject of any study before the present attempt. The
developed model and solution procedure are presented in the next sections. The results are
displayed in graphs and tables with a detailed discussion based on physical interpretations.

2. Problem Analysis

The studied configuration (Figure 1) corresponds to a two-dimensional viscous, steady,
and incompressible flow past a stationary sphere in the presence of an external horizontal
magnetic field. Coordinates along and normal to the flow are (x, y). Temperature of a
surface is Tw and free stream temperature is T∞ with Tw > T∞. By following [1–3], the
mathematical formulation is expressed as:

∂(ru)
∂x

+
∂(rv)

∂y
= 0 (1)

u
∂u
∂x

+ v
∂u
∂y

= ν
∂2u
∂y2 + g

ρ− ρ∞

ρ∞
sin

x
a
−

σB2
0

ρ
u (2)

u
∂T
∂x

+ v
∂T
∂y

= αm
∂2T
∂y2 −

1
ρCp

∂qr

∂y
(3)
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Figure 1. Flow Geometry and Coordinate System.

The distance from the symmetric axis to the sphere surface is r = a sin x
a and is known

as radial distance. The notations (u, v) are velocity components toward and normal to
the flow direction. The symbols a, g, ρ, ν, σe, B0 and αm designate the radius of the
sphere, gravity acceleration, fluid density, kinematic viscosity, electric conductivity, thermal
diffusivity and magnetic field strength, respectively.

Below is a presentation of the radiant heat flow qr:

qr = −4σ3KR∂T4∂y. (4)

KR stands for mean absorption coefficient. Stefan–Boltzmann constant is represented
by the symbol σ. Equation (4)’s right side T4 is given as follows.

T4 ≈ 4T3
∞T− 3T4

∞.

So, Equation (4) becomes:

qr = −
16T3

∞σ

3KR

∂T
∂y

(5)

and Equation (3) is expressed as:

u
∂T
∂x

+ v
∂T
∂y

=
k∞

ρCp

∂2T
∂y2 +

16T3
∞σ

ρCP3KR

∂2T
∂y2 (6)

Further simplification of Equation (6) gives:

u
∂T
∂x

+ v
∂T
∂y

=
k

ρCp

∂

∂y

[
∂T
∂y

+
4.4 T3

∞σ

ρCP3kKR

∂T
∂y

]
(7)

The relationship between density and temperature is as follows:

ρ− ρm

ρm
= −γ(T − Tm)

2 (8)

Furthermore, Equation (6) implies that for steady flow:

T → Tm ± ∆Ty→ ±∞ (9)
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For fixed ∆T. Consider region y ≥ 0 subject to the boundary conditions to obtain the
symmetry in this situation.

u = 0, v = 0, T = Tm at y = 0 u→ 0, T → T∞ as y→ ∞ (10)

where T∞ = T + ∆T and has the relation with ρ∞ shown by Equation (8). Determining the
reduced gravity is simple.

g′ = g
(ρm − ρ∞)

ρ∞
(11)

Fluid particle acceleration has a density ρm. Thus, from Equation (8):

g′ = gγ
ρm

ρ∞
(T∞ − Tm)

2 (12)

Moreover, skin friction coefficient and Nusselt number at the surface are expressed as
follows:

C f =
τw

ρU2 , Nu =
xqw

k(Tw − T∞)
(13)

where τw = µ

(
∂u
∂y

)
y=0

, qw = −k
(

∂T
∂y

)
y=0

, (14)

3. Dimensionless Variables

The equations given in (1)–(3) subject to conditions given in (10) are made dimension-
less by employing the following non-dimensional variables [9]:

x =
x
a

, y =
yGr

1
4

a
, θ =

T − T∞

Tm − T∞
, u =

auGr
1
4

ν
, v =

avGr
1
4

ν
, (15)

By introducing Equation (10) into Equations (1)–(3) with (8) we have,

∂(sin xu)
∂x

+
∂(sin xv)

∂y
= 0, (16)

u
∂u
∂x

+ v
∂u
∂y

=
∂2u
∂y2 + Rg

(
2θ − θ2

)
sinx−Mu (17)

u
∂θ

∂x
+ v

∂θ

∂y
=

1
Pr

(
1 +

4
3

Rd
)

∂2θ

∂y2 , (18)

u = 0, v = 0, θ = 1, at y = 0
u→ 0, θ →0, as y→ ∞.

(19)

Here, Rg = g′
g β∆T , Rd = kKR/4σ∗T3

∞, Pr = ν
α and M = σB2

o a2Gr
1
4

ρν are reduced gravity,
radiation parameter, Prandtl number, and magnetic field parameter, respectively. Here, g′

is reduced gravity acceleration defined in Equation (12).

