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Abstract: Dams are essential infrastructure for managing water resources and providing entry
to clean water for human needs. However, the construction and maintenance of dams require
careful consideration of their reliability and safety, specifically in the event of extreme weather
conditions such as heavy rainfall or flooding. In this study, the stress-strength model provides a
useful framework for evaluating the reliability of dams and their ability to cope with external stresses
such as water pressure, earthquake activity, and erosion. The Shasta reservoir in the United States is
a prime example of a dam that requires regular assessment of its reliability to guarantee the safety of
communities and infrastructure. The Gumbel Type II distribution has been suggested as a suitable
model for fitting the collected data on the stress and strength of the reservoir behind the Shasta dam.
Both classical and Bayesian approaches have been used to estimate the reliability function under
the multi-component stress-strength model, and Monte Carlo simulation has been employed for
parameter estimation. In addition, some measures of goodness-of-fit are employed to examine the
suitability of the suggested model.

Keywords: Gumbel Type II distribution; multi-component stress-strength model; maximum likeli-
hood estimation; Bayesian estimation; Monte Carlo simulation; reliability analysis

1. Introduction

In reliability analysis, the study of the failure time of a component or a system is of
great concern. Decision-makers in industry or governments encourage continuity in the
enhancement of systems reliability since it measures the functioning of systems and predicts
their outcomes in a better way. One of the main problems is estimating the parameters
of the stress-strength function R = P(Y < X), where Y is the stress and X is the strength,
and both are considered random variables. Components or systems are subject to failure if
their strength is less than the stress applied to them at any time.

Statistical inference of the stress-strength function has been studied by many authors.
Several lifetime distributions were considered to fit the model under consideration, such as
Birnbaum [1], Hanagal [2], Kotz et al. [3], Raqab et al. [4], Kundu and Raqab [5], Lio and
Tsai [6], Nadar et al. [7], Rao and Kantam [8], Rao [9], Rao [10], Rao et al. [11], Kizilaslan
and Nadar [12], Nadar and Kizilaslan [13], Dey et al. [14], and Wu [15]. For more recent
works one may refer to [16–21].

A multi-component system, with k-independent and identically distributed (iid)
strength components and one common stress, is in a functional state if at least s com-
ponents are surviving at the same time, where 1 ≤ s ≤ k, and this is known as an s-out-of-k:
G system. Two examples of multi-component systems are: first, the suspension bridge
is suspended by a k-vertical cable pair, this bridge will survive if at least s-vertical cable
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pairs are functioning, i.e., not damaged. Second, the engine with six cylinders will work
properly if at least four out of six cylinders are functioning.

Estimating the reliability of a system with the multi-component stress-strength model
is of great importance and has many applications, see for example Ahmad et al. [22], who
used the Power Lomax distribution under a progressive censoring scheme. Johari et al. [23]
studied the reliability analysis of ground soil layers using the cross-correlation method.
More reliability inference studies are presented in [24,25].

In this work, we consider the stress-strength model applied to reservoirs or artificial
lakes behind dams. Dams are very important for providing water for different purposes
during droughts such as drinking, cooking, washing, and irrigation, as well as producing
hydroelectric power. They help in storing water in reservoirs during excess water flow and
release it during times of low flow. Besides irrigation and other consumption purposes,
water stored in these reservoirs is subject to other loss factors such as evaporation. We
consider a model that is related to excessive drought times, and it is also claimed that in a
specific region, if the stored water in a reservoir in August of the previous year is less than
the water amount in the reservoir for at least two of the next four years, then no excessive
drought will occur. In this model, X represents the strength and Y represents the stress.

In this study, we aim to estimate the stress-strength function’s parameters Rs,k which
follow the Gumbel Type II model. This model was invented in 1958 by the German
mathematician Emil Gumbel (1891–1911) and was useful for predicting the likelihood of
climatic events such as annual flood flows (which is the case of this study), earthquakes,
and other natural disasters. According to Abbas et al. [26], it has also been demonstrated
to be sufficient for describing the component’s life expectancy. In their book, Kotz and
Nadarajah [27] investigated the Gumbel distribution with the aim of applying it to the
analysis of datasets ranging from wind speed to flood data.

Several authors focused on the Gumbel Type II distribution in their research for its
wide range of applications. For example, Nadarajah and Kotz [28] studied the Gumbel
distribution’s main properties. Feroze and Muhammad [29] performed Bayesian inference
for the Gumbel Type II distribution under twice censored samples with different loss
functions. Mansour and Aboshady [30] discussed different estimation methods using the
Gumbel Type II distribution under the hybrid Type II censored scheme, they applied this
model to study the performance of the insulating fluids for the breakdown voltages.

One of the basic motivations for using the Gumbel Type II distribution for modelling
real data is its ability to keep the properties of a wide range of distributions, including the
Weibull, Fréchet, and Gumbel distributions. This makes the Gumbel Type II distribution
a flexible alternative for modelling data that are not compatible with some distributional
forms. Another motivation for using the Gumbel Type II distribution is its ability to model
both heavy-tailed and light-tailed distributions, as well as distributions that obtain positive
or negative skewness. Moreover, the Gumbel Type II distribution is often used to model
extreme events such as floods, hurricanes, and earthquakes, where accurate modelling
of the distribution is essential for risk assessment and management. The Gumbel Type II
distribution has been found to support a good fit for many extreme events, making it a
preferable choice for modelling such events.

Even though several types of research have been performed on the statistical inference
of the Gumbel Type II distribution, there is still a persistent need for more work in the field
of multi-component stress-strength systems with Gumbel Type II distribution. In this study,
we work on two goals: first, to find classical and Bayesian estimators of multi-component
stress-strength functions and assess the estimators by providing a simulation study and
applying suitable numerical techniques. Second, apply the new model to fit real data
collected from reservoirs behind the Shasta dam.

The procedure for organizing the process of this work is schematically shown in the
flowchart in Figure 1.
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Figure 1. A flowchart indicating the research process.

