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Abstract: Graphs are useful for analysing the structure models in computer science, operations
research, and sociology. The word metric dimension is the basis of the distance function, which
has a symmetric property. Moreover, finding the resolving set of a graph is NP-complete, and the
possibilities of finding the resolving set are reduced due to the symmetric behaviour of the graph.
In this paper, we introduce the idea of the edge-multiset dimension of graphs. A representation
of an edge is defined as the multiset of distances between it and the vertices of a set, B ⊆ V(Γ). If
the representation of two different edges is unequal, then B is an edge-multiset resolving a set of Γ.
The least possible cardinality of the edge-multiset resolving a set is referred to as the edge-multiset
dimension of Γ. This article presents preliminary results, special conditions, and bounds on the
edge-multiset dimension of certain graphs. This research provides new insights into structure models
in computer science, operations research, and sociology. They could have implications for developing
computer algorithms, aircraft scheduling, and species movement between regions.

Keywords: resolving set; metric dimension; edge metric dimension; mixed metric dimension; line
graph; paraline graph

1. Introduction

The study of distance-related parameters in graph theory, especially the metric di-
mension, has long been a topic of interest among researchers. The metric dimension of
a graph is the minimum number of vertices required to uniquely identify every vertex
in the graph using distances between vertices. In everyday applications, the concept of
the metric dimension is helpful in different fields, such as computer networks, pattern
recognition, and network security. In computer networks, the metric dimension of a graph
can be used to determine the node’s location in the network and assess the network’s
reliability and performance. In recent years, the study of metric dimensions has become
ever more prevalent due to the growth of internet relationships and the increasing demand
for robust and secure networks. The theory of metric dimensions was proposed by Slater
in 1975 [1], and independently by Harary and Melter in 1976 [2]. However, the notion of
metric dimensions in metric spaces generally dates back to 1953 [3]. Some recent studies
on the metric dimension of graphs are given in the following articles [4–6]. The concept
of metric dimensions is based on the distance function d : V × V → R+ ∪ {0}, which
has the symmetric property. Determining the resolving set of a graph is an NP-complete
problem, so it is computationally difficult to find the minimum size-resolving set for a
graph. However, due to the graph’s symmetric nature, finding the resolvability reduces
the number of possibilities for the elements in the resolving set. The study of distance in
graphs is a fast-expanding area of research in different science fields, especially mathe-
matics, chemistry, and computer science. The concept of distances in graphs has several
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applications in various fields. Researchers are constantly exploring new and innovative
ways to measure and analyse graph distances and apply these methods to real-world prob-
lems. The field is marked by a high level of interdisciplinary collaboration, with computer
science, mathematics, physics, and biology researchers all contributing to developing new
techniques and algorithms.

In this manuscript, we define a new technique to identify the edges of a graph, termed
the edge-multiset dimension and compared to the multiset dimension. Section 2 contains a
comprehensive literature review and basic definitions. In Section 3, we give the methods
used in the manuscript. Section 4 contains the main results of the multiset and edge-
multiset dimensions of different families of graphs. This section also discusses the graphs
having infinite, constant and edge-multiset dimension graphs depending on their order. In
Section 5, we give different examples and compare multiset and edge-multiset dimensions.
In the end we give the conclusions and open problems for future work.

2. Literature Review

Various distance-related parameters have been studied, such as the partition distance
of graphs were studied in [7], Alhevaz et al. gave the sharp bounds for the generalized
distance spectral radius of graphs [8], Wang studied distance bounds for generalized bicycle
codes and Pryadko [9], Nadeem et al. found the fault-tolerant partition dimension of oxide
interconnection networks [10]. Concerning metric dimensions, that have been of more
interest to the research community, one could remark of a few of them (although possibly
not all of the most remarkable ones): partition dimension [11], strong metric dimension [12],
k-metric dimension [13], identifying codes [14], k-metric anti-dimension [15], local metric
dimension [16], edge metric dimension [17] and multiset dimension [18] (see also [19] for
the outer-multiset dimension). Each of these variations of the metric dimension mentioned
above have been recently studied to a greater or lesser extent, and even some combinations
between them have also appeared, including, for instance, k-partition dimension [20], or
local edge dimension [21].

In their work [17], Kelenc et al. introduced the concept of the edge metric dimension of
graphs and discussed various results, including comparisons with the metric dimension of
graphs. Such variation has attracted the significant attention from several researchers, and
we can find many papers on it. In [22], characterized the formation of the topful graph and
some sufficient and important conditions of a graph to be topful were explained. The edge
metric dimension of some convex polytopes and its relevant graphs were determined in [23].
The edge dimension of some generalized Petersen graphs was explained in [24]. The edge
dimensions via integer linear programming and hierarchical products were given in [25],
and many examples show that these methods can be used to obtain the edge dimensions
for some graphs. The edge dimension of the two graphs’ join, corona, and the lexicographic
product was studied in [26]. The vertex, edge and mixed dimension of the dragon graph
Tn,m, L(Tn,m), L(S(Tn,m)) and L(L(Tn,m)) have been computed [27]. Knor presented [28]
a lot of graphs which proved that the edge dimension is less than the metric dimension,
but it is impossible to bound the edge dimension of a graph by the vertex dimension. The
approximation algorithm was presented for the edge dimension problem in [29]. On the
other hand, Simanjuntak, et al. [18], presented the notion of using multisets for uniquely
identifying the vertices of a graph, which allowed the birth of the multiset dimension of
graphs in 2017. They presented some primary results, showed sufficient conditions for a
graph to have a multiset dimension infinite, and computed the multiset dimension of some
graphs. Some other results on this variant appeared in [30–32]. In connection with this,
in [19], another version of the multiset dimension (called the outer-multiset dimension) was
introduced as an attempt to avoid the existence of graphs with infinite multiset dimensions
(that is, graphs for which the multiset dimension cannot be computed).

Based on the significance of these two latter variants of metric dimension (edge and
multiset), we aim to introduce and begin the study of a natural combination of them, that is,
the edge-multiset dimension of graphs. From now onward, we consider Γ a connected and
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simple graph. The vertex set of Γ is V(Γ) and edge set of Γ is E(Γ). The distance between
any pair of vertices α and β ∈ V(Γ) is symbolized as dΓ(α, β) (or d(α, β) for short), and
is described as the number of edges of the least possible path between α and β. Assume
w ∈ V(Γ), resolves (recognizes or determines) the vertices α and β, if dΓ(w, α) 6= dΓ(w, β).
For an ordered subset of t vertices S = {v1, v2, . . . , vt}, the metric code or representation of
a vertex u according to S is the ordered t−tuple of distances between u and the vertices in
S, which is written as

r(u|S) = (dΓ(u, v1), dΓ(u, v2), . . . , dΓ(u, vt)).

If any pair of vertices of Γ have dissimilar metric codes or representations according to
set S, then S is known as a resolving set for Γ. The metric dimension of Γ is defined as the
number of vertices in the smallest resolving set for Γ, denoted by dim(Γ). If S is a resolving
set for Γ of cardinality dim(Γ), then S is called a metric basis for Γ.

The distance between an edge f = αβ and a vertex ρ is denoted as dΓ( f , ρ) (or d( f , ρ)
for short), and is defined as dΓ( f , ρ) = min{dΓ(α, ρ), dΓ(β, ρ)}. The vertex p resolves
(recognizes or determines) the edges f1 and f2, if dΓ( f1, p) 6= dΓ( f2, p). For an ordered
subset of t vertices S = {v1, v2, . . . , vt}, the metric code or representation of an edge f
according to set S is the ordered t−tuple of distances between f and the vertices in S, which
is written as

r( f |S) = (dΓ( f , v1), dΓ( f , v2), . . . , dΓ( f , vt)).

If any pair of edges of Γ have specific metric codes or representations according to
S, then S is known as an edge-resolving set for Γ. The edge metric dimension of Γ is then
defined as the number of vertices in the smallest edge resolving set for Γ, denoted by
dime(Γ). If S is an edge resolving set for Γ of cardinality dime(Γ), then S is called an edge
metric basis for Γ.

Multiset and Edge-Multiset Dimensions of Graphs

Let A = {a1, a2, . . . , al} be a subset of V(Γ). For any vertex u of Γ, the multiset code or
representation of u ∈ V(Γ) according to A is a multiset which is defined as

rm(u|A) = {dΓ(u, a1), dΓ(u, a2), . . . , dΓ(u, al)}.

Note that the notion of multisets allows repetitions of elements in rm(u|A). If rm(u|A) 6=
rm(v|A) for every pair of vertices u and v ∈ V(Γ), then A is called a multiset resolving set
of Γ. There could be graphs containing no multiset resolving sets. For instance, consider a
graph with two vertices uand v, which are twins; that is, they share the same neighbours
in Γ. In this sense, no matter which set of vertices D of Γ one could choose, it will always
happen rm(u|D) = rm(v|D). Hence, they will never be resolved by any set of vertices of
Γ. In this sense, if a graph Γ contains at least one multiset resolving set, then a multiset
resolving set containing the smallest possible number of vertices is called a multiset basis of
Γ. In such a case, the cardinality of any multiset basis of Γ is called the multiset dimension
of Γ, and is denoted as md(Γ). On to the contrary, if Γ does not possess a multiset resolving
set, we agreed that md(Γ) = ∞. For some partial information on graphs satisfying this
property, we suggest [33].

