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Abstract: We search for exact analytical solutions of spherically symmetric dissipative fluid distribu-
tions satisfying the vanishing expansion condition (vanishing expansion scalar Θ). To accomplish
this, we shall impose additional restrictions allowing integration of the field equations. The solutions
are analyzed, and possible applications to astrophysical scenarios as well as alternative approaches
to obtaining new solutions are discussed.
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1. Introduction

Many years ago, V. Skripkin published a paper describing the evolution of a spheri-
cally symmetric distribution of incompressible non-dissipative fluid following a central
explosion [1] (see also [2]). Although not explicitly stated in the Skripkin paper, his model
implies the vanishing of the expansion scalar. The interest in this kind of model stems from
the fact that the expansion-free condition necessarily implies the appearance of a cavity
around the center, suggesting that they might be relevant for the modeling, among other
phenomena, of voids observed at cosmological scales.

A general study on shearing expansion-free spherical fluid evolution (including pres-
sure anisotropy) was carried out in [3], where the unavoidable appearance of a cavity
surrounding the center in expansion-free solutions was explained as consequence of the
fact that the Θ = 0 condition requires that the innermost shell of fluid should be away from
the center, initiating from the formation of a cavity.

Thus, the evolution will proceed expansion-free if the decrease (increase) in the areal
radius of the outer boundary surface of the fluid distribution is compensated by a decrease
(increase) in the areal radius of the boundary of the cavity (see [3] for a detailed discussion
on this issue).

General results regarding expansion-free fluids may be found in [4,5], and extensions
to other theories of gravitation or charged fluids as well as different kind of symmetries
have been discussed in [6–11] and the references therein.

The problem of (in)stability under the expansion-free condition was addressed for the
first time in [12], and afterward, this problem was addressed within the context of modified
theories of gravity in [13–18] and the references therein.

Aside from the solutions presented in [3], exact solutions describing expansion-free
fluids may be found in [19–25].

Due to the interest attracted by expansion-free fluids, it is our purpose in this work
to find exact analytical solutions to the Einstein equations for dissipative expansion-free
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fluids. These solutions will be found by imposing additional restrictions allowing the full
integration of the field equations. Some of these restrictions are endowed with a distinct
physical meaning, while others are just of a heuristic nature. Among the former, the vanish-
ing complexity factor condition and the quasi-homologous evolution stand out. A discussion
on all the presented models is brought about in the last section.

2. Relevant Physical and Geometric Variables, Field Equations and Junction Conditions

We consider spherically symmetric distributions of fluid bounded on the exterior by a
spherical surface Σ(e). The fluid was assumed to be locally anisotropic (principal stresses
unequal) and undergoing dissipation in the form of heat flow (to model dissipation in the
diffusion approximation).

The motivation to include dissipation was provided by the well-known fact that dissi-
pation due to the emission of massless particles (photons or neutrinos) seems to be the only
plausible mechanism to carry away the bulk of the binding energy of the collapsing star,
leading to a neutron star or a black hole. Furthermore, the diffusion approximation is, in
general, very sensible, since the mean free path of the particles responsible for the propaga-
tion of energy in stellar interiors is, in general, very small compared with the typical length
of the object. Thus, even though in many other circumstances the mean free path of particles
transporting energy may be large enough to justify the free streaming approximation, there
are many physically meaningful scenarios where diffusion approximation is justified.

The fluid under consideration was anisotropic in terms of pressure. This was quite
justified since local isotropy, as has been shown in recent years, is a too stringent condition
which may excessively constrain the modeling of self-gravitating objects. Furthermore,
local anisotropy pressure may be caused by a large variety of physical phenomena, of the
kind we expect being in compact objects [26]. Moreover, as has been recently shown [27],
dissipation produces anisotropic pressure, and we do not know of any physical process
able to erase the acquired anisotropy during the dynamic process.

As we mentioned in the introduction, the expansion-free models present an internal
vacuum cavity. We shall denote with Σ(i) the boundary surface between the cavity (inside
which we have a Minkowski spacetime) and the fluid.

By choosing co-moving coordinates inside Σ(e), the general interior metric can be
written as follows:

ds2 = −A2dt2 + B2dr2 + R2(dθ2 + sin2 θdφ2), (1)

where A, B and R are functions of t and r and are assumed to be positive. We set the
coordinates to x0 = t, x1 = r, x2 = θ and x3 = φ. Observe that A and B are dimensionless,
whereas R has the same dimension as r.