2. Reliability Function

In this section, a closed form is obtained for the reliability function for a stress-strength
model. Assuming the probability density function (PDF) and the CDF for the Gumbel Type
II distribution, with a random variable X defined as,

f (x) = αβx−(α+1)e−βx−α
, x > 0, α, β > 0. (1)

and
F(x) = e−βx−α

, x > 0, α, β > 0, (2)

and given the reliability function for a stress-strength model, that was defined by Bhat-
tacharyya and Johnson [31], as

Rs,k = P[at least s of (X1, X2, . . . , Xk) exceed Y] =
k

∑
i=s

(
k
i

) ∫ ∞

−∞
[1− F(X)]i[F(X)]k−idG(Y), (3)

where X1, X2, . . . , Xk are iid random variables that follow the Gumbel Type II distribution
with parameters α1 and β1 with cumulative distribution function (CDF) F(X), and are
affected by random stresses Y that follow the Gumbel Type II distribution with parameters
α2 and β2 having CDF G(Y). Substituting by the CDF in Equation (2) into Rs,k defined in
Equation (3), we obtain

Rs,k = α2β2

k

∑
i=s

(
k
i

) ∫ ∞

0
[1− e−β1x−α1 ]i[e−β1x−α1 ]k−ix−(α2+1)e−β2x−α2 dx. (4)

Let u = x−α2 and substitute it into Equation (4) to obtain Equation (5)

Rs,k = β2

k

∑
i=s

(
k
i

) ∫ ∞

0
[1− e−β1u

α1
α2 ]i[e−β1u

α1
α2 ]k−ie−β2udu. (5)
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By using the binomial expansion for [1− e−β1u
α1
α2 ], we obtain

Rs,k = β2

k

∑
i=s

i

∑
l=0

(
k
i

)(
i
l

)
(−1)l

∫ ∞

0
[e−β1u

α1
α2 ]k−le−β2udu. (6)

Since the Maclaurin expansion for [e−β1u
α1
α2 ]k−l = ∑∞

r=0
(l−k)r βr

1u
rα1
α2

r! , then Equation (6)
is rewritten as

Rs,k = β2

k

∑
i=s

i

∑
l=0

∞

∑
r=0

(
k
i

)(
i
l

)
(−1)l (l − k)rβr

1
r!

∫ ∞

0
u

rα1
α2 e−β2udu. (7)

Assuming z = β2u, Equation (7) is reduced to

Rs,k =
k

∑
i=s

i

∑
l=0

∞

∑
r=0

(
k
i

)(
i
l

)
(−1)l (l − k)rβr

1
r!

β
− rα1

α2
2 Γ

( rα1

α2
+ 1
)

. (8)

3. Maximum-Likelihood Estimation

This section is devoted to deriving the maximum likelihood estimators (MLEs) for the
reliability function’s Rs,k parameters. The basis for finding the estimators of the parameters
is the log-likelihood functions, given the data. The MLEs have been used by many authors
to derive the estimators of the parameters due to several advantages such as simplicity,
unbiased for larger samples, and acquiring smaller variance. Furthermore, it can be
developed for a large variety of other estimation methods. For more information on the
likelihood theory, see Azzalini [32].

To find the MLEs of Rs,k, we start by obtaining the MLEs for the parameters α1, α2, β1
and β2. In this model, samples can be constructed as

X11 X12 . . . X1k
X21 X22 . . . X2k

...
...

. . .
...

Xn1 Xn2 . . . Xnk

 and


Y1
Y2
...

Yn


Observed strength variables Observed stress variables

Hence, the likelihood function for the observations can be written as

L(α1, α2, β1, β2) =
n

∏
i=1

[ k

∏
j=1

f (xi,j)
]

g(yi), (9)

where

f (xij) = α1β1x−(α1+1)
ij e−β1x

−α1
ij ,

g(yi) = α2β2y−(α2+1)
i e−β2y−α2

i .

Equation (9) can then be written as

L(α1, α2, β1, β2) = αnk
1 αn

2 βnk
1 βn

2

[
n

∏
i=1

k

∏
j=1

x−α1−1
i,j

][
n

∏
i=1

y−α2−1
i

][
e−β1 ∑n

i=1 ∑k
j=1 x

−α1
i,j

][
e−β2 ∑n

i=1 y−α2
i

]
. (10)

From Equation (10), the log-likelihood function can be derived as follows
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`(α1, α2, β1, β2) = nk[log(α1) + log(β1)] + n[log(α2) + log(β2)]− (α1 + 1)

[
n

∑
i=1

k

∑
j=1

log(xi,j)

]
(11)

×(α2 + 1)

[
n

∑
i=1

log(yi)

]
− β1

[
n

∑
i=1

k

∑
j=1

x−α1
i,j

]
− β2

[
n

∑
i=1

y−α2
i

]
.

Computing the first partial derivatives for ` with respect to α1, α2, β1 and β2 and
equating with zero will give the four equations below

nk
α1
−
[

n

∑
i=1

k

∑
j=1

log(xi,j)

]
+ β1

[
n

∑
i=1

k

∑
j=1

x−α1
i,j log(xi,j)

]
= 0, (12)

n
α2
−
[

n

∑
i=1

log(yi)

]
+ β2

[
n

∑
i=1

y−α2
i log(yi)

]
= 0, (13)

nk
β1
−
[

n

∑
i=1

k

∑
j=1

x−α1
i,j

]
= 0, (14)

n
β2
−
[

n

∑
i=1

y−α2
i

]
= 0, (15)

Straightforward from Equations (14) and (15), the estimators for β1 and β2 can be
given as

β̂1 =
nk

∑n
i=1 ∑k

j=1 x−α̂1
i,j

and β̂2 =
n

∑n
i=1 y−α̂2

i

(16)

Dragging the two estimates in Equation (16) into Equations (12) and (13), respectively,
and solving will give estimates for α1 and α2, α̂1 and α̂2, respectively, and substituting by
α̂1, α̂2, β̂1 and β̂2 in Equation (8), we obtain the MLE R̂s,k as follows

R̂s,k =
k

∑
i=s

i

∑
l=0

∞

∑
r=0

(
k
i

)(
i
l

)
(−1)l (l − k)r β̂r

1
r!