To give an example of the above concepts, assume graph G with V(G) = {v1, v2, . . . , v8}
and E(G) = {a, b, c, d, e, f , g, h} as given in Figure 1. We note that for instance, the set
A = {v2, v3, v7} is a multiset resolving set of G.

v

v

v v

v vv

v
1

2 3

4

56

7 8

a

b
c

d
e

f

g h

Figure 1. A graph with the md(G) = 3.
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Next, we show Table 1, where the multiset codes or representations of V(G) of G
according to A are given. It can be easily verified that no multiset resolving set having
cardinality less than three is a multiset resolving sets for G, which altogether leads to
md(G) = 3.

Table 1. The multiset representations of the vertices of G with respect to the set A = {v2, v3, v7}.

vi v1 v2 v3 v4

rm(vi, A) {1, 2, 1} {0, 1, 2} {1, 0, 3} {2, 1, 4}

vi v5 v6 v7 v8

rm(vi, A) {3, 2, 3} {2, 3, 2} {2, 3, 0} {3, 2, 5}

Now, the multiset representation rem(e|B) of an edge e = xy according to the set B,
is defined as a multiset containing the distances between the edge e and the vertices in B.
That is,

rem(e|B) = {dΓ(e, b1), dΓ(e, b2), . . . , dΓ(e, bj)}.

If rem(e|B) 6= rem( f |B) for any pair of dissimilar edges e and f , then B is called an
edge-multiset resolving set for Γ. We again remark that there can be graphs containing no
edge-multiset resolving sets. If Γ contains an edge-multiset resolving set, then the least
possible edge-multiset resolving set is called an edge-multiset basis of Γ. The number of
elements in an edge-multiset basis of Γ is known as the edge-multiset dimension, and is
denoted as mde(Γ). If Γ does not contain an edge-multiset resolving set, then we assume
that mde(Γ) = ∞.

In a similar manner to the case of the multiset dimension, Table 2 shows the mul-
tiset representations of all the edges of the graph G given in Figure 1, according to
B = {v2, v3, v7}. It can be easily determined that no set with less than three vertices
is an edge-multiset resolving set for G; thus, mde(G) = 3.

Table 2. The multiset representations of the edges of G according to the set B = {v2, v3, v7}.

Edges a b c d

rem(., B) {0, 1, 1} {0, 0, 2} {1, 0, 3} {2, 1, 3}

Edges e f g h

rem(., B) {2, 2, 2} {1, 2, 1} {1, 2, 0} {2, 1, 4}

After introducing the multiset dimension, it is natural to ask what the representation
of edges will be with respect to the multiset resolving set. We introduce and study a new
concept called the edge-multiset dimension of graphs, which combines two significant
variants of the metric dimension (edge and multiset).

3. Methodology

There are many steps in this research known as determining the graph Γ, defining the
set of vertices and the set of edges, determining the set A ⊆ E(Γ), determining the multiset
representations of vertices or edges of graph Γ, and determining the least possible resolving
set for Γ.

Next, we present on the following known results for the multiset dimension of graphs
that are interesting for this exposition.

Theorem 1 ([18]). The multiset dimension of a graph Γ is one if, and only if, Γ is a path.

Theorem 2 ([18]). Let Γ be a graph other than a path. Then md(Γ) ≥ 3.

Theorem 3 ([18]). Let n ≥6. The multiset dimension of the cycle Cn is 3.
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Theorem 4 ([18]). Let m ≥3 and n ≥ 2. The multiset dimension of the grid graph Pn2Pm is 3.

Theorem 5 ([18]). If Γ is a non-path graph of diameter at most 2, then md(Γ) = ∞.

Consequently, from the above-known results, there is no graph Γ with a multiset
dimension of 2. Since the graphs with a multiset dimension are characterized in Theorem 1,
it would be desirable to characterize (at least partially) the graphs with a multiset dimension
of 3. In concordance with this. Figure 2 shows the flow chart of the research methodology
used in this paper.

 

• Study of LiteratureStep 1
• Determine Graph

• Define Vertex Set and Edge SetStep 2

• Determine A ⊂ 𝑉(Γ) or B ⊂ 𝑉(Γ)Step 3

• Determine Vertex  and edge multiset RepresentationStep 4

• If 𝑟𝑚 𝑢 𝐴 = 𝑟𝑚 𝑣 𝐴 , 𝑢, 𝑣 ∈ 𝑉(Γ) or 𝑟𝑒𝑚 𝑓 𝐵 =
𝑟𝑒𝑚 𝑔 𝐵 , 𝑓, 𝑔 ∈ 𝐸(Γ), then go back to step  3.  

• 𝑟𝑚 𝑢 𝐴 ≠ 𝑟𝑚 𝑣 𝐴 , 𝑢, 𝑣 ∈ 𝑉(Γ) or 𝑟𝑒𝑚 𝑓 𝐵 ≠
𝑟𝑒𝑚 𝑔 𝐵 , 𝑓, 𝑔 ∈ 𝐸(Γ), then forward  to next step   

Step 5

• Determine The Least Possible Set A or BStep 6

• TheoremStep 7

Figure 2. Diagram for the multiset and edge-multiset dimension.

4. Results on the Multiset and Edge-Multiset Dimensions of Graphs

Next, we give some families of graphs, kayak paddle, dragon and comb products of
two path graphs with a multiset dimension of 3.

4.1. Kayak Paddle Graph

The kayak paddle graph, denoted by KP(ϑ, λ, µ) is obtained from two cycles of length
ϑ ≥ 3 and λ ≥ 3 by joining one vertex of one cycle with a vertex of degree one in a path
of length µ ≥ 2, and another vertex of the other cycle with the other vertex of degree
one in the path of length µ. See Figure 3 for an example. We can write the vertex set of
KP(ϑ, λ, µ) as V(KP(ϑ, λ, µ)) = {α1, α2, . . . αϑ} ∪ {β1, β2, . . . , βλ} ∪ {γ1, . . . , γµ−1} and the
edge set as E(KP(ϑ, λ, µ)) = {αiαi+1 : 1 ≤ i ≤ ϑ} ∪ {β jβ j+1 : 1 ≤ j ≤ λ} ∪ {γkγk+1 : 1 ≤
k ≤ µ− 2} ∪ {α1γ1, γµ−1β1}, where αϑ+1 = α1 and βλ+1 = β1.

Figure 3. The kayak paddle graph KP(12, 8, 5).

In Theorem 6 we determine the exact value of the multiset dimension of the kayak
paddle graph.

Theorem 6. If KP(ϑ, λ, µ) is a kayak paddle graph with ϑ, λ, µ ≥ 4, then

md(KP(ϑ, λ, µ)) = 3.
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Proof. Therefore, by using Theorem 2, we have that md(KP(ϑ, λ, µ)) ≥ 3. Set A =
{α2, β2, γ1} is a multiset resolving set for the graph KP(ϑ, λ, µ).

If ϑ ≥ 4 with t = b ϑ
2 c+ 1, then the vertices represented according to A are given in

Table 3:

Table 3. The multiset representations of the vertices of KP(ϑ, λ, µ), for ϑ ≥ 4 with t = b ϑ
2 c + 1

according to the set A = {α2, β2, γ1}.

rm(., .) A = {α2, β2, γ1}

α1 {1, 1, µ + 1}

αi: 2 ≤ i ≤ t {i− 2, i, µ + i}

αi: i = t + 1 {i− 2, ϑ− i + 2, ϑ + µ− i + 2}

αi: t + 2 ≤ i ≤ ϑ {ϑ− i + 2, ϑ− i + 2, ϑ + µ− i + 2}

If λ ≥ 4 with t′ = b λ
2 c+ 1, then the vertices represented according to A are given in

Table 4:

Table 4. The multiset representations of the vertices of KP(ϑ, λ, µ), for λ ≥ 4 with t′ = b λ
2 c + 1

according to the set A = {α2, β2, γ1}.

rm(., .) A = {α2, β2, γ1}

β1 {1, µ− 1, µ + 1}

β j: 2 ≤ j ≤ t′ {j− 2, µ + j− 2, µ + j}

β j: j = t′ + 1 {j− 2, λ + µ− j + 2, λ + µ− j}

β j: t′ + 2 ≤ j ≤ λ {λ− j + 2, λ + µ− j + 2, λ + µ− j}

If µ ≥ 4, then the vertices represented according to A are given in Table 5:

Table 5. The multiset representations of the vertices of KP(ϑ, λ, µ), for µ ≥ 4, according to the set
A = {α2, β2, γ1}.

rm(., .) γk: 1 ≤ k ≤ µ− 1

A = {α2, β2, γ1} {k + 1, k− 1, µ− k + 1}

Therefore, any two vertices do not have the same multiset code or representation
according to A, as shown in Tables 3–5. This implies that md(KP(ϑ, λ, µ)) ≤ 3. Hence,
md(KP(ϑ, λ, µ)) = 3.

4.2. Dragon Graph

The dragon graph Tn,m is obtained by joining a vertex vn of a cycle graph Cn with a
vertex u1 of a path graph Pm with a bridge. See Figure 4 for an example. The vertex set
of a dragon graph Tn,m is V(Tn,m) = {vi, uj|1 ≤ i ≤ n, 1 ≤ j ≤ m} and the edge set is
E(Tn,m) = {vivi+1 : 1 ≤ i ≤ n− 1} ∪ {ujuj+11 ≤ j ≤ m− 1} ∪ {v1vn, vnu1}.

1
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v

v
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v
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v u u u u5

Figure 4. The dragon graph T8,5.
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In Theorem 7 we determine the exact value of the multiset dimension of a dragon graph.

Theorem 7. Let Tn,m be a dragon graph with n ≥ 4 and m ≥ 3. Then md(Tn,m) = 3.

Proof. Therefore, by Theorem 2, md(Tn,m) ≥ 3. We next show that the set A = {v1, v2, um}
is a multiset resolving set for Tn,m.

