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Abstract: The use of information–theoretical methodologies to assess graph-based systems has re-
ceived a significant amount of attention. Evaluating a graph’s structural information content is a
classic issue in fields such as cybernetics, pattern recognition, mathematical chemistry, and computa-
tional physics. Therefore, conventional methods for determining a graph’s structural information
content rely heavily on determining a specific partitioning of the vertex set to obtain a probability
distribution. A network’s entropy based on such a probability distribution is obtained from vertex
partitioning. These entropies produce the numeric information about complexity and information
processing which, as a consequence, increases the understanding of the network. In this paper, we
study the Benes network and its novel-derived classes via different entropy measures, which are
based on information functionals. We construct different partitions of vertices of the Benes network
and its novel-derived classes to compute information functional dependent entropies. Further, we
present the numerical applications of our findings in understanding network complexity. We also
classify information functionals which describe the networks more appropriately and may be applied
to other networks.

Keywords: butterfly network; Benes network; network complexity; eccentricity; information
functionals; entropy via information functionals

MSC: 05C09; 05C10; 05C12; 90C35; 94C15

1. Introduction

As a comprehensive model for reflecting many real-world phenomena, networks are
becoming more and more significant in modern information science. Network science is
able to describe, analyse, simulate, and forecast the behaviours and states of such complex
systems due to the amount of data on interactions within them. Thus, it is crucial to
classify networks according to their complexity levels to adapt analytical techniques to
specific networks. For many applications, network complexity measurement is crucial. For
instance, the complexity of the network might influence the progress of many network
processes including information diffusion, failure propagation, control-related actions,
or resilience preservation. Network complexity has been successfully applied to study
software library structure [1], compute chemical structural properties [2], evaluate the
effectiveness of business operations [3–5], and offer general network characterisations [6,7].
In particular, the interconnection networks (ICNs) may be characterised in several ways
based on different parameters. The main performance features are network bandwidth,
switch radix, latency, and network topology [8]. The amount of data that may be transferred
in a specific amount of the time is known as bandwidth. A packet’s latency is the length of
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time it takes to move from a source node to a destination node. The number of switch ports
used to connect it to other nodes is known as the switch radix. Performance of the node
and connecting technology greatly impact on the ICN topology decision. A fat-tree design
works well with a limited number of nodes, but with more nodes, the fat tree would have
more levels and a greater hop count, increasing latency [8]. Several networks including
ICNs have been studied in view of their topology, (see [9–13]). For more on other important
aspects of significance networks, see [14] and references therein. The corresponding graphs
of fast Fourier transform (FFT) networks, which are capable of performing the FFT very
effectively, are known as butterfly graphs. The butterfly network enables the linking
of “multiple” inputs to corresponding outputs through a sequence of switch stages and
connectivity patterns. Butterflies are paired back-to-back to construct the Benes network.
Benes is known for permutation routing while butterfly is known for FFT [15]. Important
multistage ICNs with appealing topologies for communication networks are the butterfly
and Benes network [16]. They have been employed in optical coupler internal constructions
as well as parallel computer systems IBM, SP1/SP2, MIT Transit Project, NEC Cenju-3, and
others [17]. The class of multistage interconnection networks, or MIN’s, have long been
suggested and studied as the communication network for parallel computers [18]. The
topological study of the Benes network is given in [19]. Moreover, through identifications
of Benes networks, some other ICNs have been introduced in [20] and studied in terms
of the topology of these ICNs in [21,22]. Benes networks constitute a significant part of
interconnection networks and have been used in numerous domains, such as on-chip
networks [23,24], data centers, and multiprocessor systems [25]. They have also attracted
great appeal in optical communications due to the increasing popularity of optical switches
based on these architectures [26]. Due to their non-blocking property and the relatively
smaller number of cross points, Benes networks have received much attention in industry
and academia.

The study of graphs and networks has been a multidisciplinary research area. It
has been extensively utilised in diverse fields, where graph-based approaches have been
proposed for well-communicating with numerous challenging tasks. Structures of complex
networks have been found in many areas, and considerable efforts to learn their properties,
such as dynamics, topology, symmetry, and so forth, have been concentrated on these
vast and appealing research topics. The relatively significant number of network studies
leads to numerous ways to analyse, sample, and interpret them. Graph theory provides
a relatively concise way to describe the complexity of networks. Topological indices
such as degree distribution, connectance, or network topology perform as fundamental
measures to express their structures. Such indices enable comparison between various
systems and show variations and commonalities. For instance, see the references [27–34].
More precisely, a fundamental and effective technique in the field of graph theory is to
associate graphs to objects that may be an algebraic structure or a chemical structure
of medicine or an ICN. These objects are further studied by assigning them a numeric
value, which remains invariant under isomorphism, known as a topological index (TI).
Several hundred topological indices (TIs) have been introduced and have assisted in
exploring many objects, including the above-mentioned ones. These graph invariants are
classified in terms of degree, distance, and (or sometimes) eccentricity as well. Among
the families of these TIs, a significant class of TIs is eccentricity-dependent TIs. Several
eccentricity dependent TIs (EDIs), along with their applications, are introduced and assisted
in solving/understanding different problems/objects. Lesniak [35] did important work
on the eccentricity distribution in 1975 by introducing the notion “eccentric sequence”,
which represents the sequence that is used to count the number of occurrences of each
possible value of eccentricity. For instance, the facility location problem tells us about the
effectiveness of eccentricity in the measurement of centrality. In case, when we consider
the organisation of emergency facilities such as a fire station or a hospital, the map is
represented as a graph; the least eccentric value vertex may be suitable for such a structure.
In other circumstances—for instance, for establishing a shopping centre—a corresponding
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measurement named “closeness centrality”, described as average distance of a vertex to
each vertex, is more appropriate. Thus, eccentricity is an applicable criterion when some
strict standard has to be met [36]. The network routing graph is a larger-scale use of
eccentricity as a measure, where the eccentricity of a vertex conveys information about the
worst-case reaction time between one device and all other devices. For more on EDIs, we
refer [37–41]. Here, we also use EDIs as a fundamental tool applied in two steps: in the first
step, directly; and in the second step, indirectly. Additionally, as previously mentioned,
there has been a lot of interest lately in using information–theoretical approaches to evaluate
graph-based systems. As a result, multiple graph entropies have been proposed and
explored in order to understand graph-based systems. Shannon’s entropy is well-known
and the most original one; for more information, see [42]. The introduction of new entropies
also made a substantial contribution in many ways. See [43,44] for more information on
Dehmer’s excellent work in using entropy to understand networks. A comprehensive
framework for defining the entropy of a graph is introduced in [44]. This definition is
based on a local information graph and information functionals that are generated from a
specific graph’s topological structure. More specifically, a graph’s structural information is
quantified by an information functional using a probability distribution. The entropy of
a graph can be obtained simply via such a probability distribution. The obtained graph
entropy is utilised to interpret and define the structural information content of a graph.