β̂
− rα̂1

α̂2
2 Γ

( rα̂1

α̂2
+ 1
)

. (17)

Fisher Information Matrix

In this sub-section, the asymptotic confidence interval (ACI) for the reliability function
will be derived using the Fisher information (FI) matrix. The concept of the FI matrix is
based on the missing value principle which was introduced by Louis [33] and is defined as
follows:

Observed information = Complete information −Missing information.

The asymptotic variance–covariance of the MLEs α̂1, α̂2, β̂1 and β̂2 are derived from
the entries of the inverse matrix of the FI matrix Iij = E{−[∂2`(Φ)/∂φi∂φj]}, where
i, j = 1, 2 and Φ = (φ1, φ2, φ3, φ4) = (α1, α2, β1, β2). Unfortunately, obtaining an exact
closed form for the previous expectations is very complicated. Hence, the observed FI
matrix Îij =

{
−
[
∂2`(Φ)/∂φi ∂φj

]}
Φ=Φ̂. This is obtained by dropping the expectation op-

erator E and using it to construct the confidence intervals for the unknown parameters.
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The entries of the observed FI matrix are the second partial derivatives of the log-likelihood
function, which is easily obtained. Therefore, the observed FI matrix is given by

Î
(
α̂1, α̂2, β̂1, β̂2

)
=


− ∂2`

∂α2
1

− ∂2`
∂α1∂α2

− ∂2`
∂α1∂β1

− ∂2`
∂α1∂β2

− ∂2`
∂α2∂α1

− ∂2`
∂α2

2
− ∂2`

∂α2∂β1
− ∂2`

∂α2∂β2

− ∂2`
∂β1∂α1

− ∂2`
∂β1∂α2

− ∂2`
∂β2

1
− ∂2`

∂β1∂β2

− ∂2`
∂β2∂α1

− ∂2`
∂β2∂α2

− ∂2`
∂β2∂β1

− ∂2`
∂β2

2


(α1,α2,β1,β2)=(α̂1,α̂2,β̂1,β̂2)

, (18)

By inverting the information matrix Î(α1, α2, β1, β2), the approximate asymptotic
variance–covariance matrix [V̂] for the MLEs can be obtained as:

[
V̂
]
= Î−1(α̂1, α̂2, β̂1, β̂2

)
=


Var(α̂1) cov(α̂1, α̂2) cov(α̂1, β̂1) cov(α̂1, β̂2)

cov(α̂2, α̂1) Var(α̂2) cov(α̂2, β̂1) cov(α̂2, β̂2)
cov(β̂1, α̂1) cov(β̂1, α̂2) Var

(
β̂1
)

cov(β̂1, β̂2)
cov(β̂2, α̂1) cov(β̂2, α̂2) cov(β̂2, β̂1) Var

(
β̂2
)
. (19)

Assuming some regularity conditions, (α̂1, α̂2, β̂1, β̂2) will be approximately distributed
as a multivariate normal distribution with mean (α1, α2, β1, β2) and covariance matrix
I−1(α1, α2, β1, β2), see Lawless [34]. Then, the 100(1− γ)% two-sided confidence intervals
of α1, α2, β1 and β2 can be given by

α̂i ± Z γ
2

√
Var(α̂i) and β̂i ± Z γ

2

√
Var

(
β̂i

)
(20)

where Z γ
2

is the percentile of the standard normal distribution with a right-tail probability
γ
2 .

To construct the ACIs of the reliability function, Rs,k, it is necessary to compute its vari-
ance. The MLE of the Rs,k is asymptotically normal with mean ˆRs,k and its corresponding
asymptotic variance is given as

σ̂2
Rs,k

=
4

∑
i=1

4

∑
j=1

∂Rs,k

∂θi

∂Rs,k

∂θj
I−1
ij (21)

=
∂Rs,k

∂α1

∂Rs,k

∂α1
I−1
11 + 2

∂Rs,k

∂α1

∂Rs,k

∂β1
I−1
13 +

∂Rs,k

∂α2

∂Rs,k

∂α2
I−1
22

+ 2
∂Rs,k

∂α2

∂Rs,k

∂β2
I−1
24 +

∂Rs,k

∂β1

∂Rs,k

∂β1
I−1
33 +

∂Rs,k

∂β2

∂Rs,k

∂β2
I−1
44 .

Then, the 100(1− ϑ)% two-sided confidence intervals of Rs,k can be given by

R̂s,k ± Z ϑ
2

√
σ̂2

Rs,k
(22)

4. Bayesian Estimation

Another method for obtaining the estimates for the distribution parameters and the
reliability function is discussed in this section and is known as the Bayesian estimation.
Before collecting and organizing the data, the joint prior distribution should be assumed,
and what distinguishes this method is that the prior knowledge is merged in the solution
steps. The Bayesian estimates for the four parameters α1, α2, β1 and β2 in addition to
the reliability function Rs,k is obtained under the squared error loss (SEL) function. First,
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the prior knowledge of the parameters α1, α2, β1 and β2 is assumed to follow gamma
distribution as follows

π1(α1) = αa1−1
1 e−b1α1 , α1 > 0,

π2(α2) = αa2−1
2 e−b2α2 , α2 > 0,

π3(β1) = βa3−1
1 e−b3β1 , β1 > 0,

π4(β2) = βa4−1
2 e−b4β2 , β2 > 0,

(23)

assuming that all the hyper-parameters ai and bi, i = 1, 2, 3, 4 are known and non-negative.
It can be noted that one reason for choosing this prior density is that Gamma prior is
flexible in its nature with a non-informative domain, especially if the values of the hyper-
parameters are assumed to be zero, for more details on selecting priors one may refer to
Kundu and Howlader [35], Dey and Dey [36], and Dey [14].