If n ≥ 4 is even with t = n
2 , then the vertices represented according to A are given in

Table 6:

Table 6. The multiset representations of the vertices of Tn,m, for n ≥ 4, even and t = n
2 according to

the set A = {v1, v2, um}.

rm(., .) A = {v1, v2, um}

v1 {0, 1, m + 1}

vi: 2 ≤ i ≤ t {i− 1, i− 2, m + i}

vt+1 {t, t− 1, m + t− 1}

vi: t + 2 ≤ i ≤ n {n− i + 1, n− i + 2, n + m− i}

If n ≥ 4 is odd with t = b n
2 c, then the vertices represented according to A are given in

Table 7:

Table 7. The multiset representations of the vertices of Tn,m, for n ≥ 4, odd and t = b n
2 c according to

the set A = {v1, v2, um}.

rm(., .) A = {v1, v2, um}

v1 {0, 1, m + 1}

vi: 2 ≤ i ≤ t {i− 1, i− 2, m + i}

vt+1 {t, t− 1, m + t}

vt+2 {t, t, m + t− 1}

vi: t + 3 ≤ i ≤ n {n− i + 1, n− i + 2, n + m− i}

If m ≥ 4 then the vertices represented according to A are given in Table 8:

Table 8. The multiset representations of the vertices of Tn,m, for m ≥ 4 according to the set
A = {v1, v2, um}.

rm(., .) A = {v1, v2, um}

uj: 1 ≤ j ≤ m {j + 1, j + 2, m− j}

Therefore, any two vertices do not have the same multiset code or representation accord-
ing to A, as shown in Tables 6–8. This implies that md(Tn,m) ≤ 3. Hence, md(Tn,m) = 3.

4.3. Comb Products Graph

Let G and H be two graphs. Then the comb product, symbolically written as G �◦ H,
is produced by picking |V(G)| copies of H and one copy of G and identifying the ith copy
of graph H at vertex o to the ith vertex of graph G. Such a product is also called a rooted
product graph, as introduced in [34], or a hierarchical product graph as defined in [35].
Several studies related to metric dimension parameters of such graphs are found in the
literature, for a couple of recent ones, see [36,37]. A fairly representative example of a comb
product graph of P5 and P4 appears in Figure 5.
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Figure 5. The comb product of P5 and P4, P5 �◦ P4.

In Theorem 8 we determine the exact value of the multiset dimension of the comb
product of Pn and Pm.

Theorem 8. If Pn �◦ Pm is the comb product of Pn and Pm with n, m ≥ 4, then md(Pn �◦ Pm) = 3.

Proof. Since Pn �◦ Pm is not a path, by Theorem 2, md(Pn �◦ Pm) ≥ 3. Assume Pn �◦ Pm

has V(Pn �◦ Pm) = {vj
i : 1 ≤ i ≤ n, 0 ≤ j ≤ m− 1} and E(Pn �◦ Pm) = {v0

i v0
i+1 : 1 ≤ i ≤

n− 1} ∪ {vj
iv

j+1
i : 1 ≤ i ≤ n; 0 ≤ j ≤ m− 2}. Let us show that the set A = {vm−1

1 , v0
1, vm−1

n }
is a multiset resolving set for the graph Pn �◦ Pm. The vertices represented according to A
are given in Table 9.

Table 9. The multiset representations of the vertices of Pn �◦ Pm according to the set A =

{vm−1
1 , v0

1, vm−1
n }.

rm(., .) A = {vm−1
1 , v0

1, vm−1
n }

vj
1: 1 ≤ j ≤ m− 1 {m− j− 1, j, n + m + j− 2}

v0
i : 1 ≤ i ≤ n {m + i− 2, i− 1, n + m− i− 1}

vj
n: 1 ≤ j ≤ m− 1 {n + m + j− 2, n + j− 1, m− j− 1}

vj
i : 2 ≤ i ≤ n− 1, 1 ≤ j ≤ m− 1 {m + i + j− 2, i + j− 1, n + m + j− i− 1}

Therefore, any two vertices do not have the same multiset code or representation
according to A, as shown in Table 9. This implies that md(Pn �◦ Pm) ≤ 3. Hence, md(Pn �◦
Pm) = 3.

4.4. Results on the Edge-Multiset Dimension of Graphs

By definition of the edge-multiset dimension and the edge metric dimension, It is
clear that the edge-multiset dimension of a connected graph Γ is at least the edge metric
dimension of graph Γ which we prove in Lemma 1.

Lemma 1. Let Γ be a connected graph. Then dime(Γ) ≤ mde(Γ).

Proof. Let B be an edge resolving set for graph Γ. If we have different edges f and g
which have representation with respect to B as re( f |B) = (a, b, c) and re(g|B) = (b, a, c).
For the edge metric dimension, the re( f |B) 6= re(g|B). This satisfies the properties of the
edge metric dimension. However, if we focus on the edge-multiset distance, which leads
to {a, b, c} = {b, a, c}, this gives the same edge-multiset representation of edges f and g
according to B, rem( f |B) = rem(g|B) = {a, b, c}. This does not satisfy the properties of the
edge-multiset dimension. On the other hand, if we have two edges f1 and g1 which have
representation according to B, re( f1|B) = (a, b, c) and re(g1|B) = (b, a, d), respectively, then
this satisfies the properties of the edge metric dimension. Furthermore, {a, b, c} 6= {b, a, d}
shows that f1 and g1 have distinct edge-multiset representation with respect to B, that is
rem( f1|B) 6= rem(g1|B). Thus, we concludes that dime(Γ) ≤ mde(Γ).
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To give an example of Lemma 1, assume graph Γ with V(Γ) = {a1, a2, . . . , a9} and
E(Γ) = { f1, f2, . . . , f9} as given in Figure 6. Let the set B = {a3, a6, a8} be an edge resolving
set for graph Γ and dime(Γ) = 3.

a

a1

3 4aa

a

5

2
f

f

f

f

f

1

2

3

4

5

a
a

a

a

f f
f

f

76

6
7

8

9

8

9

Figure 6. The graph Γ.

If two different edges f2 and f9 which have representation with respect to B as
re( f2|B) = (1, 2, 3) and re( f9|B) = (3, 2, 1), respectively. For the edge metric dimension,
re( f3|B) 6= re( f9|B). This satisfies the properties of the edge metric dimension. However,
if we focus on the edge-multiset distance, which leads to {1, 2, 3} = {3, 2, 1}, this gives
the same edge-multiset representation of edges f2 and f9 according to B, rem( f2|B) =
rem( f9|B) = {1, 2, 3}. This does not satisfy the properties of the edge-multiset dimension.
Thus, we conclude that dime(Γ) ≤ mde(Γ).

Theorem 9. Let Γ be a graph. Then mde(Γ) = 1, if, and only if, Γ = Pn.

Proof. Let V(Pn) = {wi : 1 ≤ i ≤ n} and E(Pn) = {e1 = wiwi+1 : 1 ≤ i ≤ n− 1}. In
one direction, it is clear that the set B = {w1} is an edge-multiset basis for Pn, that is,
mde(Pn) = 1.

For the converse, assume that Γ is a connected graph with mde(Γ) = 1. Let B = {w1}
be an edge-multiset basis of a graph Γ. Hence, rem(e|B) 6= rem( f |B) for every pair of edges
e and f ∈ E(Γ). Since the representations of all edges of Γ, according to B, are distinct,
there must exist an edge g such that rem(g|B) = n− 2, where n− 1 is the size of the graph
G. Thus, the diameter of Γ is n− 1, which implies that Γ is the path Pn.

To give an example of Theorem 9, assume graph Γ = P7 with V(P7) = {a, b, c, d, e, f , g}
and E(P7) = {e1, e2, . . . , e6} as given in Figure 7.

e f
e3 4c e

d 5ea be1 2e
g6e

Figure 7. The graph Γ.

It is noted, the set B = {a} or B = {g} is an edge-multiset resolving set for Γ = P7.
The set B gives unique edge-multisets representations of the edges of Γ = P7.

In the Lemma 2, we show that no graph Γ has an edge-multiset dimension of 2.

Lemma 2. Let Γ be a connected graph. Then mde(Γ) 6= 2.

Proof. If Γ is a path, then mde(Γ) = 1. So, we may assume that Γ 6= Pn. Assume that
mde(Γ) = 2 for some graph Γ and let B = {a, b} be an edge resolving set for Γ. If there are
two edges e = ax and f = yb (it is possible that x = y) such that the vertices x and y lie on
the shortest path between a and b, then d(e, b) = d( f , a). Thus, rem(e|B) = {0, d(e, b)} =
{0, d( f , a)} = rem(e|B) is a contradiction. Now, if there does not exist such a pair of edges,
then a and b are adjacent. Since Γ is not a path, Γ cannot be P2, and so, one of the following
possibilities must occur:

(i) there are two edges incident to a or to b;
(ii) there is one edge incident to a and one edge incident to b.
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In both cases, we observe that two edges have the same multiset representation, which
is impossible. Therefore, no graph Γ has an edge-multiset dimension equal to 2.

To give an example of Lemma 2, assume graph Γ = L(T7,3) with V(L(T7,3)) =
{a1, a2, . . . , a7, b1, b2, b3} and E(L(T7,3)) = { f1, f2, . . . , f11}, as given in Figure 8. Let the
set B = {a2, b3} be an edge-multiset resolving set for L(T7,3).

1
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2 3

10 11

6

7

8
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b b b
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a

a

f1

f

f

f

f

f
f

2

3

4 9

5
6

7

f

f

f f

Figure 8. The graph L(T7,3).