2. Objectives and Hypothesis

This paper studies Benes networks and their novel-derived classes via different en-
tropy measures based on information functionals. We use some information functionals
which are dependent on EDIs. We construct different partitions of vertices of the Benes
network and its novel-derived classes to compute information functional dependent en-
tropies. In the first step, through these partitions, we derive formulae for EDIs. Then,
via different EDIs, we generate information functionals. By using the general framework
defined in [44], we apply these information functionals to construct formulae of entropies
and derive formulae for the Benes network and its novel-derived classes. Further, we
present the numerical applications of our findings in understanding network complexity.
We also classify information functionals which describe the studied networks more appro-
priately and may be applied to other networks. In the next section, we include technical
details of EDIs, information functionals, information functional-based entropies, and the
construction of the networks. We also describe the methodology of proofs in this section.
After this, we prove formulae for EDIs and information functional-based entropies for the
Benes networks and its novel-derived classes. Finally, we present the numerical appli-
cations of our findings in understanding network complexity using numeric tables and
graphs, and give concluding remarks. We also promote such information functionals which
describe complexity more appropriately and thus can be effectively used to study other
network complexities.

3. Materials and Methods

The current section is devoted to recalling necessary fundamental notions about
graphs, the TIs, and the information functional-based entropy measures which assist in
studying the complexity of the networks. Moreover, the mathematical representations of
the Benes network, its novel-derived classes, and the methodology applied to establish
formulae are also described. By G = (V(G), E(G)) = (V, E), we denote a graph with
vertex set V and an edge set E; for v ∈ V, its degree, eccentricity, and neighbourhood
are represented by dv, ε(v), and N(v), respectively, (see [45]). Similarly, for v ∈ V, we
denote by M(v) (and S(v)) the product (and sum) of all degrees of the vertices in its
neighbourhood; that is, M(v) = ∏

u∈N(v)
du (and Sv = ∑

u∈N(v)
du). The formulae of several

distance (and degree) dependent TIs, including eccentric connectivity index (ECI ξ(G)),
total eccentricity index (TEI ς(G)), first Zagreb eccentric index (FZEI Z1(G)), augmented
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eccentric connectivity index (AECI Aε(G)), and modified eccentric connectivity index
(MECI Λ(G)) based on ε(v), M(v), and S(v), are listed in Table 1.

Table 1. Eccentricity dependent TIs.

Eccentricity Dependent TIs Formulae

Eccentric connectivity index [46] ξ(G) = ∑
v∈V(G)

ε(v)dv

Total eccentricity index [47] ς(G) = ∑
v∈V(G)

ε(v)

First Zagreb eccentric index [48] Z1(G) = ∑
v∈V(G)

(ε(v))2

Augmented eccentric connectivity index [49] Aε(G) = ∑v∈V(G)
M(v)
ε(v)

Modified eccentric connectivity index [50] Λ(G) = ∑v∈V(G) Svε(v)

The following framework for defining information functional Φ-based entropy mea-
sures for a graph G is given in [44].

ENTΦ(G) = log(
n

∑
i=1

Φ(vi))−
n

∑
i=1

Φ(vi)
n
∑

j=1
Φ(vj)

log(Φ(vi)). (1)

Here log is considered with base e. With the help of Equation (1), and particular
informational functions, several informational functional-based entropy measures were
introduced in [51]. The explicit formulae of these entropies are given in Table 2.

Table 2. Eccentricity dependent entropies.

Name Defining Φ(vi) for any vi ∈ V(G) Notation and Formulation

Eccentric connectivity entropy ε(vi) · dvi ENTξ(G) = log(ξ(G))− 1
ξ(G)

n
∑

i=1
Φ(vi)log(Φ(vi))

Total eccentric connectivity entropy ε(vi) ENTς(G) = log(ς(G))− 1
ς(G)

n
∑

i=1
Φ(vi)log(Φ(vi))

First Zagreb eccentric entropy (ε(vi))
2 ENTZ1(G) = log(Z1(G))− 1

Z1(G)

n
∑

i=1
Φ(vi)log(Φ(vi))

Augmented eccentric connectivity entropy M(vi)
ε(vi)

ENTAε
(G) = log(Aε(G))− 1

Aε(G)

n
∑

i=1
Φ(vi)log(Φ(vi))

Modified eccentric connectivity entropy Svi · ε(vi) ENTΛ(G) = log(Λ(G))− 1
Λ(G)

n
∑

i=1
Φ(vi)log(Φ(vi))