Using the likelihood function in Equation (10) and the prior distribution for the
parameters α1, α2, β1 and β2 assumed in the previous equations, the posterior distribution,
denoted by π∗(α1, α2, β1, β2 | x

¯
, y

¯
), for these parameters can be derived as follows

π∗
(

α1, α2, β1, β2 | x
¯
, y

¯

)
=

π1(α1) π2(α2) π3(β1) π4(β2) L(α1, α2, β1, β2 | x
¯
, y

¯
)

∞∫
0

∞∫
0

∞∫
0

∞∫
0

π1(α1) π2(α2) π3(β1) π4(β2) L(α1, α2, β1, β2 | x
¯
, y

¯
) dα1dα2 dβ1dβ2

. (24)

Given a parameter φ which is estimated by φ̂, the symmetric loss function SEL function
assigns equal losses for both over- and under-estimations, which can be defined as

L
(
φ, φ̂

)
=
(
φ̂− φ

)2.

As a result, the Bayes estimate g(α1, α2, β1, β2) under the SEL function can be writ-
ten as

ĝBS

(
α1, α2, β1, β2 | x

¯
, y

¯

)
= Eα1,α2,β1,β2|x¯

,y (g(α1, α2, β1, β2)),

where

Eα1,α2,β1,β2|x¯
, y

¯
(g(α1, α2, β1, β2)) =

∞∫
0

∞∫
0

∞∫
0

∞∫
0

g(α1,α2,β1,β2)π1(α1)π2(α2)π3(β1)π4(β2)L(α1,α2,β1,β2|x¯
, y

¯
)dα1dα2dβ1dβ2

∞∫
0

∞∫
0

∞∫
0

∞∫
0

π1(α1)π2(α2)π3(β1)π4(β2)L(α1,α2,β1,β2|x¯
, y

¯
)dα1dα2dβ1dβ2

. (25)

The joint posterior density function of α1, α2, β1 and β2 can be obtained as follows

π∗(α1, α2, β1, β2 | x
¯
,y
¯
) ∝ αnk+a1−1

1 αn+a2−1
2 βnk+a3−1

1 βn+a4−1
2 e−b1α1−b2α2−b3β1−b4β2

×∏n
i=1 ∏k

j=1 x−α1−1
ij ∏n

i=1 y−α2−1
i e−β1 ∑n

i=1 ∑k
j=1 x

−α1
ij e−β2 ∑n

i=1 y−α2
i .

(26)

The Bayesian estimate of Rs,k, under the SEL function, is the mean of the posterior
function in Equation (25) and can be written as

R̃s,k =

∞∫
0

∞∫
0

∞∫
0

∞∫
0

Rs,kπ∗
(

α1, α2, β1, β2 | x
¯
, y

¯

)
dα1dα2 dβ1dβ2. (27)

It is clear that the integral in Equation (27) is difficult to be calculated analytically.
Therefore, the Gibbs sampling method is used to obtain the Bayesian estimator for the
reliability function Rs,k.

Gibbs Sampling

The Gibbs sampling method is a special case of the Monte Carlo Markov Chain
(MCMC) and can be used to perform the Bayes estimate of Rs,k numerically, in addition
to the its related credible interval (CRI). The key idea in Gibbs sampling is to generate



Symmetry 2023, 15, 766 8 of 16

samples for the required parameters from the posterior conditional density function, given
in Equation (26). Then, the posterior conditional density functions of α1, α2, β1 and β2 are
given as

π∗1

(
α1 | α2, β1, β2, x

¯
, y

¯

)
∝ αnk+a1−1

1 e−b1α1
n

∏
i=1

k

∏
j=1

x−α1−1
ij e−β1 ∑n

i=1 ∑k
j=1 x

−α1
ij , (28)

π∗2 (α2 | α1, β1, β2, x
¯
,y
¯
) ∝ αn+a2−1

2 e−b2α2
n

∏
i=1

y−α2−1
i e−β2 ∑n

i=1 y−α2
i , (29)

π∗3 (β1 | α1, α2, β2, x
¯
, y

¯
) ∝ βnk+a3−1

1 e−b3β1 e−β1 ∑n
i=1 ∑k

j=1 x
−α1
ij , (30)

and
π∗4 (β2 | α1, α2, β1, x

¯
, y

¯
) ∝ βn+a4−1

2 e−b4β2 e−β2 ∑n
i=1 y−α2

i , (31)

respectively. It is difficult to obtain the conditional density function of α1, α2, β1 and β2.
Therefore, the Metropolis–Hasting (M–H) algorithm, proposed by Metropolis et al. [37],
is applied using the normal proposal distribution for generating random samples from
the posterior density of α1, α2, β1 and β2. The steps of Gibbs sampling are described as
follows:

1. Start with initial guess
(

α
(0)
1 , α

(0)
2 , β

(0)
1 , β

(0)
2

)
.

2. Set l = 1.

3. Using the following M–H algorithm, generate α
(l)
1 , α

(l)
2 , β

(l)
1 and β

(l)
2 from

π∗1

(
α
(l)
1 | α

(l−1)
2 , β

(l−1)
1 , β

(l−1)
2 , x

¯
, y

¯

)
, π∗2

(
α
(l)
2 | α

(l)
1 , β

(l−1)
1 , β

(l−1)
2 , x

¯
, y

¯

)
, π∗3

(
β
(l)
1 | α

(l)
1 , α

(l)
2 , β

(l−1)
2 , x

¯
, y

¯

)
and π∗4

(
β
(l)
2 | α

(l)
1 , α

(l)
2 , β

(l)
1 , x

¯
, y

¯

)
with the normal pro-

posal distributions

N
(

α
(l−1)
1 , Var(α1)

)
, N
(

α
(l−1)
2 , Var(α2)

)
, N
(

β
(l−1)
1 , Var(β1)

)
and N

(
β
(l−1)
2 , Var(β2)

)
,

where Var(α1), Var(α2), Var(β1) and Var(β2) can be obtained from the main diago-
nal in the inverse Fisher information matrix.

4. Generate a proposal α∗1 from N
(

α
(l−1)
1 , Var(α1)

)
, α∗2 from N

(
α
(l−1)
2 , Var(α2)

)
, β∗1 from

N
(

β
(l−1)
1 , Var(β1)

)
and β∗2 from N

(
β
(l−1)
2 , Var(β2)

)
.