The energy momentum tensor in the canonical form reads as follows:

Tαβ = µVαVβ + Phαβ + Παβ + qβVα + qαVβ, (2)

with
P =

Pr + 2P⊥
3

, hαβ = gαβ + VαVβ,

Παβ = Π
(

KαKβ −
1
3

hαβ

)
, Π = Pr − P⊥,

where µ is the energy density, Pr the radial pressure, P⊥ is the tangential pressure, qα is the
heat flux, Vα is the four-velocity of the fluid, and Kα is a four-vector unit along the radial
direction. Since we are considering co-moving observers, we have

Vα = A−1δα
0 , qα = qKα, Kα = B−1δα

1 . (3)

These quantities satisfy
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VαVα = −1, Vαqα = 0, KαKα = 1, KαVα = 0. (4)

It is worth noticing that we do not explicitly add the bulk, shear viscosity or dissipation
in the free streaming approximation because they can be trivially introduced by redefining
the radial and tangential pressures, µ and q, respectively.

The acceleration aα, the expansion Θ and the shear σαβ of the fluid are given by

aα = Vα;βVβ, Θ = Vα
;α, (5)

σαβ = V(α;β) + a(αVβ) −
1
3

Θhαβ. (6)

From Equation (5), we have for the four-acceleration and its scalar a

aα = aKα, a =
A′

AB
, (7)

and for the expansion

Θ =
1
A

(
Ḃ
B
+ 2

Ṙ
R

)
, (8)

where the prime stands for r differentiation and the dot stands for differentiation with
respect to t.

We obtain for the shear Equation (6) its nonzero components

σ11 =
2
3

B2σ, σ22 =
σ33

sin2 θ
= −1

3
R2σ, (9)

and its scalar
σαβσαβ =

2
3

σ2, (10)

where

σ =
1
A

(
Ḃ
B
− Ṙ

R

)
. (11)

Einstein’s field equations for the interior spacetime (Equation (1))

Gαβ = 8πTαβ, (12)

are given in Appendix A.
Thus, in the most general case (locally anisotropic and dissipative), we have four field

equations available (Equations (A2)–(A5)) for seven variables, namely A, B, R, µ, Pr, P⊥ and
q. Since we are going to consider expansion-free systems, we have the additional condition
Θ = 0. Therefore, in order to find specific solutions (to close the system of equations), we
need to provide additional information, which could be given in the form of constitutive
equations for q, equations of state for both pressures or any other type of constraint on the
physical or metric variables. In this work, we shall impose (among others) the vanishing
complexity factor condition and the quasi-homologous evolution condition.

Next, the mass function m(t, r) introduced by Misner and Sharp [28] (see also [29])
reads as follows:

m =
R3

2
R23

23 =
R
2

[(
Ṙ
A

)2

−
(

R′

B

)2

+ 1

]
. (13)

To study the dynamical properties of the system, it is convenient to introduce the
proper time derivative DT , given by

DT =
1
A

∂

∂t
, (14)

and the proper radial derivative DR, given by
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DR =
1
R′

∂

∂r
, (15)

where R defines the areal radius of a spherical surface inside Σ(e) (as measured with its area).
Using Equation (14), we can define the velocity U of the collapsing fluid as the variation

of the areal radius with respect to the proper time. In other words, we have

U = DT R. (16)

Then, Equation (13) can be rewritten as

E ≡ R′

B
=

(
1 + U2 − 2m

R

)1/2
. (17)

With Equation (15), we can express Equation (A6) as

4πq = E
[

1
3

DR(Θ− σ)− σ

R

]
. (18)

Using Equations (A2)–(A4) with Equations (14) and (15), we obtain from Equation (13)

DTm = −4π(PrU + qE)R2, (19)

and

DRm = 4π

(
µ + q

U
E

)
R2, (20)

which implies

m = 4π
∫ r

0

(
µ + q

U
E

)
R2R′dr̃. (21)

This assumes a regular center to the distribution such that m(0) = 0.