Before proceeding further, we describe the graph associated to networks B(η), HCB(η),
and VCB(η), with η ≥ 3. An η-dimensional butterfly network consists of the vertex set
V with elements [v, i] in which v is an η-bit binary number representing the row of the
node and 0 ≤ i ≤ η. The edge between any two vertices [v, i] and [v′, i′] exists if and
only if i′ = i + 1 and either (1) v = v′ or (2) v, v′ differ in exactly the ith bit. Clearly,
for |V(BF(η))| = 2η(η + 1) and |E(BF(η))| = η2η+1. Further, an η-dimensional Benes
network is obtained by connecting back-to-back butterflies BF(η). An η-dimensional
Benes network is denoted by B(η); for example, B(3) is shown in Figure 1. Further,
|V(B(η))| = (2η + 1)2η and |E(B(η))| = η2η+2. For more regarding the structure and
construction of butterfly and Benes networks, we refer the readers to [13]. By keeping
in view the importance of these networks, Hussain et al. recently introduced some fam-
ilies of graphs obtained by Horizontal and vertical identifications of the Benes network;
these new graphs are known as Horizontal Cylindrical (HCB(η)) and Vertical Cylindrical
(VCB(η)). In these networks, |V(HCB(η))| = (2η + 1)(2η − 1), |V(VCB(η))| = η2η+1,
|E(HCB(η))| = 2η(2η+1 − 1) and |E(VCB(η))| = η2η+2. For the complete details regard-
ing the structures HCB(η) and VCB(η), see [20,21] and Figures 2 and 3.
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Figure 1. Normal representation of B(3).

Figure 2. Normal representation of HCB(3).

Figure 3. Normal representation of VCB(3).

From the TIs given in Table 1, the ξ for B(η) was formulated and proved in [19].

Theorem 1 ([19]). For a Benes network B(η), ξ(B(η)) = η22η+4.

Here, in this paper, we study B(η), HCB(η), and VCB(η) via different entropy mea-
sures based on information functionals given in Table 2. The information functionals
implemented are dependent on the EDIs of Table 1. In the first step, we derive formulae
for the EDIs and then, via these EDIs, we generate information functionals. By using the
general framework defined in Equation (1), we apply these information functionals to con-
struct formulae for entropies (given in Table 2) and derive formulae for B(η), HCB(η), and
VCB(η). Further, we the present numerical applications of our findings in understanding
network complexity. We also classify information functionals which describe the studied
networks more appropriately and may be applied to other networks. The strategies used
in our measures are combinatorial registering, vertex partition scheme, and eccentricity-
counting of vertices. Moreover, we utilised Maple for computations and Chemsketch for
drawing the Figures. Partition is a vital topic in graph theory, and it also plays an essential
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role in numerous other graph problems in various settings. For example, labelling is a
classical vertex partition problem that gives all the vertices in the graph a positive integer
related to special needs. It is a suitable tool which is widely used in computer networks.

4. Results

In this section, we prove the main results of this paper in three subsections correspond-
ing to B(η), HCB(η), and VCB(η).

4.1. Eccentricity Based Indices and Entropies for Benes Network

The current subsection is devoted to the study of Benes networks through eccentricity
dependent TIs and entropy measures. In B(η), among (2η + 1)2η vertices, (2η − 1)2η

vertices are of degree 4, whereas 2η+1 vertices are of degree 2. On the other hand, the
eccentricity ε(v) for each vertex v in B(η) is 2η. The cardinality of edge set in B(η) is η2η+2.
Furthermore, a partition of V(B(η)) on the basis of Mv and Sv is given in Table 3.

Table 3. Vertex partition of B(η) on the basis of their neighbours.

Type of Vertices M(v) Sv Frequency

Having 4 neighbours each of degree 4 256 16 2η(2η − 3)
Having 2 neighbours each of degree 4 16 8 2η+1

Having 4 neighbours with 2 of degree 2 and 2 of degree 4 64 12 2η+1

Theorem 2. For B(η) with η ≥ 3, we have:
(a) ξ(B(η)) = η22η+4 (only this part is also given in [19]).
(b) ς(B(η)) = η(2η + 1)2η+1.
(c) Z1(B(η)) = η2(η + 1)2η+2.

(d) Aε(B(η)) = (16η−19)2η+4

η .
(e) Λ(B(η)) = η(4η − 1)2η+4.

Proof. The parts (a), (b), and (c) follow directly from the definitions given in Table 1
and the facts that |V(B(η))| = (2η + 1)2η and ε(v) = 2η for each v ∈ V(B(η)). For the
remaining two parts, we use Tables 1 and 3, that is

Aε(B(η)) = ∑
v∈V(B(η))

M(v)
ε(v)

=
2η(2η − 3) · 44

2η
+

2η+1 · 42

2η
+

2η+1 · 22 · 42

2η
=

2η+4(16η − 19)
η

,

and

Λ(B(η)) = ∑
v∈V(B(η))

Svε(v) = 2η(2η − 3)(16)(2η) + 2η+1(8)(2η) + 2η+1(12)(2η)

= 2η+4η(4η − 1).

Now, we extend our findings in this section by formulating and proving analytical
formulae for the eccentricity-dependent entropies defined in Table 2.

Theorem 3. For B(η) with η ≥ 3, we have

(a) ENTξ(B(η)) = log(2η+4η2)− 1
2η

[
log(4η) + (2η − 1)log(8η)

]
.

(b) ENTς(B(η)) = log(2η(2η + 1)).
(c) ENTZ1(B(η)) = log(2η(2η + 1)).
(d) ENTAε

(B(η)) = log( 2η+4

η (16η− 19))− 1
16η−19

[
8(2η− 3)log( 128

η ) + log( 8
η ) + 4log( 32

η )
]
.