(i) Evaluate the acceptance probabilities

ηα1 = min

[
1,

π∗1

(
α∗1 |α

(l−1)
2 ,β(l−1)

1 ,β(l−1)
2 ,x

¯
, y

¯

)
π∗1

(
α
(l)
1 |α

(l−1)
2 ,β(l−1)

1 ,β(l−1)
2 ,x

¯
, y

¯

)
]

,

ηα2 = min

[
1,

π∗2

(
α∗2 |α

(l)
1 ,β(l−1)

1 ,β(l−1)
2 ,x

¯
, y

¯

)
π∗2

(
α
(l)
2 |α

(l)
1 ,β(l−1)

1 ,β(l−1)
2 ,x

¯
, y

¯

)
]

ηβ1 = min

[
1,

π∗3

(
β∗1 |α

(l)
1 ,α(l)2 ,β(l−1)

2 ,x
¯
, y

¯

)
π∗3

(
β
(l)
1 |α

(l)
1 ,α(l)2 ,β(l−1)

2 ,x
¯
, y

¯

)
]

,

ηβ2 = min

[
1,

π∗4

(
β∗2 |α

(l)
1 ,α(l)2 ,β(l)1 ,x

¯
, y

¯

)
π∗4

(
β
(l)
2 |α

(l)
1 ,α(l)2 ,β(l)1 ,x

¯
, y

¯

)
]

.


(ii) Generate a u1, u2, u3 and u4 from a uniform (0, 1) distribution.

(iii) If u1 < ηα1 , accept the proposal and set α
(l)
1 = α∗1 , else set α

(l)
1 = α

(l−1)
1 .

(iv) If u2 < ηα2 , accept the proposal and set α
(l)
2 = α∗2 , else set α

(l)
2 = α

(l−1)
2 .

(v) If u3 < ηβ1 , accept the proposal and set β
(l)
1 = β∗1, else set β

(l)
1 = β

(l−1)
1 .
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(vi) If u4 < ηβ2 ,accept the proposal and set β
(l)
2 = β∗2, else set β

(l)
2 = β

(l−1)
2 .

5. Compute R(l)
s,k at (α(l)1 , α

(l)
2 , β

(l)
1 , β

(l)
2 ).

6. Set l = l + 1.

7. Repeat Steps (3)− (6), N times and obtain α
(l)
1 , α

(l)
2 , β

(l)
1 , β

(l)
2 and R(l)

s,k , l = 1, 2, . . . , N.

8. To compute the CRIs of α1, α2, β1, β2 and Rs,k, ψ
(l)
k , k = 1, 2, 3, 4, 5, (ψ1, ψ2, ψ3, ψ4, ψ5) =

(α1, α2, β1, β2, Rs,k) as ψ
(1)
k < ψ

(2)
k . . . < ψ

(N)
k , then the 100(1− γ)% CRIs of ψk is

(
ψk(N γ/2), ψk(N (1−γ/2))

)
.

The first M simulated variants are discarded in order to ensure convergence and
remove the affection of initial value selection. Then the selected samples are ψ

(i)
k , j =

M + 1, . . . , N, for sufficiently large N.
Based on the SEL function, the approximate Bayes estimates of ψk is given by

ψ̂k =
1

N −M

N

∑
j=M+1

ψ(j), k = 1, 2, 3, 4, 5.

5. Real Data Analysis

In this section, the reliability function is estimated using the MLE and Bayesian
estimation methods, where the data under consideration are obtained for the water capacity
in the Shasta reservoir in the United States. The view of Shasta Lake during the season of
floods in addition to a general view of the Shasta dam are shown in Figure 2.

Figure 2. View of Shasta Lake during the season of floods and a plan view for the dam.

To consider the scenario of the excessive drought, we will focus on the total amount
of water in the period from 1980 until 2019. Our claim is that an excessive drought occurs
if the total amount of water in August in two years of the next four years is less than the
amount of water filling the reservoir in December of the preceding years, otherwise, no
excessive drought will occur. This problem was previously studied in different contexts,
i.e., see Fatma [19] and Akram [16]. The source of the data is available in [38].

For computational simplicity, the water amount in the reservoir for any given month
is divided by the total capacity of the reservoir and the data will then be as follows:

X =



0.5597 0.8112 0.8296 0.7262
0.7152 0.4637 0.3634 0.4637
0.2912 0.4141 0.7540 0.5381
0.7226 0.5612 0.8140 0.7552
0.5249 0.6060 0.7159 0.5295
0.7420 0.4688 0.3451 0.4253
0.7951 0.6139 0.4616 0.2948
0.6881 0.7967 0.5913 0.8037


and Y =



0.7009
0.5321
0.3572
0.7179
0.6395
0.8279
0.7665
0.3135
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The first row of the observations in matrix X represents the storage amount of water
(divided by the total capacity storage of the lake) in August 1980–1983, respectively, while
the second row represents this in August 1985–1988, respectively, and so on, with a sample
size of 32 observations. Whereas the amount of water in December 1984, 1989, up to 2019 is
represented by matrix Y, with a size of 8 observations. It was found that both X and Y values
are well-fitted to the Gumbel Type II distribution. The Gumbel Type II distribution was
chosen primarily because of its suitability for predicting the possibility of climatic events
such as annual flood flows (which is the case of this study), earthquakes, and other natural
disasters. However, fitting outcomes for certain classical models, such as the log-normal
distribution, are poor, with p-values of 1.57936× 10−11 and 0.00194213 for the X and Y
datasets, respectively. While for the Gumbel Type II distribution, the Kolmogorov–Smirnov
(KS) distance for X with the estimated parameters is 0.178521 and the corresponding p-
value is 0.230418. Furthermore, for Y, the KS distance with the estimated parameters is
0.263293 and the corresponding p-value is 0.550885. A comparison between the empirical
distribution of the dataset and the survival function of the Gumbel Type II distribution is
presented in Figure 3.

Figure 3. Empirical and fitted survival functions for the two datasets X and Y.