There are two edges f1 = a1a2 and f11=b2b3 such that the vertices a1 and b2 lie on
the shortest path between a2 and b3, then d(a1, b3) = d(b2, a2) = 3. Thus, rem( f1|B) =
{0, d(a1, b3)} = {0, 3} = {0, d(b2, a2)} = rem(e|B) is a contradiction.

As we know from Lemma 2, every connected graph different from the path has
mde(Γ) ≥ 3.

Theorem 10. For any connected graph Γ other than a path, mde(Γ) ≥ 3.

In view of the previous result, it is interesting to characterize the graphs having an
edge-multiset dimension of 3 as we know that dime(Γ) = 1, if, and only if, Γ = Pn and we
obtain the same result for the edge-multiset dimension.

4.5. Graphs Having an Infinite Edge-Multiset Dimension

In this section, we present a few conditions a graph needs to satisfy to have an infinite
edge-multiset dimension. In Lemma 3, we show that if the distance between a vertex and
an edge is no more than 2, then the graph Γ does not have an edge-multiset resolving set.

Lemma 3. Let Γ be a graph with a set of vertices and edges, V and E, respectively, where |V| ≥ 2.
If the distance between a vertex and an edge is at most 2, then Γ does not contain an edge-multiset
resolving set.

Proof. On the contrary, suppose that every pair of edges in E is of distance at most 2 and
V is an edge-multiset resolving set of Γ. We represent the vertices in V by v1, v2, · · · , vp,
where p ≥ 2 and edges in E by e1, e2, · · · , en, where n ≥ p− 1. For i = 1, 2, · · · , n, we have
rem(ei|V) = {0, 0, 1m1 , 2m2} where m1 + m2 = p− 2. Therefore, we have p vertices in V and
n edges in E. All edges have different representations with respect to V and their repre-
sentations should be of the form {0, 0, 1p−2}, {0, 0, 1p−3, 2}, {0, 0, 1p−422}, · · · {0, 0, 2p−2}.
Without loss of generality, we assume that the edge having the representation {0, 0, 1p−2}
is e1 = v1vx and the edge having the representation {0, 0, 2p−2} is en = vpvy. Since
rem(e1|V) = {0, 0, 1p−2}, it follows that rem(e1 = v1vx|V\{v1, vx}) = {1p−2} which is in
contradiction to rem(en|V) = {0, 0, 2p−2}. Hence, V is not an edge-multiset resolving set
of Γ.
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To give an example of Lemma 3, assume graph Γ with V(Γ) = {a1, a2, . . . , a5} and
E(Γ) = { f1, f2, . . . , f5}, as given in Figure 9. The distance between a vertex a and an edge
e3 (or e4) is 2.

a

a1

3

4a

a

a

5

2

f

f f

ff

1

23

4 5

Figure 9. The graph Γ.

Therefore, by Theorem 10, mde(Γ) ≥ 3. We note that the set B = {a, b, c} is not an edge-
multiset resolving set for Γ as rem(e1|B) = rem(e2|B) = {0, 0, 1}. If the set B1 = {a, b, c, d}
is an edge-multiset resolving set for Γ, then rem(e1|B1) = rem(e3|B1) = {0, 0, 1, 2}, which
means that the set B1 is not an edge-multiset resolving set for Γ. If the set B2 = {a, b, c, d, e}
is an edge-multiset resolving set for Γ, then rem(e1|B2) = rem(e3|B2) = rem(e4|B2) =
{0, 0, 1, 1, 2}, and rem(e2|B2) = rem(e5|B2) = {0, 0, 1, 1, 1}, which means that the set B2 is
not an edge-multiset resolving set for Γ. It is clear that an edge-multiset resolving set for Γ
does not exist.

In Theorem 11, we classify the graphs whose edge-multiset dimension is not finite.

Theorem 11. If any graph Γ has a vertex adjacent to at least three pendant vertices, then mde(Γ) = ∞.

Proof. Assume that v1, v2 and v3 are three pendant vertices adjacent to vertex vx in Γ. Let
e1 = v1vx, e2 = v2vx and e3 = v3vx be three edges incident on pendant vertices v1, v2 and
v3, respectively. Let B be any edge-multiset resolving set of graph Γ, then either at least
two of the pendant vertices vior vj where i, j = 1, 2, 3 and i 6= j, are in B or at least two
of the pendant vertices are not in B. In both cases, edges ei and ej where i, j = 1, 2, 3 and
i 6= j, cannot be resolved because rem(ei, v) = rem(ej, v) where v ∈ V(Γ). Hence, Γ contains
a vertex adjacent to at least three pendant vertices. Thus, mde(Γ) = ∞.

To give an example of Theorem 11, assume graph Γ with V(Γ) = {a, b, c, d, e, f , g} and
E(Γ) = {e1, e2, . . . , e6}, as given in Figure 10.

e

f

e3 4

c

e

d

5e

a

b
e1

2eg
6e

Figure 10. The graph Γ.

There are three pendant vertices a, g and f . We note that the set B = {b, c, d, e} is not
an edge-multiset resolving set for Γ as rem(e1|B) = rem(e5|B) = rem(e6|B) = {0, 1, 2, 3}.
If the set B1 = {a, b, c, d, e} is an edge-multiset resolving set for Γ, then rem(e5|B1) =
rem(e6|B1) = {0, 1, 1, 2, 3}, which means that the set B1 is not an edge-multiset resolving
set for Γ. If the set B2 = {a, b, c, d, e, f } is an edge-multiset resolving set for Γ, then
rem(e1|B2) = rem(e6|B2) = {0, 0, 1, 1, 2, 3}, which means that the set B2 is not an edge-
multiset resolving set for Γ. If the set B3 = {a, b, c, d, e, f , g} is an edge-multiset resolving
set for Γ, then rem(e1|B3) = rem(e5|B3) = rem(e6|B3) = {0, 0, 1, 1, 1, 2, 3}, which means that
the set B2 is not an edge-multiset resolving set for Γ. It is clear that the edge-multiset
resolving set for Γ does not exist. Hence, Γ contains a vertex adjacent to three pendant
vertices, then mde(Γ) = ∞.
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Example 1 give some graphs of infinite edge-multiset dimensions.

Example 1. The following families of graphs have infinite edge-multiset dimensions. Complete
graph, star graph, friendship graph, wheel graph, the Peterson graph, fan graph, complete bipartite
graph and cycle graph with at most 6 vertices.

The edge-multiset resolving set is determined for only some connected graphs. If
Γ is a connected graph for which mde(Γ) is decided, then each and every edge-multiset
resolving set for Γ is an edge resolving set for Γ, and so 1 ≤ dime(Γ) ≤ mde(Γ)

4.6. Graphs Having a Constant Edge-Multiset Dimension

Next, we present some families of graphs, cycle, kayak paddle, comb product of
two paths, caterpillar and lobster which have constant edge-multiset dimensions. In
Theorem 12, we show that Cn has a constant edge-multiset dimension.

Theorem 12. Let Cn be a cycle graph with n ≥ 7. Then mde(Cn) = 3.

Proof. Therefore, by Theorem 10, mde(Cn) ≥ 3. Assume Cn = v0v1 · · · vn−1v0. Let us show
that the set B = {v0, v1, v3} is an edge-multiset resolving set for Cn.

If n = 2t with t > 3, then the edge representations according to B are represented in
Tables 10 and 11.

Table 10. The edge-multiset representations of the edges of Cn according to the set B = {v0, v1, v3}.

rem(., .) e0 e1 e2

B = {v0, v1, v3} {0, 0, 2} {0, 1, 1} {0, 1, 2}

rem(., .) e3 et et+1

B = {v0, v1, v3} {0, 2, 3} {t− 3, t− 1, t− 1} {t− 2, t− 2, t− 1}

rem(., .) et+2 et+3

B = {v0, v1, v3} {t− 3, t− 2, t− 1} {t− 4, t− 3, t− 1}

Table 11. The edge-multiset representations of the edges of Cn according to the set B = {v0, v1, v3}.

rem(., .) ei: 3 < i < t et+i: 3 < i < t

B = {v0, v1, v3} {i− 3, i− 1, i} {t− i− 1, t− i, t− i + 2}

If n = 2t + 1 with t > 3, then the edge representations according to B are represented
in Tables 12 and 13.

Table 12. The edge-multiset representations of the edges of Cn according to the set B = {v0, v1, v3}.

rem(., .) e0 e1 e2 e3

B = {v0, v1, v3} {0, 0, 2} {0, 1, 1} {0, 1, 2} {0, 2, 3}

rem(., .) et et+1 et+2 et+3

B = {v0, v1, v3} {t− 3, t− 1, t} {t− 2, t− 1, t} {t− 2, t− 1, t−
1} {t− 3, t− 2, t}

Table 13. The edge-multiset representations of the edges of Cn according to the set B = {v0, v1, v3}.

rem(., .) ei: 3 < i < t et+i: 3 < i < t

B = {v0, v1, v3} {i− 3, i− 1, i} {t− i, t− i + 1, t− i + 3}
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Therefore, any two edges do not have the same multiset code or representation according
to B, as shown in Tables 10–13. This implies that mde(Cn) ≤ 3. Hence, mde(Cn) = 3.

In Theorem 13 we show that kayak paddle graph with ϑ, λ, µ ≥ 4 has a constant
edge-multiset dimension.

Theorem 13. If KP(ϑ, λ, µ) is a kayak paddle graph with ϑ, λ, µ ≥ 4, then

mde(KP(ϑ, λ, µ)) = 3.