(e) ENTΛ(B(η)) = log(2η+4η(4η− 1))− 1
4η−1

[
2(2η− 3)log(32η) + 2log(16η) + 3log(2η)

]
.
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Proof. From Theorem 2 (a), (b), (c), Table 2, and the fact that |V(B(η))| = (2η + 1)2η , we
get (a), (b), (c) as follows:
(a)

ENTξ(B(η)) = log(ξ(B(η)))− 1
ξ(B(η))

n

∑
i=1

(ε(vη) · dvi )log(ε(vi) · dvi )

= log(2η+4η2)− 1
2η+4η2

[
2 · 2η+1(2η)log(2 · 2η) + 4 · 2η(2η − 1)(2η)log(4 · 2η)

]
= log(2η+4η2)− 2η+3η

2η+4η2

[
log(4η) + 2ηlog(8η)− log(8η)

]
= log(2η+4η2)− 1

2η

[
log(4η) + (2η − 1)log(8η)

]
.

(b)

ENTς(B(η)) = log(ς(B(η)))− 1
ς(B(η))

n

∑
i=1

(ε(vi))log(ε(vi))

= log(2η+1η(2η + 1))− 1
2η+1η(2η + 1)

[
2η(2η + 1)2ηlog(2η)

]
= log(2η+1η(2η + 1))− log(2η) = log(2η(2η + 1)).

(c)

ENTZ1(B(η)) = log(Z1(B(η)))− 1
Z1(B(η))

n

∑
i=1

(ε(vi))
2log(ε(vi))

2

= log(2η+2η2(2η + 1))− 1
2η+2η2(2η + 1)

[
2η(2η + 1)(2η)2log(2η)2]

= log(2η+2η2(2η + 1))− log(4η2) = log(2η(2η + 1)).

The parts (d), (e) follow from Theorem 2 (d), (e), Tables 2 and 3 as follows:
(d)

ENTAε
(B(η)) = log(Aε(B(η)))− 1

Aε

n

∑
i=1

M(vi)

ε(vi)
log

(
M(vi)

ε(vi)

)

= log(
2η+4

η
(16η − 19))− 1

2η+4

η (16η − 19)

[2η(2η − 3)256
2η

log(
256
2η

)+

2η+116
2η

log(
16
2η

) +
2η+164

2η
log(

64
2η

)
]

= log(
2η+4

η
(16η − 19))− 1

16η − 19
[
8(2η − 3)log(

128
η

) + log(
8
η
) + 4log(

32
η
)
]
.

(e)

ENTΛ(B(η)) = log(Λ(B(η)))− 1
Λ(B(η))

n

∑
i=1

(Svi · ε(vi))log(Svi · ε(vi))

= log(2η+4η(4η − 1))− 1
2η+4η(4η − 1)

[2η(2η − 3)(16)(2η)log((16)(2η))+

2η+1(8)(2η)log((8)(2η)) + 2η+1(12)(2η)log((12)(2η))]

= log(2η+4η(4η − 1))− 1
4η − 1

[
2(2η − 3)log(32η) + 2log(16η) + 3log(2η)

]
.



Symmetry 2023, 15, 761 8 of 18

4.2. Eccentricity Based Indices and Entropies for HCB(η)

In this subsection, we develop analytical formulae of eccentricity-dependent TIs and
entropies for the network HCB(η). The key to proving these results is to develop partitions
of the vertex set in terms of degree, eccentricity, M(v), and S(v). See Tables 4 and 5.

Table 4. A partition of V(HCB(η)) in terms of eccentricity and degree.

Eccentricity ε(v) Degree d(v) Frequency

2η 2 2(2η − 2)
2η 3 2

2η − 1 4 (2η − 1)(2η − 2)
2η − 1 6 2
2η − 2 6 2
2η − 3 6 2

...
...

...
2η − (η − 1) 6 2

2η − η 6 1

Table 5. A partition of V(HCB(η)) in terms of eccentricity, M(v), and Sv.

ε(v) M(v) Sv Frequency

2η − 1

64 12 2η+1 − 12
96 13 4
96 14 4

256 16 (2η − 4) + 2(η − 2)(2η − 6)
384 18 8(η − 2)
576 20 2

1152 21 2

2η
16 8 2η+1 − 8
24 10 4
96 14 2

(2η − 2) 9216 28 2
(2η − 3) 9216 28 2
(2η − 4) 9216 28 2

...
...

...
...

(2η − (η − 1)) 9216 28 2

η 9216 28 1

In the next theorem, we prove eccentricity dependent TIs for HCB(η) with η ≥ 3.

Theorem 4. For HCB(η) with η ≥ 3, we have:
(a) ξ(HCB(η)) = (2η − 2)(16η2 − 8η + 4) + 18η2.
(b) ς(HCB(η)) = (2η − 2)(4η2 + 1) + 3η2 + 2η.
(c) Z1(HCB(η)) = (2η − 2)(8η3 − 4η2 + 6η − 1) + 9η2 + η

3 (η − 1)(14η − 1).
(d) Aε(HCB(η)) = 1

2η−1 [2
η+1(256η − 320) + 2432] + 1

η [2
η+4 + 9296] + 36864

(η−2)(3η−1) .

(e) Λ(HCB(η)) = 2η+3(8η2 − 6η + 3)− 2(6η2 − 22η + 11).

Proof. The parts (a), (b), and (c) are obtained by using Tables 1 and 4 as follows:
(a)

ξ(HCB(η)) = ∑
v∈V(HCB(η))

ε(v)dv
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= 2(2η− 2)(2η)(2)+ 2(2η)(3)+ (2η− 1)(2η− 2)(2η− 1)(4)+ 1(η)(6)+
η−1

∑
i=1

(2)(2η− i)(6)

= 8η(2η − 2) + 12η + 4(2η − 1)2(2η − 2) + 6η + 12
(3η(η − 1)

2
)

= (2η − 2)(16η2 − 8η + 4) + 18η2.