For the complete dataset, the MLEs for the parameters, α1, α2, β1, and β2, and the
reliability function, in addition to the Bayesian estimation with respect to SEL function are
displayed in Table 1.

Table 1. The point estimates for α1, β1, α2, β2 and R.

α1 β1 α2 β2 R2,4

MLE 0.303858 0.402204 0.00569851 238.391 0.00789931
Bayes 0.469386 0.393857 0.00850074 237.782 0.00824543

From Table 1, the estimated values are relatively close to each other, which indicates
the good performance of the estimators. In addition, the two estimators for the reliability
function R2,4 seem to be very close and approximately equal to zero, indicating no excessive
droughts in these periods. The convergence for the estimated parameters using the MCMC
method with 1000 iterations is shown in Figure 4.
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Figure 4. Convergence for the estimated parameters α1, β1, α1, β2 and R.

6. Simulation Study

A Monte Carlo simulation analysis is carried out in this section comparing the per-
formance of the MLE and Bayesian estimates of the distribution’s parameters α1, β1, α2,
and β2 under various scenarios. The comparisons are made using the mean-squares-error
(MSE) criterion. All computations are carried out in Mathematica 12, and all the results
are obtained using 1000 Monte Carlo samples. We use various sample sizes (n) and (s, k)
values in the simulation setup. Various parameter values are selected with different sample
sizes (n) such as n = 30, 40, 50, 100, and 150 and α1, β1, α2, and β2 are assumed to be (0.2,
0.5, 0.05, and 200) and (0.3, 0.4, 0.05, and 200), respectively.

Tables 2 and 3 show that in most cases, the Bayesian estimators of the parameters have
a large bias compared with the MLEs for small sample sizes. However, when the sample
sizes grow larger, all of the estimators exhibit small biases. In terms of the MSE criterion, it is
clear that as the sample size increases, the MSEs for the estimates of α1, β1, and α2 decrease,
as expected. However, it was noticed that the MSE for β2 does not decrease as the sample
size increases; hence, sometimes some values of MSE violate this pattern due to some causes
such as the numerical solution of a certain number of non-linear simultaneous equations. It
should be noted that informative priors improve the performance of Bayesian estimates in
a reasonable way. As sample sizes grow larger, the MSE values for all estimators become
nearly identical. To emphasize the performance of the proposed methods, another criterion
is applied which is the coverage probability. The coverage probability indicates how many
times a confidence interval contains the initial value of the estimated parameters through
the number of simulated samples. In addition, the average interval lengths for both the
ACIs and CRIs are calculated and tabulated in Tables 4 and 5. It is noted that for various
values of α1, β1, α2, and β2, for n, s, and k, the CRIs perform better than the ACIs through
the coverage probability and the average lengths of intervals.
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Table 2. The MLE and Bayesian estimates for the parameters (α1, β1, α2, β2) = (0.2, 0.5, 0.05, 200)
with the associated MSE between parenthesis.

MLE Bayesian

(α1, β1, α2, β2) (s, k) n α̂1 β̂1 α̂2 β̂2 α̂1 β̂1 α̂2 β̂2

(0.2, 0.5,
0.05, 200) (3, 5) 30 0.20146 0.50203 0.04999 199.837 0.1808 0.45054 0.04486 198.838

(0.00017) (0.00296) (0.000) (32.8054) (0.0002) (0.0034) (0.000) (33.0127)
40 0.2014 0.50013 0.05001 199.969 0.18074 0.44884 0.04488 198.969

(0.00013) (0.00225) (0.000) (31.3774) (0.00014) (0.00271) (0.000) (33.9823)
50 0.2011 0.50103 0.04998 199.897 0.18047 0.44964 0.04485 198.898

(0.0001) (0.00176) (0.000) (32.0521) (0.00012) (0.002) (0.000) (37.8047)
100 0.20071 0.49831 0.04993 199.688 0.18012 0.4472 0.04481 198.689

(0.00005) (0.0009) (0.000) (31.9973) (0.00005) (0.00116) (0.000) (39.0693)
150 0.20037 0.5002 0.04999 200.017 0.17982 0.4489 0.04486 199.017

(0.00003) (0.00059) (0.000) (33.7554) (0.00004) (0.00059) (0.000) (40.6417)
(5, 5) 30 0.20222 0.49926 0.04997 199.657 0.18148 0.44805 0.04484 198.659

(0.00017) (0.00292) (0.000) (33.13) (0.0002) (0.00331) (0.000) (35.7178)
40 0.20177 0.50036 0.04999 199.715 0.18107 0.44904 0.04486 198.716

(0.00012) (0.00205) (0.000) (32.5364) (0.00013) (0.00232) (0.000) (38.4116)
50 0.20087 0.50181 0.04995 199.765 0.18027 0.45035 0.04483 198.767

(0.0001) (0.00176) (0.000) (34.8049) (0.00012) (0.00227) (0.000) (35.433)
100 0.20051 0.5015 0.04999 199.824 0.17994 0.45006 0.04486 198.824

(0.00005) (0.00088) (0.000) (31.978) (0.00005) (0.00114) (0.000) (36.2068)
150 0.20041 0.50021 0.05002 199.727 0.17986 0.44891 0.04489 198.728

(0.00003) (0.00058) (0.000) (32.943) (0.00004) (0.00058) (0.000) (34.9308)
(5, 6) 30 0.20152 0.50146 0.05001 199.8 0.18085 0.45003 0.04488 198.801

(0.00014) (0.0022) (0.000) (32.295) (0.00015) (0.00232) (0.000) (33.4603)
40 0.20155 0.50179 0.05005 199.89 0.18088 0.45032 0.04492 198.891

(0.00011) (0.0018) (0.000) (34.2618) (0.00013) (0.00204) (0.000) (34.2076)
50 0.20141 0.49875 0.05 199.765 0.18075 0.44759 0.04487 198.766

(0.00009) (0.00149) (0.000) (30.8775) (0.0001) (0.00175) (0.000) (32.8875)
100 0.20038 0.5005 0.04995 200.074 0.17983 0.44916 0.04483 199.074

(0.00004) (0.00067) (0.000) (31.4818) (0.00005) (0.00075) (0.000) (32.6242)
150 0.20014 0.50009 0.04999 200.067 0.17962 0.4488 0.04486 199.067

(0.00003) (0.00052) (0.000) (33.1109) (0.00004) (0.00064) (0.000) (36.4121)

Table 3. The MLE and Bayesian estimates for the parameters (α1, β1, α2, β2) = (0.3, 0.4, 0.05, 200)
with the associated MSE between parenthesis.