Proof. By Theorem 10, mde(KP(ϑ, λ, µ)) ≥ 3. Let V(KP(ϑ, λ, µ)) = {α1, α2, . . . αϑ} ∪
{β1, β2, . . . , βλ} ∪ {γ1, . . . , γµ−1} and E(KP(ϑ, λ, µ)) = {αiαi+1 : 1 ≤ i ≤ ϑ} ∪ {β jβ j+1 :
1 ≤ j ≤ λ} ∪ {γkγk+1 : 1 ≤ k ≤ µ− 2} ∪ {α1γ1, γµ−1β1}, where αϑ+1 = α1 and βλ+1 = β1.
All edges are labelled as follows.

ei = αiαi+1 : 1 ≤ i ≤ ϑ e′j = β jβ j+1 : 1 ≤ j ≤ λ

e′′k = γkγk−1 : 2 ≤ k ≤ µ− 1 e′′1 = α1γ1, e′′µ = γµ−1β1

We show that the set B = {α2, β2, γ1} is an edge-multiset resolving set of KP(ϑ, λ, µ).
If ϑ ≥ 4 with t = b ϑ

2 c, then the edge representations according to B are represented as
follows in Table 14.

Table 14. The edge-multiset representations of the edges of KP(ϑ, λ, µ) according to the set B =

{α2, β2, γ1}.

rem(., .) B = {α2, β2, γ1}

e1 {0, 1, µ + 1}

ei: 2 ≤ i ≤ t {i− 2, i, µ + i}

ei: i = t + 1 {i− 2, ϑ− i + 1, ϑ + µ− i + 1}

ei: t + 2 ≤ i ≤ ϑ {ϑ− i + 1, ϑ− i + 1, ϑ + µ− i + 1}

If λ ≥ 4 with t′ = b λ
2 c, then the edge representations according to B are represented

in Table 15.

Table 15. The edge-multiset representations of the edges of KP(ϑ, λ, µ) according to the set B =

{α2, β2, γ1}.

rem(., .) B = {α2, β2, γ1}

e′1 {0, µ− 1, µ + 1}

e′j: 2 ≤ j ≤ t′ {j− 2, µ + j− 2, µ + j}

e′j: j = t′ + 1 {j− 2, λ + µ− j− 1, λ + µ− j + 1}

e′j: t′ + 2 ≤ j ≤ λ {λ− j + 1, λ + µ− j− 1, λ + µ− j + 1}

If µ ≥ 4, then the edge representations according to B are represented in Table 16.

Table 16. The edge-multiset representations of the edges of KP(ϑ, λ, µ) according to the set B =

{α2, β2, γ1}.

rem(., .) e′′1 e′′k : 2 ≤ k ≤ µ

B = {α2, β2, γ1} {0, 1, µ− k + 1} {k− 2, k, µ− k + 1}
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Therefore, any two edges do not have the same multiset code or representation ac-
cording to B, as shown in Tables 14–16. This implies that mde(KP(ϑ, λ, µ)) ≤ 3. Hence,
mde(KP(ϑ, λ, µ)) = 3.

In the next theorem we determine the exact value of the multiset dimension of the
dragon graph.

Theorem 14. If Tn,m is a dragon graph with n ≥ 4 and m ≥ 3, then mde(Tn,m) = 3.

Proof. By Theorem 10, mde(Tn,m) ≥ 3. Let V(Tn,m) = {vi, uj|1 ≤ i ≤ n, 1 ≤ j ≤ m} and
E(Tn,m) = {vivi+1 : 1 ≤ i ≤ n} ∪ {ujuj+11 ≤ j ≤ m− 1} ∪ {vnu1}, where vn+1 = v1. The
edges of Tn,m are labelled as follows.

fi = {vivi+1 : 1 ≤ i ≤ n}

f ′j+1 = {ujuj+1 : 1 ≤ j ≤ m− 1} , f ′1 = vnu1

Now, we prove that B = {v1, v2, um} is an edge-multiset resolving set for Tn,m.
If n ≥ 4 is even with t = n

2 , then the edge representations according to B are repre-
sented in Table 17.

Table 17. The edge-multiset representations of the edges of Tn,m according to the set B = {v1, v2, um}.

rem(., .) B = {v1, v2, um}

f1 {0, 0, m + 1}

fi: 2 ≤ i ≤ t− 1 {i− 1, i− 2, m + i}

ft {t− 1, t− 2, m + t− 1}

ft+1 {t, t, m + t− 2}

fi: t + 2 ≤ i ≤ n− 1 {n− i, n− i + 1, n + m− i− 1}

fn {0, 1, m}

If n ≥ 4 is odd with t = d n
2 e, then the edge representations according to B are

represented in Table 18.

Table 18. The edge-multiset representations of the edges of Tn,m according to the set B = {v1, v2, um}.

rem(., .) B = {v1, v2, um}

f1 {0, 0, m + 1}

fi: 2 ≤ i ≤ t− 1 {i− 1, i− 2, m + i}

ft {t− 1, t− 2, m + t− 2}

ft+1 {t− 1, t− 2, m + t− 3}

fi: t + 2 ≤ i ≤ n− 1 {n− i, n− i + 1, n + m− i− 1}

fn {0, 1, m}

If m ≥ 4, then the edge representations according to B are represented in Table 19.

Table 19. The edge-multiset representations of the edges of Tn,m according to the set B = {v1, v2, um}.

rem(., .) B = {v1, v2, um}

f ′j : 1 ≤ j ≤ m {j, j + 1, m− j}

Therefore, any two edges do not have the same multiset code or representation according
to B, as shown in Tables 17–19. We have mde(Tn,m) ≤ 3. Hence, mde(Tn,m) = 3.
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Theorem 15 determines the exact value of the edge-multiset dimension of a comb
product of two paths Pn and Pm.

Theorem 15. If Pn �◦ Pm is the comb product of two paths Pn and Pm, with n, m ≥ 4, then
mde(Pn �◦ Pm) = 3.

Proof. By Theorem 10, mde(Pn �◦ Pm) ≥ 3. Let V(Pn �◦ Pm) = {vj
i : 1 ≤ i ≤ n, 0 ≤ j ≤

m− 1} and the edges are labelled as follows.

ej
i =

{
vj−1

i vj
i , j 6= 0;

v0
i a0

i+1 j = 0.
1 ≤ i ≤ n; 0 ≤ j ≤ m− 1

We show that the set B = {vm−1
1 , v0

1, vm−1
n } is an edge-multiset resolving set for

Pn �◦ Pm. The edge representations according to B are represented in Table 20.

Table 20. The edge-multiset representations of the edges of Pn �◦ Pm according to the set B =

{vm−1
1 , v0

1, vm−1
n }.

rem(., .) B = {vm−1
1 , v0

1, vm−1
n }

ej
1: 1 ≤ j ≤ m− 1 {m− j− 1, j− 1, n + m + j− 3}

e0
i : 1 ≤ i ≤ n {m + i− 2, i− 1, n + m− i− 2}

ej
n: 1 ≤ j ≤ m− 1 {n + m + j− 3, n + j− 2, m− j− 1}

ej
i : 2 ≤ i ≤ n− 1, 1 ≤ j ≤ m− 1 {m + i + j− 3, i + j− 2, n + m + j− i− 2}

Therefore, any two edges do not have the same multiset code or representation
according to B, as shown in Table 20. We thus deduced that mde(Pn �◦ Pm) ≤ 3. Hence,
mde(Pn �◦ Pm) = 3.

4.7. Caterpillar Graph

A caterpillar is a tree. A path graph is obtained if all a caterpillar graph’s leaves are
removed. Throughout the article, we denote a caterpillar graph by CTn with a diametral
path P = (a1, a2, . . . , an). CTn is a caterpillar with deg(ai) ≤ 3 where 2 ≤ i ≤ n− 1. Let
D = {i|2 ≤ i ≤ n− 1}. Let bi be the pendent vertices of CTn of degree 1 joined to ai. Thus,
the vertex set of a caterpillar graph CTn is V(CTn) = {ai|1 ≤ i ≤ n} ∪ {bi|i ∈ D} and the
edge set of a caterpillar graph CTn is E(CTn) = {aiai+1|1 ≤ i ≤ n− 1} ∪ {aibi|i ∈ D}. If
i 6∈ D, then ai is a non-leg or gap vertex. A leg vertex has degree 3m=, a gap vertex ai,
i 6∈ D, and deg(xi) ≤ 2. See Figure 11 for an example.

2 3 4 51

2 4 6

6 7a

b b b

a a a a a a

Figure 11. Caterpillar graph CT7 with D = {2, 4, 6}.

Theorem 16 shows that the edge-multiset dimension of a caterpillar graph is 3.

Theorem 16. If CTn is a caterpillar graph with n ≥ 5, then mde(CTn) = 3.

Proof. Therefore, by Theorem 10, mde(CTn) ≥ 3. If n is even and the set B = {a1, an−2, an}
is an edge-multiset resolving set for the graph CTn, then the edge representations according
to B are represented in Table 21.
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Table 21. The edge-multiset representations of the edges of CTn according to the set B =

{a1, an−2, an}.

rem(., .) B = {a1, an−2, an}

a1a2 {0, n− i− 1, n− 4}

aiai+1: 2 ≤ i ≤ n− 3 {i− 1, n− i− 1, n− i− 3}

an−2an−1 {i− 1, n− i− 1, 0}

an−1an {i− 1, n− i− 1, 1}

If i ∈ D, then the edge representations according to B are represented in Table 22.