4. Solution Methodology

The above Equations (16)–(19) are discretized using the finite difference method.
Theses equations are firstly transformed to a smooth form, then a numerical algorithm is
written using FORTRAN coding language. The dimensionless variables are defined as [9]:

u(x, y) = x1/2U(X, Y), v(x, y) = x−
1
4 V(X, Y), Y = x−

1
4 y, X = x, θ(x, y) = θ(X, Y) (20)
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By putting Equation (20) in (16)–(19) the set of governing equations becomes:

XU cos X +

(
X

∂U
∂X
− Y

2
∂U
∂Y

+
∂V
∂Y

)
sin X = 0, (21)

XU
∂U
∂X

+
1
2

U2 +

(
V − YU

2

)
∂U
∂Y

=
∂2U
∂Y2 + Rg

(
2θ − θ2

)
sin X−MU (22)

XU
∂θ

∂X
+

(
V − YU

2

)
∂θ

∂Y
=

1
Pr

(
1 +

4
3

Rd
)

∂2θ

∂Y2 (23)

The corresponding boundary conditions are:

U = 0 , V = 0, θ = 1, at Y = 0
U →0 , θ → 0, as Y → ∞.

(24)

Method of Solution

The finite difference method is used to solve the set of governing Equations (21)–(23)
with the boundary conditions (24). The X-axis is used to apply the backward difference,
while the Y-axis is used to apply the central difference. After the discretization of the
governing equations, the discretized variables are identified as (Ui,j, Vi,j, θi,j). The detailed
discretization is described as follow:

∂U
∂X

=
U(i,j) −U(i,j−1)

∆X
(25)

∂U
∂Y

=
U(i+1,j) −U(i−1,j)

2∆Y
(26)

∂2U
∂Y2 =

U(i+1,j) − 2U(i,j) + U(i,−1,j)

∆Y2 (27)

The following system of algebraic equations is obtained by combining Equations
(25)–(27), Equations (21)–(23), and the boundary conditions specified in Equation (24).

Continuity equation:

V(i+1,j) = V(i−1,j) − 2 ∆Y
∆X Xi

(
U(i,j) −U(i,j−1)

)
+

Yj
2

(
U(i+1,j) −U(i−1,j)

)
−2∆YXi

cosXi
sin Xi

U(i,j),
(28)

Momentum equation:(
1 + ∆Y

2 (V(i,j) −
Yj
2 U(i,j)

)
U(i−1,j) +

(
−2− ∆Y2

∆X XiU(i,j) −M
)

U(i,j)+(
1− ∆Y

2

(
V(i,j) −

Yj
2 U(i,j)

))
U(i+1,j) = −∆Y2sinXiRg(2θ(i,j) − θ2

(i,j) )
(29)

Energy equation:(
1

Pr

(
1 + 4

3 Rd
)
+ ∆Y

2

(
V(i,j) −

Yj
2 U(i,j)

))
θ(i−1,j) +

(
− 2

Pr

(
1 + 4

3 Rd
)
+

∆Y2U(i,j)

(
1− Xi

∆X

))
θ(i,j) +

(
1

Pr

(
1 + 4

3 Rd
)
− ∆Y

2

(
V(i,j) −

Yj
2 U(i,j)

))
θ(i+1,j) =

−∆Y2

∆X XiU(i,j)θ(i,j−1)

(30)

The convergence criterion is presented as follows to achieve accurate numerical solu-
tions for the variables U, V and θ, respectively.

max
∣∣Uij

∣∣+ max
∣∣Vij

∣∣+ max
∣∣θij

∣∣ ≤ ε
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where ε = 10−5. The computation is started at X = 0 and then marches downstream
implicitly.

5. Grid Independency Test and Numerical Model Verification

To check the accuracy of the numerical model a grid independency test is performed by
considering different grid numbers. The grid independency test is performed for M = 1.0,
Rd = 1.0, Rg = 5.0 and Pr = 7.0 at the circumferential position X = π/4. The results
of this test are presented in Table 1. It is noticed that an excellent solution accuracy is
observed as the number of grid points is increased. The deviation between 200 point
and 500-point grids for the skin friction and heat transfer rate at position X = π/4 are
calculated. It is noticed that deviation percentages are 0.09% and 0.003% for skin friction
and heat transfer rate, respectively. Thus, the 200-point grid can be considered as sufficient
for the convergence and accuracy of the results and is chosen to perform all the calculations.
This grid corresponds to step sizes ∆X = 0.05 and ∆Y = 0.02. The solutions determined
using the finite difference method based on the selected grid are discussed in detail in the
forthcoming section.

Table 1. Grid independency test for M = 1.0, Rd = 1.0, Rg = 10.0, and Pr = 7.0 at X = π/4.

No. of Grid Points
(

∂U
∂Y

)
Y=0

−
(

∂θ
∂Y

)
Y=0

25.0 2.01299 0.79793

50.0 2.12478 0.77268

100.0 2.15249 0.76919

200.0 2.15950 0.76891

250.0 2.16036 0.76892

500.0 2.16150 0.76894

In order to verify the validity of the proposed numerical model, a comparison of the
findings of

(
∂U
∂Y

)
Y=0

with earlier published results for several Pr values are presented in
Table 2. In can be noticed that a good concordance exists between the results.