MLE Bayesian

(α1, β1, α2, β2) (s, k) n α̂1 β̂1 α̂2 β̂2 α̂1 β̂1 α̂2 β̂2

(0.3, 0.4,
0.05, 200) (3, 5) 30 0.3025 0.39763 0.05 199.822 0.27147 0.35685 0.04487 198.822

(0.00036) (0.00226) (0.000) (33.8999) (0.00038) (0.00234) (0.000) (40.3491)
40 0.30229 0.39954 0.04984 199.835 0.27129 0.35856 0.04473 198.836

(0.00026) (0.0016) (0.000) (34.5172) (0.00026) (0.00166) (0.000) (35.5571)
50 0.30102 0.40185 0.05003 199.753 0.27014 0.36064 0.0449 198.754

(0.00021) (0.00123) (0.000) (34.6565) (0.00025) (0.00138) (0.000) (42.4399)
100 0.30021 0.40196 0.05007 200.059 0.26942 0.36074 0.04493 199.059

(0.00012) (0.0007) (0.000) (32.4818) (0.00013) (0.0007) (0.000) (32.5149)
150 0.30078 0.39987 0.04999 199.555 0.26993 0.35886 0.04486 198.558

(0.00007) (0.00043) (0.000) (33.0983) (0.00009) (0.00052) (0.000) (38.4439)
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Table 3. Cont.

MLE Bayesian

(α1, β1, α2, β2) (s, k) n α̂1 β̂1 α̂2 β̂2 α̂1 β̂1 α̂2 β̂2

(5, 5) 30 0.30285 0.4029 0.04994 199.654 0.27179 0.36157 0.04482 198.656
(0.00038) (0.00225) (0.000) (33.433) (0.00049) (0.00238) (0.000) (40.4265)

40 0.30167 0.40134 0.04994 200.091 0.27073 0.36017 0.04482 199.09
(0.00026) (0.00166) (0.000) (34.0351) (0.00032) (0.00196) (0.000) (33.7554)

50 0.30159 0.40057 0.04993 200.15 0.27065 0.35949 0.04481 199.149
(0.00022) (0.00129) (0.000) (34.2804) (0.00026) (0.00164) (0.000) (43.0006)

100 0.30051 0.40013 0.04995 199.983 0.26969 0.35909 0.04483 198.983
(0.00011) (0.00068) (0.000) (32.9482) (0.00011) (0.00069) (0.000) (33.3591)

150 0.30005 0.40084 0.04996 199.626 0.26928 0.35973 0.04484 198.628
(0.00007) (0.00044) (0.000) (33.8825) (0.00008) (0.00051) (0.000) (35.5814)

(5, 6) 30 0.30217 0.40028 0.04992 200.064 0.27118 0.35923 0.0448 199.063
(0.00031) (0.00158) (0.000) (33.822) (0.0004) (0.00236) (0.000) (36.4273)

40 0.30233 0.39868 0.05001 199.671 0.27132 0.35779 0.04488 198.672
(0.00025) (0.00129) (0.000) (32.1462) (0.0003) (0.00168) (0.000) (37.4052)

50 0.30195 0.39879 0.05 200.079 0.27098 0.35789 0.04487 199.079
(0.0002) (0.00109) (0.000) (33.8499) (0.00021) (0.00116) (0.000) (40.087)

100 0.30038 0.40072 0.05001 199.938 0.26957 0.35962 0.04489 198.938
(0.00009) (0.00055) (0.000) (32.5754) (0.00011) (0.00064) (0.000) (36.7374)

150 0.30054 0.40001 0.04998 200.075 0.26971 0.35899 0.04486 199.075
(0.00006) (0.00036) (0.000) (33.7145) (0.00006) (0.0004) (0.000) (38.2541)

Table 4. ACIs and CRIs for (α1, β1, α2, β2) = (0.2, 0.5, 0.05, 200) with their corresponding coverage
probabilities between parenthesis.

MLE Bayesian

(α1, β1, α2, β2) (s, k) n α̂1 β̂1 α̂2 β̂2 α̂1 β̂1 α̂2 β̂2

(0.2, 0.5, 0.05,
200) (3, 5) 30 0.0507 0.2109 0.0281 567.508 0.0304 0.1265 0.0169 29.5104

(0.95) (0.951) (1.000) (1.000) (0.9949) (0.9951) (0.995) (0.995)
40 0.0436 0.1833 0.0244 491.674 0.0261 0.11 0.0146 25.567

(0.944) (0.944) (1.000) (1.000) (0.995) (0.995) (0.995) (0.9949)
50 0.0389 0.1643 0.0218 438.494 0.0233 0.0986 0.0131 22.8017

(0.951) (0.948) (1.000) (1.000) (0.9951) (0.9951) (0.9951) (0.9949)
100 0.0275 0.1159 0.0153 308.949 0.0165 0.0695 0.0092 16.0653

(0.954) (0.935) (1.000) (1.000) (0.9949) (0.995) (0.9949) (0.995)
150 0.0224 0.0948 0.0125 252.359 0.0134 0.0569 0.0075 13.1227

(0.962) (0.948) (1.000) (1.000) (0.9949) (0.9951) (0.9949) (0.995)
(5, 5) 30 0.0506 0.2115 0.0283 570.071 0.0303 0.1269 0.017 29.6437

(0.951) (0.933) (1.000) (1.000) (0.9949) (0.995) (0.9952) (0.9949)
40 0.0435 0.1839 0.0245 492.382 0.0261 0.1103 0.0147 25.6038

(0.949) (0.945) (1.000) (1.000) (0.9949) (0.9949) (0.995) (0.995)
50 0.039 0.164 0.0218 439.355 0.0234 0.0984 0.0131 22.8464

(0.964) (0.956) (1.000) (1.000) (0.995) (0.9951) (0.9949) (0.9951)
100 0.0274 0.1165 0.0154 309.768 0.0164 0.0699 0.0092 16.1079

(0.954) (0.941) (1.000) (1.000) (0.995) (0.995) (0.9951) (0.995)
150 0.0224 0.0949 0.0125 252.428 0.0134 0.057 0.0075 13.1262

(0.953) (0.952) (1.000) (1.000) (0.9951) (0.9951) (0.9951) (0.995)
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Table 4. Cont.