(b)
ς(HCB(η)) = ∑

v∈V(HCB(η))
ε(v)

= 2(2η − 2)(2η) + 2(2η) + (2η − 1)(2η − 2)(2η − 1) + (1)(η) + 2
η−1

∑
i=1

(2η − i)

= 4η(2η − 2) + 4η + (2η − 1)2(2η − 2) + η + 3η(η − 1)

= (2η − 2)(4η2 + 1) + 3η2 + 2η.

(c)
Z1(HCB(η)) = ∑

v∈V(HCB(η))
(ε(v))2

= 2(2η − 2)(2η)2 + 2(2η)2 + (2η − 1)(2η − 2)(2η − 1)2 + (1)(η)2 + 2
η−1

∑
i=1

(2η − i)2

= 8η2(2η − 2) + 8η2 + (2η − 1)3(2η − 2) + η2 + 2(
1
6

η(η − 1)(14η − 1))

= (2η − 2)(8η3 − 4η2 + 6η − 1) + 9η2 +
1
3

η(η − 1)(14η − 1).

For (d) and (e), we use Tables 1 and 5:
(d)

Aε(HCB(η)) = ∑
v∈V(HCB(η))

M(v)
ε(v)

=
1

2η − 1
[
(2η+1 − 12)(64) + 8(96) + ((2η − 4) + 2(η − 2)(2η − 6))(256) + 8(η − 2)(384)

+2(576) + 2(1152)
]
+

1
2η

[(2η+1 − 8)(16) + 4(24) + 2(96)] +
1
η
[9216] +

r−1

∑
i=2

(2)(9216)
(2η − i)

=
1

2η − 1
[64(2η+1)− 768 + 768 + 256(2η − 4) + 512(η2η − 6η − 2η+1 + 12) + 3072(η − 2)

+3456] +
1
η
[(2η+1 − 8)(8) + 4(12) + 2(48) + 9216] +

2
(η − 2)(3η − 1)

(2)(9216)

=
1

2η − 1
[2η+1(256η − 320) + 2432] +

1
η
[2η+4 + 9296] +

36864
(η − 2)(3η − 1)

.

(e)
Λ(HCB(η)) = ∑

v∈V(HCB(η))
Svε(v)

= (2η − 1)[12(2η+1 − 12) + 4(13) + 4(14) + 16((2η − 4) + 2(η − 2)(2η − 6))+

18(8(η − 2)) + 2(20) + 2(21)] + 2η[(2η+1 − 8)(8) + 4(10) + 2(14)] + η(28)

+
η−1

∑
i=2

(2η − i)(2)(28) = (2η − 1)[12(2η+1) + 46 + 16(2η − 4) + 32(η2η − 6η − 2η+1 + 12)
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+144(η − 2)] + 2η[8(2η+1) + 18] + 28
(η − 2)(3η − 1)(2)

2

= 2η+3(8η2 − 6η + 3)− 2(6η2 − 22η + 11).

Theorem 5. For HCB(η) with η ≥ 3, we have:
(a)

ENTξ(HCB(η)) = log((2η − 2)(16η2 − 8η + 4) + 18η2)

− 1
(2η − 2)(16η2 − 8η + 4) + 18η2

[
8η(2η − 2)log(4η) + 12ηlog(6η)+

(2η − 1)2(2η+2 − 8)log(8η − 4) + 6ηlog(6η) + 18η(η − 1)log(9η(η − 1))
]
.

(b)
ENTς(HCB(η)) = log((2η − 2)(4η2 + 1) + 3η2 + 2η)−

1
(2η − 2)(4η2 + 1) + 3η2 + 2η

[
4η(2η − 2)log(2η) + 4ηlog(2η)+

(2η − 1)2(2η − 2)log(2η − 1) + ηlogη + 3η(η − 1)log(
3η(η − 1)

2
)
]
.

(c)

ENTZ1(HCB(η)) = log((2η − 2)(8η3 − 4η2 + 6η − 1) + 9η2 +
1
3

η(η − 1)(14η − 1))−

1
(2η − 2)(8η3 − 4η2 + 6η − 1) + 9η2 + 1

3 η(η − 1)(14η − 1)

[
8η2(2η − 2)log(4η2)+

8η2log(4η2) + (2η − 1)3(2η − 2)log(2η − 1)2+

η2logη2 +
1
3

η(η − 1)(14η − 1)log(
1
6
(η − 1)(14η − 1))

]
.

(d)

ENTAε
(HCB(η)) = log(

1
2η − 1

[2η+1(256η − 320) + 2432] +
1
η
[2η+4 + 9296]+

36864
(η − 2)(3η − 1)

)− 1
1

2η−1 [2
η+1(256η − 320) + 2432] + 1

η [2
η+4 + 9296] + 36864

(η−2)(3η−1)[
(2η+1 − 12)

64
2η − 1

log(
64

2η − 1
) +

768
2η − 1

log(
96

2η − 1
) + ((2η − 4) + 2(η − 2)(2η − 6))

( 256
2η − 1

)
log(

256
2η − 1

) + (η − 2)
3072

2η − 1
log(

384
2η − 1

) +
1152

2η − 1
log(

576
2η − 1

)+

2304
2η − 1

log(
1152

2η − 1
) + (2η+1 − 8)

( 8
η

)
log(

8
η
) +

48
η

log(
12
η
) +

96
η

log(
48
η
)

+
9216

η
log(

9216
η

) +
36864

(η − 2)(3η − 1)
)
log(

18432
(η − 2)(3η − 1)

)
]
.