Table 2. Verification of numerical model; comparison of
(

∂U
∂Y

)
Y=0

with the results of Sparrow &
Gregg [26] in the absence of the reduced gravity term for M = 0 and Rd = 0, at π/2.

Pr Sparrow & Gregg [26] Present

0.03 0.93841 0.93740

0.02 0.95896 0.95870

0.008 0.99550 0.99400

6. Results and Discussion

In current section the numerical solutions of the set of the equations governing the
considered configuration are discussed in detail. The effects of the parameters governing
the studied configuration on the velocity U, and temperature θ, profiles in addition to
the coefficient of skin friction C f and the Nusselt number Nu are presented in form of
graphs and tables. Figure 2 depicts the effect of the reduced gravity parameter Rg on
the velocity profile U for Prandtl number Pr = 7.0 at different locations of the sphere. It
is noticed that at diverse positions of the sphere when Rg is increased, the fluid velocity
increases. In Figure 3 the numerical outcomes of temperature θ for different values of Rg are
displayed. The temperature curves show that at higher Rg values, the fluid temperature
drops quickly at all the considered positions. From physical point of view the trend of
temperature is logical because the intensification in reduced gravity parameter leads to
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a reduction in thermal expansion and temperature difference between the surface and
ambient temperature, and hence the overall temperature of the fluid flow domain decreases.
However, the maximum magnitude for temperature is attained at X = π. The velocity
profiles for several Pr values are sketched in Figure 4. It is remarked that the increase of Pr
leads to a reduction of the fluid velocity at all the considered positions. This decrease is due
to increase of the fluid viscosity that causes the increase of the viscous effect and hence the
decrease of flow intensity. It is also to be mentioned that the highest value for U is achieved
at X = π

2 . Figure 5 shows the effects of Pr on the temperature profiles. Graphical outcomes
indicate that the temperature of the fluid reduces as Pr is enhanced. From physical point
of this is due to the decrease of the thermal conductivity when Pr is increased. In fact,
the capability of the fluid to conduct the heat is reduced and thus the temperature of the
fluid decreases. Figures 6 and 7 show the behaviors of velocity and temperature profiles
for several values of radiation parameter Rd at several positions around the sphere. It
is noticed that temperature and fluid velocity rise with the augmenting numerical of Rd
values. An intensification in Rd leads to a rise the thermal conductance of the fluid and the
mean absorption coefficient that helps to boost the temperature of the fluid flow as shown
in Figures 6 and 7. Figures 8 and 9 illustrate the impact of magnetic field parameter M on
the temperature and velocity profiles. It is to be mentioned that the velocity is decreasing,
and the temperature is increasing with the intensification of the magnitude of the magnetic
field. From a physical point of view, the application of the external applied magnetic field
perpendicular to the flow direction generates a Lorentz force that opposes the flow and
reduce the fluid velocity. In addition, due to the resistance to the flow, the viscous effect
causes an augmentation of fluid temperature. Table 3 presents the results of the of skin
friction coefficient and Nusselt number versus the reduced gravity parameter Rg. An
increasing in the values of Rg enhances the skin friction coefficient and Nusselt number at
all the considered circumferential positions.
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Figure 2. Effect of Rg on θ for Pr = 7.0, Rd = 1.0, and M = 1.0.
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Table 3. Consequences of reduced gravity parameter Rg on kin friction coefficient C f and Nusselt
number Nu.

Cf Nu

X Rg = 0.1 Rg = 1.0 Rg = 5.0 Rg = 10.0 Rg = 0.1 Rg = 1.0 Rg = 5.0 Rg = 10.0

π/6 0.10860 0.64508 2.16368 3.63897 0.16210 0.28475 0.42706 0.50809

π/4 0.14868 0.86768 2.90589 4.886676 0.17741 0.31446 0.47131 0.56063

π/2 0.19412 1.12016 3.74840 6.30307 0.19241 0.34257 0.51314 0.61033

π 0.00013 0.00135 0.00701 0.01477 0.10090 0.09991 0.09515 0.08816

7. Conclusions

In the current study, the effects of reduced gravity, solar radiation, and external
magnetic field on the natural convection past a stationary sphere immersed in a fluid are
investigated. The main findings related to effects of reduced gravity and Prandtl number
on the velocity U, temperature θ, skin friction coefficient C f , and Nusselt number Nu are
summarized as:

• When Rg is increased, the velocity increases, and the temperature decreases due the
enhancement of the buoyancy force.

• The increase of Pr leads to the decrease of the velocity and temperature of the fluid,
due to the increase of the viscosity.

• The application of an external magnetic field causes the reduction of the flow intensity
and an augmentation of the temperature.

• The increase in Rd cause an increase of the temperature and a reduction of the velocity.
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