MLE Bayesian

(α1, β1, α2, β2) (s, k) n α̂1 β̂1 α̂2 β̂2 α̂1 β̂1 α̂2 β̂2

(5, 6) 30 0.046 0.1931 0.0282 567.143 0.0276 0.1159 0.0169 29.4914
(0.946) (0.951) (1.000) (1.000) (0.9951) (0.995) (0.995) (0.995)

40 0.0397 0.168 0.0245 493.172 0.0238 0.1008 0.0147 25.6449
(0.945) (0.951) (1.000) (1.000) (0.9949) (0.9952) (0.995) (0.995)

50 0.0356 0.1499 0.0218 439.107 0.0213 0.09 0.0131 22.8335
(0.938) (0.941) (1.000) (1.000) (0.9949) (0.995) (0.9951) (0.9948)

100 0.025 0.106 0.0153 308.724 0.015 0.0636 0.0092 16.0537
(0.957) (0.958) (1.000) (1.000) (0.9951) (0.9951) (0.9949) (0.9949)

150 0.0204 0.0866 0.0125 251.642 0.0123 0.052 0.0075 13.0854
(0.955) (0.941) (1.000) (1.000) (0.9949) (0.9951) (0.995) (0.995)

Table 5. ACIs and CRIs for (α1, β1, α2, β2) = (0.3, 0.4, 0.05, 200) with their corresponding coverage
probabilities between parenthesis.

MLE Bayesian

(α1, β1, α2, β2) (s, k) n α̂1 β̂1 α̂2 β̂2 α̂1 β̂1 α̂2 β̂2

(0.3, 0.4, 0.05,
200) (3, 5) 30 0.0759 0.1848 0.0283 571.737 0.0455 0.1109 0.017 29.7303

(0.952) (0.938) (1.000) (1.000) (0.9951) (0.995) (0.995) (0.995)
40 0.0656 0.1594 0.0244 492.21 0.0394 0.0957 0.0147 25.5949

(0.959) (0.949) (1.000) (1.000) (0.995) (0.995) (0.9951) (0.9949)
50 0.0582 0.1438 0.0217 437.88 0.0349 0.0863 0.013 22.7697

(0.954) (0.953) (1.000) (1.000) (0.9948) (0.9948) (0.9951) (0.995)
100 0.0412 0.1013 0.0154 309.34 0.0247 0.0608 0.0092 16.0857

(0.96) (0.95) (1.000) (1.000) (0.995) (0.9951) (0.9949) (0.995)
150 0.0335 0.0827 0.0125 251.705 0.0201 0.0496 0.0075 13.0887

(0.946) (0.946) (1.000) (1.000) (0.995) (0.995) (0.995) (0.9949)
(5, 5) 30 0.0759 0.1844 0.0282 568.27 0.0456 0.1106 0.0169 29.55

(0.94) (0.95) (1.000) (1.000) (0.995) (0.995) (0.9951) (0.9952)
40 0.0655 0.1599 0.0245 493.459 0.0393 0.0959 0.0147 25.6599

(0.95) (0.942) (1.000) (1.000) (0.9951) (0.9948) (0.995) (0.995)
50 0.0584 0.1429 0.0218 438.597 0.035 0.0857 0.0131 22.807

(0.947) (0.94) (1.000) (1.000) (0.9951) (0.9951) (0.9949) (0.9949)
100 0.0411 0.1015 0.0153 309.374 0.0247 0.0609 0.0092 16.0874

(0.954) (0.95) (1.000) (1.000) (0.995) (0.9951) (0.9951) (0.995)
150 0.0336 0.0827 0.0125 252.025 0.0201 0.0496 0.0075 13.1053

(0.953) (0.964) (1.000) (1.000) (0.9952) (0.9951) (0.995) (0.9949)
(5, 6) 30 0.0689 0.1689 0.0283 570.784 0.0413 0.1014 0.017 29.6808

(0.956) (0.945) (1.000) (1.000) (0.995) (0.9951) (0.995) (0.9951)
40 0.0597 0.1463 0.0245 494.035 0.0358 0.0878 0.0147 25.6898

(0.953) (0.948) (1.000) (1.000) (0.995) (0.9951) (0.995) (0.995)
50 0.0533 0.1305 0.0217 437.669 0.032 0.0783 0.013 22.7588

(0.944) (0.945) (1.000) (1.000) (0.9951) (0.995) (0.995) (0.9953)
100 0.0376 0.0925 0.0153 308.903 0.0225 0.0555 0.0092 16.063

(0.949) (0.954) (1.000) (1.000) (0.9951) (0.9951) (0.995) (0.9949)
150 0.0306 0.0756 0.0125 252.177 0.0184 0.0453 0.0075 13.1132

(0.957) (0.952) (1.000) (1.000) (0.9951) (0.9947) (0.995) (0.995)

7. Conclusions

In this study, the stress–strength model describing the amount of water held in a certain
reservoir over time is modeled parametrically using the Gumbel Type II distribution. It
introduces a mathematical procedure for obtaining a closed form for R. In addition to the
Bayesian technique, the maximum likelihood estimation for the parameter R is carried out.
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A simulation study is conducted to compare the effectiveness of the various approaches.
The analysis revealed that the water in storage is sufficiently durable. In other words, since
the value of R is constantly close to zero, droughts are unlikely to occur even when this
amount of water is subjected to evaporation and consumption.
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