(e)
ENTΛ(HCB(η)) = log(2η+3(8η2 − 6η + 3)− 2(6η2 − 22η + 11))−

1
2η+3(8η2 − 6η + 3)− 2(6η2 − 22η + 11)

[
(2η+1 − 12(24η − 12)log(24η − 12)+

(104η − 52)log(26η − 13) + (112η − 56)log(28η − 14) + ((2η − 4)+
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2(η − 2)(2η − 6))(32η − 16)log(32η − 16) + 8(η − 2)(36η − 18)log(36η − 18)+

(80η − 40)log(40η − 20) + (84η − 42)log(42η − 21) + 16η(2η+1 − 8)log(16η)+

80ηlog(20η) + 56ηlog(28η) + 28ηlog(28η) + (28η − 56)(3η − 1)log(14(η − 2)(3η − 1))
]
.

Proof. From Theorem 4 (a), (b), (c) and Tables 2 and 4, we get (a), (b), (c) as follows:
(a)

ENTξ(HCB(η)) = log(ξ(HCB(η)))− 1
ξ(HCB(η))

n

∑
i=1

(ε(vi) · dvi )log(ε(vi) · dvi )

= log((2η − 2)(16η2 − 8η + 4) + 18η2)− 1
(2η − 2)(16η2 − 8η + 4) + 18η2[

2(2η − 2)(2η)(2)log((2η)(2)) + 2(2η)(3)log((2η)(3)) + (2η − 1)(2η − 2)(2η − 1)(4)

log((2η − 1)(4)) + 1(η)(6)log((η)(6)) +
η−1

∑
i=1

(2)(2η − i)(6)log(
η−1

∑
i=1

(2η − i)(6))
]

= log((2η − 2)(16η2 − 8η + 4) + 18η2)− 1
(2η − 2)(16η2 − 8η + 4) + 18η2[

8η(2η − 2)log(4η) + 12ηlog(6η) + (2η − 1)2(2η+2 − 8)log(8η − 4)) + 6ηlog(6η)+

18η(η − 1)log(9η(η − 1))
]
.

(b)

ENTς(HCB(η)) = log(ς(HCB(η)))− 1
ς(HCB(η))

n

∑
i=1

(ε(vi))log(ε(vi))

= log((2η − 2)(4η2 + 1) + 3η2 + 2η)− 1
(2η − 2)(4η2 + 1) + 3η2 + 2η[

2(2η − 2)(2η)log(2η) + 2(2η)log(2η) + (2η − 1)(2η − 2)(2η − 1)log(2η − 1)+

(1)(η)log(η) + 2
η−1

∑
i=1

(2η − i)log(
η−1

∑
i=1

(2η − i))
]
= log((2η − 2)(4η2 + 1)+

3η2 + 2η)− 1
(2η − 2)(4η2 + 1) + 3η2 + 2η

[
4η(2η − 2)log(2η) + 4ηlog(2η)+

(2η − 1)2(2η − 2)log(2η − 1) + ηlogη + 3η(η − 1)log(
3η(η − 1)

2
)
]
.

(c)

ENTZ1(HCB(η)) = log(Z1(HCB(η)))− 1
Z1(HCB(η))

n

∑
i=1

(ε(vi))
2log(ε(vi))

2

= log((2η − 2)(8η3 − 4η2 + 6η − 1) + 9η2 +
1
3

η(η − 1)(14η − 1))−

1
(2η − 2)(8η3 − 4η2 + 6η − 1) + 9η2 + 1

3 η(η − 1)(14η − 1)

[
2(2η − 2)(2η)2log(2η)2+

2(2η)2log(2η)2 + (2η − 1)(2η − 2)(2η − 1)2log(2η − 1)2 + (1)(η)2log(η)2+

2
η−1

∑
i=1

(2η − i)2log
( η−1

∑
i=1

(2η − i)2)]
= log((2η − 2)(8η3 − 4η2 + 6η − 1) + 9η2 +

1
3

η(η − 1)(14η − 1))−
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1
(2η − 2)(8η3 − 4η2 + 6η − 1) + 9η2 + 1

3 η(η − 1)(14η − 1)

[
8η2(2η − 2)log(4η2)+

8η2log(4η2) + (2η − 1)3(2η − 2)log(2η − 1)2 + η2logη2+

1
3

η(η − 1)(14η − 1)log(
1
6

η(η − 1)(14η − 1))
]
.

The parts (d), (e) follow from Theorem 4 (d), (e), Tables 2 and 5 as follows:
(d)

ENTAε
(HCB(η)) = log(Aε(HCB(η)))− 1

Aε

n

∑
i=1

M(vi)

ε(vi)
log

(
M(vi)

ε(vi)

)

= log(
1

2η − 1
[2η+1(256η − 320) + 2432] +

1
η
[2η+4 + 9296] +

36864
(η − 2)(3η − 1)

)−

1
1

2η−1 [2
η+1(256η − 320) + 2432] + 1

η [2
η+4 + 9296] + 36864

(η−2)(3η−1)[
(2η+1 − 12)

64
2η − 1

log(
64

2η − 1
) + 8

( 96
2η − 1

)
log(

96
2η − 1

) + ((2η − 4)+

2(η − 2)(2η − 6))
( 256

2η − 1
)
log(

256
2η − 1

) + 8(η − 2)
( 384

2η − 1
)
log(

384
2η − 1

)+

2
( 576

2η − 1
)
log(

576
2η − 1

) + 2
( 1152

2η − 1
)
log(

1152
2η − 1

) + (2η+1 − 8)
( 16

2η

)
log(

16
2η

) + 4
( 24

2η

)
log(

24
2η

)+

2
( 96

2η

)
log(

96
2η

) +
(9216

η

)
log(

9216
η

) + 2
η−1

∑
i=2

( 9216
2η − i

)
log(

η−1

∑
i=2

9216
2η − i

)

]