Table 22. The edge-multiset representations of the edges of CTn according to the set B = {a1, an−2, an}.

rem(., .) aibi: 2 ≤ i ≤ n− 2 an−1bn−1

B = {a1, an−2, an} {i− 1, n− i, n− i− 2} {i− 1, n− i, 1}

If n is odd, i ∈ D and the set B = {a1, a2, an} is an edge-multiset resolving set for the
graph CTn, then the edge representations according to B are represented in Table 23.

Table 23. The edge-multiset representations of the edges of CTn according to the set B = {a1, a2, an}.

rem(., .) a1a2 aiai+1: 2 ≤ i ≤ n− 1 aibi: 2 ≤ i ≤ n− 1

B = {a1, a2, an} {0, n− 2, 0} {i− 1, i− 2, n− i− 1} {i− 1, i− 2, n− i}

Therefore, no two edges have the same multiset code or representation according to B,
as shown in Tables 21–23. We thus deduce that mde(CTn) ≤ 3. Hence, mde(CTn) = 3.

4.8. Lobster Graph

Throughout the article, we denote a lobster graph by Ln with a diametral path
P = (x1, x2, . . . , xn). Obviously, Pn is the spine of Ln. Let Ln be a lobster with deg(xi) ≤ 3
where 3 ≤ i ≤ n − 2. Let D = {i|3 ≤ i ≤ n − 2}. If i ∈ D, then xi is a base-leg
vertex. For i ∈ D, let yi be the vertex of Ln of degree 2 joined to xi, and zi be the
pendent vertex of Ln joined to yi. Thus, the vertex set of lobster graph Ln is V(Ln) =
{xi|1 ≤ i ≤ n} ∪ {yi|i ∈ D} ∪ {zi|i ∈ D} and the edge set of lobster graph Ln is
E(Ln) = {xixi+1|1 ≤ i ≤ n − 1} ∪ {xiyi|i ∈ D} ∪ {yizi|i ∈ D}. If i 6∈ D, then xi is a
gap vertex or a non-leg vertex. Thus, a leg vertex is of degree 3, a gap vertex xi, and i 6∈ D
is of degree deg(xi) ≤ 2. See Figure 12 for an example.

2 3 4 51

3 4 5

6 7x

y y y

x x x x x x

3 4 5z z z

Figure 12. Lobster graph L7 with D = {3, 4, 5}.

Theorem 17 shows that a lobster graph also has a constant edge-mutiset dimension.

Theorem 17. If Ln is a lobster graph with n ≥ 5, then mde(Ln) = 3.

Proof. Therefore, by Theorem 10, mde(Ln) ≥ 3. If n is even and the set B = {x1, x2, xn−1}
is an edge-multiset resolving set for the graph Ln, then the edge representations according
to B are represented in Table 24.
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Table 24. The edge-multisets representations of the edges of Ln according to the set B = {x1, x2, xn−1}.

rem(., .) x1x2 xixi+1: 2 ≤ i ≤ n− 2 xn−1xn

B = {x1, x2, xn−1} {0, 0, n− 3} {i− 1, i− 2, n− i− 2} {i− 1, i− 2, 0}

If i ∈ D then the edge representations according to B are represented in the Table 25.

Table 25. The edge-multisets representations of the edges of Ln according to the set B = {x1, x2, xn−1}.

rem(., .) xiyi: 3 ≤ i ≤ n− 2 yizi: 3 ≤ i ≤ n− 2

B = {x1, x2, xn−1} {i− 1, i− 2, n− i− 1} {i, i− 1, n− i}

If n is odd and the set B = {x1, x2, xn} is an edge-multiset resolving set for the graph
Ln, then the edge representations according to B are represented in the Table 26.

Table 26. The edge-multisets representations of the edges of Ln according to the set B = {x1, x2, xn}.

rem(., .) x1x2 xixi+1: 2 ≤ i ≤ n− 1

B = {x1, x2, xn} {0, 0, n− 2} {i− 1, i− 2, n− i− 1}

If i ∈ D, then the edge representations according to B are represented in Table 27.

Table 27. The edge-multisets representations of the edges of Ln according to the set B = {x1, x2, xn}.

rem(., .) xiyi: 3 ≤ i ≤ n− 2 yizi: 3 ≤ i ≤ n− 2

B = {x1, x2, xn} {i− 1, i− 2, n− i} {i, i− 1, n− i + 1}

Therefore, no two edges have the same multiset code or representation according to B
as shown in Tables 24–27. We thus deduce that mde(Ln) ≤ 3. Hence, mde(Ln) = 3.

4.9. Graphs Having Dependent Edge-Multiset Dimension on Their Order

In this section, Lemma 4 characterizes the trees of order n and diameter 3.

Lemma 4. Let Tn be a tree with order n and diameter 3. If mde(Tn) 6= ∞, then mde(Tn) ≤ n− 2.

Proof. Therefore, if diam(Tn) = 3 there exist two vertices a and b of Tn, such that 2 ≤ deg(a),
deg(b) ≤ 3. We shall thus obtain the following three cases. See Figure 13 for visualization.

1a a b b1

1a a b b1

b2

1a a b b1

b22a

1:

2:

3:

Figure 13. Three cases of graph Tn with diameter 3.

• If deg(a) = deg(b) = 2, then Tn ≡ P4 and mde(Tn) = 1 = n− 3;
• If deg(a) = 2 and deg(b) = 3. Let N(a) = {a1, b} and N(b) = {a, b1, b2}. Then we

have B = {a1, a, b1} as an edge-multiset resolving set for Tn, which means mde(Tn) =
3 = n− 2;
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• If deg(a) = deg(b) = 3. Let N(a) = {a1, a2, b} and N(b) = {a, b1, b2}. Then we do not
have an edge-multiset resolving set for Tn, which means mde(Tn) = ∞.

Theorem 18 gives the bounds of the edge-multiset dimension of trees with order n,
which is not a path.

Theorem 18. Let Tn be a tree with order n and Tn as not a path. If mde(Tn) 6= ∞, then 3 ≤
mde(Tn) ≤ n− 2.

Proof. As we know, if graph Γ is not a path graph then the edge-multiset dimension of
any graph Γ is mde(Γ) ≥ 3 by Theorem 10. Tn is a tree graph but not a path graph so,
mde(Tn) ≥ 3 which is the lower bound for Tn. It is clear that the edge-multiset dimension
of Tn is mde(Tn) ≤ n− 2 by Lemma 4, so, we obtain 3 ≤ mde(Tn) ≤ n− 2.

In Theorem 19, the exact value of the edge-multiset dimension of a caterpillar graph
is obtain.

Theorem 19. If CTn is a caterpillar graph with n ≥ 5, deg(xi) ≤ 4 where 3 ≤ i ≤ n− 2 and
D = {i|3 ≤ i ≤ n− 2}, then mde(Ln) = 3 + |D|.

Proof. Let CTn be a caterpillar graph with a spine Pn = (x1, x2, . . . , xn). Here, deg(xi) ≤ 4
with 3 ≤ i ≤ n − 2. Let D = {i|3 ≤ i ≤ n − 2}. For i ∈ D, let y1

i and y2
i be the

pendant vertices of CTn of degree 1. Thus, the vertex set of a caterpillar graph CTn is
V(CTn) = {xi|1 ≤ i ≤ n} ∪ {y1

i , y2
i |i ∈ D} and the edge set of caterpillar graph CTn is

E(CTn) = {xixi+1|1 ≤ i ≤ n− 1} ∪ {xiy1
i , xiy2

i |i ∈ D}. If i 6∈ D, xi is called a gap vertex.
Thus, a leg vertex is of degree 4, a gap vertex xi, and i 6∈ D, is of degree deg(xi) ≤ 2. See
Figure 14 for an example.

2 3 4 51

3 4

6x

y y

x x x x x

3 4y y

1 1

2 2

Figure 14. Caterpillar graph CT6 with D = {3, 4}.

Let the set B = {x1, x2, xn, y1
i |3 ≤ i ≤ n− 2} by an edge-multiset resolving set for the

graph CTn. Suppose a vertex y1
i with 3 ≤ i ≤ n− 2 is not an element of the set B. Then

the edges xiy1
i , xiy2

i have the same multiset distance from the elements of B, which is a
contradiction. Therefore y1

i , with i ∈ D, 3 ≤ i ≤ n− 2, are elements of set B. If vertex x1 is
not an element of B, then the edges x2x3 and x3y1

3 have the same multiset distance from the
elements of B, which is a contradiction. If vertex x2 is not an element of B, then the edges
xixi+1 and xn−ixn−i+1, where 1 ≤ i ≤ d n

2 e − 1, have the same multiset distance from the
elements of B, which is a contradiction. If vertex xn is not an elements of B, then the edges
xn−2xn−1 and xn−2y2

n−2 have the same multiset distance from the elements of B, which is a
contradiction. Therefore, mde(CTn) ≥ 3 + |D|.

If W = {x1, x2, xn} is a subset of V(CTn), then the edge representations are presented
in Table 28:

Table 28. The edge-multisets representations of some edges of CTn according to the set W = {x1, x2, xn}.

rem(., .) x1x2 xixi+1: 2 ≤ i ≤ n− 1 xiy1
i , xiy2

i : 3 ≤ i ≤ n− 2

W = {x1, x2, xn} {0, 0, n− 2} {i− 1, i− 2, n− i− 1} {i− 1, i− 2, n− i}
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It is observed that the multiset distance of edges according to W is rem(xiy1
i |W) =

rem(xiy2
i |W) so, the vertices y1

i or y2
i , where i ∈ D, 3 ≤ i ≤ n− 2, are included in the set W.

Therefore, mde(CTn) ≤ 3 + |D|. Hence, mde(CTn) = 3 + |D|.