= log(
1

2η − 1
[2η+1(256η − 320) + 2432] +

1
η
[2η+4 + 9296] +

36864
(η − 2)(3η − 1)

)−

1
1

2η−1
[2η+1(256η − 320) + 2432] +

1
η
[2η+4 + 9296] +

36864
(η − 2)(3η − 1)

[
(2η+1 − 12)

64
2η − 1

log(
64

2η − 1
) +

768
2η − 1

log(
96

2η − 1
) + ((2η − 4) + 2(η − 2)(2η − 6))

( 256
2η − 1

)
log(

256
2η − 1

)+

(η− 2)
3072

2η − 1
log(

384
2η − 1

)+
1152

2η − 1
log(

576
2η − 1

)+
2304

2η − 1
log(

1152
2η − 1

)+ (2η+1− 8)
( 8

η

)
log(

8
η
)+

48
η

log(
12
η
) +

96
η

log(
48
η
) +

9216
η

log(
9216

η
) +

36864
(η − 2)(3η − 1)

]
log(

18432
(η − 2)(3η − 1)

).

(e)

ENTΛ(HCB(η)) = log(Λ(HCB(η)))− 1
Λ(HCB(η))

n

∑
i=1

(Svi · ε(vi))log(Svi · ε(vi))

= log(2r+3(8η2− 6η + 3)− 2(6η2− 22η + 11))− 1
2η+3(8η2 − 6η + 3)− 2(6η2 − 22η + 11)[

(2η+1 − 12)(12)(2η − 1)log((12)(2η − 1)) + 4(13)(2η − 1)log((13)(2η − 1))+

4(14)(2η− 1)log((14)(2η− 1)) + ((2η − 4) + 2(η− 2)(2η − 6))(16)(2η− 1)log((16)(2η− 1))+

8(η − 2)(18)(2η − 1)log((18)(2η − 1)) + 2(20)(2η − 1)log((20)(2η − 1))+

2(21)(2η− 1)log((21)(2η− 1)) + (2η+1 − 8)(8)(2η)log((8)(2η)) + 4(10)(2η)log((10)(2η))+

2(14)(2η)log((14)(2η)) + (28)(η)log((28)(η)) + 2
η−1

∑
i=2

(28)(2η − i)log(
η−1

∑
i=2

(28)(2η − i))
]
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= log(2η+3(8η2− 6η + 3)− 2(6η2− 22η + 11))− 1
2η+3(8η2 − 6η + 3)− 2(6η2 − 22η + 11)[

(2η+1 − 12)(24η − 12)log(24η − 12) + (104η − 52)log(26η − 13)+

(112η − 56)log(28η − 14) + ((2η − 4) + 2(η − 2)(2η − 6))(32η − 16)log(32η − 16)+

8(η − 2)(36η − 18)log(36η − 18) + (80η − 40)log(40η − 20) + (84η − 42)log(42η − 21)+

16η(2η+1 − 8)log(16η) + 80ηlog(20η) + 56ηlog(28η) + 28ηlog(28η)+

(28η − 56)(3η − 1)log(14(η − 2)(3η − 1))
]
.

4.3. Eccentricity Based Indices and Entropies for VCB(η)

Similar to the results obtained in previous subsections, the formulae for the eccentricity
dependent TIs and entropy measures for VCB(η) are obtained in this subsection. The
results are can be proved on the same lines after observing that the eccentricity of ε(v) for
each vertex v in VCB(η) is 2η.

Theorem 6. For VCB(η) with η ≥ 3, we have:
(a) ξ(VCB(η)) = η22η+4.
(b) ς(VCB(η)) = η22η+2.
(c) Z1(VCB(η)) = η32η+3.
(d) Aε(VCB(η)) = 2η+8.
(e) Λ(VCB(η)) = η22η+6.

Theorem 7. For VCB(η) with η ≥ 3, we have:
(a) ENTξ(VCB(η)) = log(η2η+1).
(b) ENTς(VCB(η)) = log(η2η+1).
(c) ENTZ1(VCB(η)) = log(η2η+1).
(d) ENTAε

(VCB(η)) = log(η2η+1).
(e) ENTΛ(VCB(η)) = log(η2η+1).

5. Complexity Analysis via Numeric Tables and Graphs

In the current section, we present the complexity analysis by implementing the formu-
lae proved in this manuscript. Similar to the work of Dehmer [44], we apply the formulae
of entropy to compare the complexity of the studied networks. Since the Benes network
B(η) is the core network and the networks HCB(η) and VCB(η) are produced from B(η)
via horizontal and vertical identifications, the natural comparison could be between the
complexity of (i) B(η) and HCB(η), (ii) B(η) and VCB(η). In step 1, we present the
comparisons of eccentricity-dependent TIs of B(η) with corresponding TIs of HCB(η) and
VCB(η) via Table 6. It appears that the values of TIs ξ, ς, and Λ for B(η)) tend to remain
higher than the corresponding values for HCB(η). However, this trend is reversed for Z1
and Aε. The comparison of trends of values of these TIs is similar for B(η)and VCB(η),
except the fact that corresponding values remain the same in the case of ξ, and the trend is
reversed for Λ.

The step 2 analysis is rather more conclusive and informative as it shows applications
of the computed formulae of this manuscript in understanding the complexity of the
studied networks B(η), HCB(η) and, VCB(η). The objective is to compare complexities
of the network B(η) with its derived networks HCB(η) and VCB(η), separately, by using
Table 7. Figure 4 presents the behaviour of entropies from information functionals based on
the eccentricity-dependent TIs for B(η), and Figures 5 and 6 show the corresponding trends
of entropies for HCB(η) and VCB(η). Note that these entropies are based on eccentricity-
dependent information functionals, and since the Equation (1) proposes a mechanism of
producing different entropy formulae, it is also important to know which functionals are
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more appropriate compared to others so that the more appropriate ones can be promoted
to investigate the entropy measures or implicative complexity or other properties of other
significant families of the networks. While analysing entropies of B(η) and HCB(η), we
note that the entropies produced from ξ, ς, Z1, and Aε demonstrate a significant pattern.
Elaborating this pattern in terms of complexity suggests that the structure HCB(η) is less
complex compared to B(η). However, this pattern is opposed when we use an information
functional based on Λ. Similarly, while comparing the complexities of B(η) and VCB(η),
the trends show that VCB(η) is less complex when we use ξ, ς, Z1, and Λ TIs-based
information functionals. However, the trend is the opposite for Aε. As a result, we conclude
that information functionals based on ξ, ς, and Z1 produce a significant trend and elaborate
complexity comparisons very effectively. Lastly, we point out that the difference of all the
entropies is decreasing when we increase the value of η. It is also a true reflection because
when η is large, networks are the same for the most part and only differ on boundaries
(Horizontal and vertical).

Table 6. Numerical values of eccentricity-dependent TIs for B(η), HCB(η), and VCB(η).

Graph η ξ ς Z1 Aε Λ

B(η)

3 1152 336 1152 1237.33 4224
4 4096 1152 5120 2880 15360
5 12800 3520 19200 6246.4 48640
6 36864 9984 64512 13141.33 141312
7 100352 26880 200704 27209.14 387072

HCB(η)

3 906 255 1345 9669.33 3650
4 3480 966 6958 7629.35 13658
5 11370 3115 28555 9936.2 44186
6 33632 9110 101532 16633.03 130370
7 93114 24983 328013 31163.36 361170

VCB(η)

3 1152 288 1728 2048 4608
4 4096 1024 8192 4096 16384
5 12800 3200 32000 8192 51200
6 36864 9216 110592 16384 147456
7 100352 25088 351232 32768 401408

Table 7. Numerical values of eccentricity-dependent Entropies for B(η), HCB(η), and VCB(η).

Graph η ENTξ ENTς ENTZ1 ENTAε ENTΛ

B(η)

3 3.9867 4.0254 4.0254 3.6541 4.6664
4 4.9387 4.9698 4.9698 4.6846 5.4344
5 5.8376 5.8636 5.8636 5.6335 6.2278
6 6.7016 6.7238 6.7238 6.5313 7.0231
7 7.5406 7.5601 7.5601 7.3946 7.8141

HCB(η)

3 3.7824 3.8363 3.8923 2.0468 4.9344
4 4.8140 4.8612 4.9030 3.3455 5.7154
5 5.7677 5.8035 5.8295 4.8400 6.5088
6 6.6642 6.6913 6.7062 6.1438 7.2979
7 7.5214 7.5427 7.5509 7.2187 8.0780

VCB(η)

3 3.8712 3.8712 3.8712 3.8712 3.8712
4 4.8520 4.8520 4.8520 4.8520 4.8520
5 5.7683 5.7683 5.7683 5.7683 5.7683
6 6.6438 6.6438 6.6438 6.6438 6.6438
7 7.4911 7.4911 7.4911 7.4911 7.4911
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Figure 4. The patterns of Entropies of B(η) from information functionals based on eccentricity-
dependent TIs.

Figure 5. The patterns of Entropies of HCB(η) from information functionals based on eccentricity-
dependent TIs.

Figure 6. The patterns of Entropies of VCB(η) from information functionals based on eccentricity-
dependent TIs.
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6. Conclusions

In models reflecting real-world problems, the classification of networks based on their
complexity levels is vital due to its influence on information diffusion, failure propaga-
tion, control-related actions, and resilience preservation. Through topological indices and
information functional-based entropies, graph theory provides a relatively concise way
to describe the network complexity. The information functional-based entropies provide
a formula for computing the entropies of graphs/networks and produce a mechanism
for obtaining a model to compute entropy measures. Thus, from the family of ICNs, the
butterfly and Benes networks are vital due to their role in optical coupler internal construc-
tions as well as parallel computer systems IBM, SP1/SP2, MIT Transit Project, and NEC
Cenju-3. Thus, their complexity measures are crucial to know. In this paper, we obtained
a comparison of complexity measures between the Benes network’s B(η) and its derived
classes. It has been achieved in two steps: in the first step, we obtained analytical formulae
for eccentricity-dependent TIs; in the second step, we defined information functionals
based on these TIs and computed entropies corresponding to each information functional,
which, by [44], enable us to know the complexity measures. While analysing entropies of
B(η) and HCB(η), we note that the entropies produced from ξ, ς, Z1, and Aε demonstrate
a significant pattern. Elaborating this pattern in terms of complexity suggests that the
structure HCB(η) is less complex than B(η). However, this pattern is opposed when we
use information functionals based on Λ. Similarly, while comparing the complexities of
B(η) and VCB(η), the trends show that VCB(η) is less complex when we use ξ, ς, Z1, and
Λ TIs-based information functionals. However, the trend is the opposite for Aε. As a result,
we conclude that information functionals based on ξ, ς, and Z1 produce a significant trend
and detailed complexity comparisons much more effectively. Lastly, we point out that the
difference of all the entropies decreases when we increase the value of η. It is also a true
reflection because when η is large, networks are mostly the same and only differ in terms
of boundaries (Horizontal and vertical).

One potential future direction is to analyse these networks’ complexity via the infor-
mation functionals defined in [44] to compute the entropies. This will allow us to compare
the results/complexities with the results/complexities achieved in this paper. In the case, if
both the results/complexity measures are consistent with each other, then the functionals
defined in this paper along with the functionals of Dehmer [44], and can be assumed as a
standard for developing the appropriate entropies (and consequent complexity) of other
networks from Equation (1).
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