In Theorem 20, the exact value of the edge-multiset dimension of a lobster graph
is obtain.

Theorem 20. If Ln is a lobster graph with n > 5, deg(xi) = 4, where i ∈ D = {i|3 ≤ i ≤ n− 2},
then mde(Ln) = 3 + |D|.

Proof. Let Ln be a lobster graph with a spine Pn = (x1, x2, . . . , xn). Here, deg(xi) ≤ 4 and
3 ≤ i ≤ n− 2. Let D = {i|3 ≤ i ≤ n− 2}. For all xi with 3 ≤ i ≤ n− 2 there exist i ∈ D,
such that y1

i and y2
i are the vertices of Ln of degree 2 joined to xi. z1

i and z2
i are the pendant

vertices of Ln joined to y1
i and y2

i , respectively. Thus, the vertex set of a lobster graph Ln
is V(Ln) = {xi|1 ≤ i ≤ n} ∪ {y1

i , y2
i |i ∈ D} ∪ {z1

i , z2
i |i ∈ D} and the edge set of the lobster

graph Ln is E(Ln) = {xixi+1|1 ≤ i ≤ n− 1} ∪ {xiy1
i , xiy2

i |i ∈ D} ∪ {y1
i z1

i , y2
i z2

i |i ∈ D}. See
Figure 15 for an example.

2 3 4 51

3 4

6x

y y

x x x x x

3 4z z

3 4y y

3 4z z

1

1 1

1

2 2

2 2

Figure 15. Lobster graph L6 with D = {3, 4}.

Let the set B = {x1, x2, xn, y1
n−2, z1

i |3 ≤ i ≤ n− 3} is an edge-multiset resolving set
for the graph Ln. Suppose that a vertex z1

i with 3 ≤ i ≤ n− 3 is not an element of the set
B. Then the edges xiy1

i and xiy2
i have the same multiset distances from the elements of B,

and the edges y1
i z1

i and y2
i z2

i also have the same multiset distances from the elements of
B, which is a contradiction. Therefore, y1

i with i ∈ D, 3 ≤ i ≤ n− 3 are elements of the
set B. If vertex x1 is not an element of B, then the edges x1x2 and y1

n−2y2
n−2 have the same

multiset distances from the elements of B, and the edges x2x3 and xn−2y1
n−2 also have the

same multiset distances from the element of B, which is a contradiction. If vertex x2 is not
an element of B, then the edges x1x2 and y1

3y2
3 and the edges x2x3 and x3y1

3 have the same
multiset distances from the elements of B, which is a contradiction. If vertex xn is not an
element of B, then the edges xn−2xn−1 and xn−2y1

n−2 and the edges xn−1xn and y1
n−2y2

n−2
have the same multiset distances from the elements of B, which is a contradiction. If the
set B does not contain z1

n−2 the edges xn−2y1
n−2 and xn−2y2

n−2 and the edges y1
n−2z1

n−2 and
y2

n−2y2
n−2 have the same multiset distances from the elements of B, which is a contradiction.

Therefore, mde(Ln) ≥ 3 + |D|.
If W = {x1, x2, xn} is a subset of V(Ln), then the edge representations are presented

in Table 29:

Table 29. The edge-multiset representations of some edges of Ln according to the set W = {x1, x2, xn}.

rem(., .) x1x2 xixi+1: 2 ≤ i ≤ n− 1 xiy1
i , xiy2

i : 3 ≤ i ≤ n− 2 y1
i z1

i , y2
i z2

i : 3 ≤ i ≤ n− 2

W = {x1, x2, xn} {0, 0, n− 2} {i− 1, i− 2, n− i− 1} {i− 1, i− 2, n− i} {i, i− 1, n− i + 1}
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It is clear that the multiset distance of edges according to W are rem(xiy1
i |W) =

rem(xiy2
i |W) and rem(y1

i z1
i |W) = rem(y2

i z2
i |W). So, the vertices z1

i or z2
i , where i ∈ D,

3 ≤ i ≤ n− 3 and the vertex y1
n−2, are included in the set W. Therefore, mde(Ln) ≤ 3 + |D|.

Hence, mde(Ln) = 3 + |D|.

In Theorem 21, we show that the edge-multiset dimension of a complete r-ary tree is
finite if, and only if, r is either 1 or 2. If r is greater than 2, then the edge-multiset dimension
of the complete r-ary tree is infinite.

4.10. Complete r-ary Tree Graph

Theorem 21. The multiset dimension of a complete r-ary tree is finite if, and only if, r = 1 or 2.
Moreover, if T is a complete binary tree of height h, then mde(T) = 2h − 1.

Proof. Let T be a complete r-ary tree of height h ≥ 1. If r ≥ 3, by Theorem 11 , then
mde(T) = ∞. If r = 1, then T is a path and mde(T) = 1.

Let r = 2. If h = 1, then T is a path with two edges and mde(T) = 1. Consider the
binary trees of height h ≥ 2. Let the set B be any edge-multiset resolving set of T. Examine
the last level h of T containing 2h−1 pairs of pendant vertices of distance two and the edges
are linked with these pendant vertices of distance 1. From the pair of these pendant vertices,
one vertex is necessary for set B; otherwise, the representation of edges linked with pendant
edges is the same. Now, we examine the h− 1 level of T, having 2h−2 pair of edges of
distance 1. Edges of each pair have the same multiset representations according to the
vertices in the set B, which are in level h, and these edges have the same distance to any
other vertex of T. So, these pair of edges cannot be resolved by any other vertices, which
means that exactly one of the vertex linked with each pair of edges of h− 1 level is in the set
B. Similarly, for the next level h− 2, h− 3, . . . , 1 we obtained 2h−1 + 2h−2 + . . . + 1 = 2h − 1
vertices that must be in the set B. Thus, mde(T) ≥ 2h − 1.

For every level l of T, where 1 ≤ l ≤ h, there are exactly 2l−1 pairs of edges of distance
1, these edges join the vertices of level l − 1 and level l. Let the set B contain exactly one
vertex of level l from each such pair. So, the |B| = ∑h

l=1 2l−1 = 2h − 1. We prove that the
set B is an edge-multiset resolving set. Let us show that B resolves any two edges f and g
of T. We consider two cases.

• The edges f and g are in different levels, say p and q, respectively, where 0 ≤ p < q ≤ h:

The distance between edge g joined to vertices of level q and q− 1 and 2h−2 vertices of
the set B in level h is h + q− 1. There is no vertex in set B of distance h + q− 1 from edge f .
Thus, the edges g and f have different representations.

• The edges f and g are in the same level (the edges f and g are linked the vertices of
levels p− 1 and p), say p, where 0 ≤ p ≤ h:

The edges f and g have different representations if exactly one vertex of level p is
linked with the edges f or g is in the set B. If there is no vertex of level p linked with the
edges f and g in the set B or two vertices (a vertex linked with edge f and a vertex linked
with edge g) are in the set B, then let us denote by v the central vertex of the path connecting
edges f and g (initial and final vertex of the path are in level q). This path has an even length,
say 2n, and then v is in level q− n. The vertex v is adjacent to two vertices, say v1 and v2, in
level q− n + 1. The vertices v1 and v2 belong to the path containing the edges f and g and
one vertex from v1 and v2 are in the set B, thus obtaining d( f , v1) 6= d(g, v2). It can be easily
verified that the edges f and g have the same multiset code or representation according to
set B {v1}. Hence, the set B is an edge-multiset resolving set and mde(T) ≤ 2h − 1. Hence,
mde(T) = 2h − 1.
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The complete 2-ary tree graph with h = 4, as given in Figure 16, is an example of
Theorem 21. The red vertices are included in the edge-multiset resolving set for a complete
2-ary tree graph with h = 4.

h=0

h=1

h=2

h=3

h=4 1 2 3 4 5 6 7 8

9 10 11 12

13 14

15

Figure 16. Complete 2-ary tree graph with h = 4.

5. Discussion on the Multiset and Edge-Multiset Dimensions of Graphs

It is already known from [17] that the edge metric and the metric dimensions of graphs
are not comparable since there are graphs Γ for which dim(Γ) = dime(Γ), dim(Γ) >
dime(Γ) or dim(Γ) < dime(Γ). In [28], a lot of families of graphs were described for which
the edge dimension was greater than the vertex dimension dim(Γ) > dime(Γ), and an open
problem was presented in [17].

In concordance with this, it is natural to consider comparing the multiset and edge-
multiset dimensions of graphs by wondering if a similar situation happens to the metric and
edge metric dimensions. We next see that this is precisely the case. For instance, Section 4
there were given some values for the multiset and edge-multiset dimensions of some graphs
(comb product of paths, kayak paddle graphs and dragon graphs), respectively. This shows
that the equality md(Γ) = mde(Γ) can be realized for some graphs Γ (another example
could be paths and cycles). We next show that md(Γ) < mde(Γ) and md(Γ) > mde(Γ) can
also occur.

5.1. Graphs G with md(Γ) < mde(Γ)

To achieve our goal in this section, we consider Γ be the graph with vertex set V(Γ) =
{u1, u2, . . . , u17} and edge set E(Γ) = {e1, e2, . . . , e18}, as shown in Figure 17.
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Figure 17. The graph Γ.

We note that, for instance, the set A = {u3, u16, u17} is a multiset resolving set for Γ.
Since, the graph Γ is not a path graph, by Theorem 1, md(Γ) ≥ 3.

Table 30 shows the multiset representations of all vertices of Γ according to A =
{u3, u16, u17}. Since no two vertices have the same multiset code or representation accord-
ing to A, we deduce that md(Γ) ≤ 3. So, by using Theorem 1 we have md(Γ) = 3.
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Table 30. The multiset representations of the vertices of Γ according to the set A = {u3, v16, v17}.

ui u1 u2 u3 u4 u5 u6

rm(ui, A) {2, 2, 5} {1, 1, 4} {0, 2, 5} {1, 3, 6} {2, 4, 7} {3, 5, 8}

ui u7 u8 u9 u10 u11 u12

rm(ui, A) {4, 6, 9} {5, 7, 8} {6, 6, 7} {5, 5, 6} {4, 4, 5} {3, 3, 4, }

ui u13 u14 u15 u16 u17

rm(ui, A) {2, 3, 4} {1, 2, 3} {1, 2, 4} {0, 3, 5} {0, 2, 3}

Now, we note that for instance, the set B = {u1, u7, u13, u16} is an edge-multiset
resolving set of Γ. Since, the graph Γ is not a path graph, by Theorem 10, mde(Γ) ≥ 3.

Table 31 shows the edge-multiset representations of all edges of Γ according to B. Since
any two edges do not have the identical edge-multiset code or representation according to
B, we deduce that mde(Γ) ≤ 4. We must show that mde(Γ) ≥ 4.

Table 31. The edge-multiset representations of the edges of Γ according to the set B = {u1, u7, u13, u16}.

ei e1 e2 e3 e4 e5 e6

rem(ei, B) {0, 2, 5, 4} {1, 3, 4, 4} {2, 3, 4, 5} {2, 3, 5, 6} {1, 4, 6, 7} {0, 5, 6, 8}

ei e7 e8 e9 e10 e11 e12

rem(ei, B) {0, 5, 5, 8} {1, 4, 4, 7} {2, 3, 3, 6} {2, 2, 3, 5} {1, 1, 4, 4} {0, 1, 4, 5}

ei e13 e14 e15 e16 e17 e18

rem(ei, B) {0, 1, 3, 5} {0, 2, 2, 6} {1, 1, 3, 7} {0, 2, 4, 8} {1, 2, 2, 6} {1, 2, 3, 5}

On the contrary, suppose that mde(Γ) = 3; no two edges have the same edge-multiset
representation.

• If B1 = {u1, v13, v16} is an edge-multiset resolving set, then rem(e1|B1) = rem(e16|B1) =
{0, 2, 4} which is in contradiction to our supposition.

• If B2 = {u7, u13, u16} is an edge-multiset resolving set, then rem(e10|B2) = rem(e18|B2) =
{2, 3, 5} which is in contradiction to our supposition.

• If B3 = {u1, u7u13} is an edge-multiset resolving set, then rem(e12|B3) = rem(e13|B3) =
{0, 1, 5} which is in contradiction to our supposition.

• If B4 = {u1, v7, v16} is an edge-multiset resolving set, then rem(eei |B4) = rem(e13−i|B4)
for 1 ≤ i ≤ 6, rem(e13|B4) = rem(e18|B4) = {1, 3, 5} and rem(e14|B4) = rem(e17|B4) =
{2, 2, 6} which is in contradiction to our supposition.

Now, it is clear that mde(Γ) ≥ 4. Hence, mde(Γ) = 4.

Remark 1. The graph Γ given in Figure 17 satisfies the inequality md(Γ) < mde(Γ).

5.2. Graphs G with md(Γ) > mde(Γ)

Let Γ be the graph with vertex set V(Γ) = {v1, v2, . . . , v19} and edge set E(Γ) =
{e1, e2, . . . , e21}, as shown in Figure 18.

We note that, for instance, the set B = {v2, v3, v12} is an edge-multiset resolving set
for Γ. Since, the graph Γ is not a path graph, by Theorem 10, mde(Γ) ≥ 3.

Table 32 shows the edge-multiset representations of all the edges of Γ according to
B = {v2, v3, v12}. Since no two edges have the same edge-multiset code or representation
according to B, we deduce that mde(Γ) ≤ 3. So, by using Theorem 10 we have mde(Γ) = 3.
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Figure 18. The graph Γ.

Table 32. The edge-multiset representations of the edges of Γ according to the set B = {v2, v3, v12}.

ei e1 e2 e3 e4 e5 e6 e7

rem(ei, B) {0, 1, 5} {0, 0, 4} {0, 1, 4} {1, 2, 5} {2, 3, 6} {3, 4, 5} {4, 4, 5}

ei e8 e9 e10 e11 e12 e13 e14

rem(ei, B) {3, 5, 6} {2, 4, 5} {1, 3, 4} {0, 3, 4} {0, 4, 5} {1, 4, 5} {2, 3, 4}

ei e15 e16 e17 e18 e19 e20 e21

rem(ei, B) {2, 3, 3} {1, 2, 4} {1, 2, 3} {1, 2, 2} {0, 1, 3} {3, 3, 4} {4, 4, 4}

Now, we note that, for instance, the set A = {v2, v4, v9, v19} is a multiset resolving set
for Γ. Since the graph Γ is not a path graph, by Theorem 1, md(Γ) ≥ 3.

Table 33 shows the multiset representations of all vertices of Γ according to A. Since
no two vertices have the same multiset code or representation according to A, we deduce
that md(Γ) ≤ 4. We must show that md(Γ) ≥ 4. On the contrary, suppose that md(Γ) = 3;
no two vertices have the same multiset representation.

Table 33. The multiset representations of the vertices of Γ according to the set A = {v2, v4, v9, v19}.

vi v1 v2 v3 v4 v5

rm(vi, A) {1, 3, 3, 6} {0, 2, 4, 6} {1, 1, 5, 5} {0, 2, 4, 5} {1, 3, 3, 4}

vi v6 v7 v8 v9 v10

rm(vi, A) {2, 2, 3, 4} {1, 2, 3, 5} {1, 2, 4, 6} {0, 3, 5, 6} {1, 4, 5, 5}

vi v11 v12 v13 v14 v15

rm(vi, A) {2, 4, 4, 5} {3, 4, 5, 5} {3, 4, 5, 6} {2, 4, 5, 6} {1, 3, 4, 5}

vi v16 v17 v18 v19

rm(vi, A) {2, 2, 4, 5} {3, 3, 3, 6} {2, 2, 4, 6} {0, 3, 4, 4}

• If A1 = {v2, v4, v9} is a multiset resolving set, then rm(v13|A1) = rm(v14|A1) =
{4, 5, 6}, which is a contradiction to our supposition.

• If A2 = {v2, v4, v19} is a multiset resolving set, then rm(v1|A2) = rm(v5|A2) =
{1, 3, 3}, rm(v2|A2) = rm(v4|A2) = {0, 2, 4}, rm(v6|B2) = rm(v16|B2) = {2, 2, 4},
rm(v7|A2) = rm(v15|A2) = {1, 3, 5}, rm(v8|A2) = rm(v14|A2) = {2, 4, 6}, rm(v9|A2) =
rm(v13|A2) = {3, 5, 6} and rm(v11|A2) = rm(v12|A2) = {4, 5, 5}, which is a contradic-
tion to our supposition.

• If A3 = {v2, v9, v19} is a multiset resolving set, then rm(v4|A3) = rm(v11|A3) =
rm(v14|A3) = {2, 4, 5}, which is a contradiction to our supposition.
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• If A4 = {v4, v9, v19} is a multiset resolving set, then rm(v1|A4) = rm(v17|A4) =
{3, 3, 6}, rm(v2|A4) = rm(v18|A4) = {2, 4, 6} and rm(v11|A4) = rm(v16|A4) = {2, 4, 5},
which is a contradiction to our supposition.

It is clear that md(Γ) ≥ 4. Hence, md(Γ) = 4.

Remark 2. The graph Γ given in Figure 18 satisfies the inequality md(Γ) > mde(Γ).

6. Conclusions

In this work, we defined the notion of the edge-multiset dimension of graphs. We have
noted that the multiset dimension md(Γ) and edge-multiset dimension mde(Γ) of graphs are
generally not comparable. We have given examples of graphs Γ, where md(Γ) > mde(Γ),
md(Γ) < mde(Γ), or md(Γ) = mde(Γ). In particular, we found the exact values of the
multiset dimension and edge-multiset dimension of the kayak paddle, dragon, and comb
product of Pn and Pm graphs. We have proven that they have the same multiset dimension
and edge-multiset dimension. Furthermore, the edge-multiset dimension of a connected
graph is at least the edge metric dimension. No graph has an edge-multiset dimension of
2, which means every connected graph (other than the path graph whose edge-multiset
dimension is one) always has an edge-multiset dimension greater than or equal to three.

Further, we classify the graphs as having infinite edge-multiset dimensions. Some
classes of graphs with constant edge-multiset dimensions are also discussed. Graphs with
dependent edge-multiset dimensions on their order have also been studied. In the end, we
compare the multiset and edge-multiset dimensions of the graph.

The less explored case is that of md(Γ) > mde(Γ). In connection with all our exposi-
tions, we remark on some possible future lines that could be explored on this topic.

Problem 1. What is the computational complexity of the edge-multiset dimension of a graph?

Problem 2. Let Γ be a graph such that md(Γ) and mde(Γ) are finite. Can all graphs Γ for which
md(Γ) > mde(Γ), md(Γ) < mde(Γ), or md(Γ) = mde(Γ) be characterized?

Problem 3. Is there any relationship between the multiset and edge-multiset dimensions with the
classical metric and edge metric dimensions of a graph?

Problem 4. Let Γ be a graph with n vertices. If mde(Γ) is finite, can any upper and/or lower
bounds with respect to n be found for mde(Γ)?
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