2.1. The Exterior Spacetime and Junction Conditions

Outside of Σ(e), we assume that we have the Vaidya spacetime (i.e., we assume all
outgoing radiation is massless), described by

ds2 = −
[

1− 2M(v)
r

]
dv2 − 2drdv + r2(dθ2 + sin2 θdφ2), (22)

where M(v) denotes the total mass and v is the retarded time.
The matching of the full nonadiabatic sphere to the Vaidya spacetime on a surface

where r = rΣ(e) = constant was discussed in [26]. From the continuity of the first and
second differential forms (see [26] for details), it follows that

m(t, r) Σ(e)
= M(v), (23)

and

2
(

Ṙ′

R
− Ḃ

B
R′

R
− Ṙ

R
A′

A

)
Σ(e)
= − B

A

[
2

R̈
R
−
(

2
Ȧ
A
− Ṙ

R

)
Ṙ
R

]
+

A
B

[(
2

A′

A
+

R′

R

)
R′

R
−
(

B
R

)2
]

, (24)

where Σ(e)
= means that both sides of the equation are evaluated on Σ(e).

By comparing, Equation (24) with Equations (A3) and (A4), one obtains

q Σ(e)
= Pr. (25)
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Thus, the matching of Equations (1) and (22) on Σ(e) implies Equations (23) and (25).
As we mentioned in the introduction, the expansion-free models present an internal

vacuum cavity whose boundary surface is denoted by Σ(i), and then the matching of the
Minkowski spacetime within the cavity to the fluid distribution implies

m(t, r) Σ(i)
= 0, (26)

q Σ(i)
= Pr = 0. (27)

If any of the above matching conditions are not satisfied, then we have to assume there
is a thin shell on the corresponding boundary surface.

2.2. The Weyl Tensor and the Complexity Factor

Some of the solutions exhibited in the next section were obtained from the condition
of a vanishing complexity factor. This is a scalar function intended to measure the degree
of complexity of a given fluid distribution [30,31], and it is related to the so-called structure
scalars [32].

In the spherically symmetric case, the magnetic part of the Weyl tensor (Cρ
αβµ) vanishes,

and accordingly, the Weyl tensor is defined by its “electric” part Eγν alone:

Eαβ = CαµβνVµVν, (28)

whose nontrivial components are

E11 =
2
3

B2E ,

E22 = −1
3

R2E ,

E33 = E22 sin2 θ, (29)

where

E =
1

2A2

[
R̈
R
− B̈

B
−
(

Ṙ
R
− Ḃ

B

)(
Ȧ
A

+
Ṙ
R

)]
+

1
2B2

[
A′′

A
− R′′

R
+

(
B′

B
+

R′

R

)(
R′

R
− A′

A

)]
− 1

2R2 . (30)

Observe that the electric part of the Weyl tensor may be written as

Eαβ = E
(

KαKβ −
1
3

hαβ

)
. (31)

As it is shown in [30,31], the complexity factor is identified with the scalar function
YTF, which defines the trace-free part of the electric Riemann tensor (see [32] for details).

Thus, let us define tensor Yαβ as follows:

Yαβ = RαγβδVγVδ, (32)

which may be expressed in terms of two scalar functions YT , YTF as

Yαβ =
1
3

YThαβ + YTF

(
KαKβ −

1
3

hαβ

)
. (33)

Then, after lengthy but simple calculations, using field equations, we obtain

YT = 4π(µ + 3Pr − 2Π), YTF = E − 4πΠ. (34)
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Next, by using Equations (A2), (A4) and (A5) with Equations (13) and (30), we obtain

3m
R3 = 4π(µ−Π)− E , (35)

and

YTF = −8πΠ +
4π

R3

∫ r

0
R3
(

DRµ− 3q
U
RE

)
R′dr̃. (36)

It is worth noticing that due to a different signature, the sign of YTF in the above
equation differs from the sign of YTF used in [30] for the static case.

For reasons explained in detail in [30], the scalar YTF is the variable identified with the
complexity factor. As follows from the equations above, it may be expressed through the
Weyl tensor and the anisotropy of the pressure or in terms of the density inhomogeneity,
the dissipative variables and the anisotropy of pressure.

In terms of the metric functions, the scalar YTF reads as follows:

YTF =
1

A2

[
R̈
R
− B̈

B
+

Ȧ
A

(
Ḃ
B
− Ṙ

R

)]
+

1
B2

[
A′′

A
− A′

A

(
B′

B
+

R′

R

)]
. (37)

3. The Transport Equation

In the dissipative case, we shall need a transport equation in order to find the tem-
perature distribution and its evolution. Assuming a causal dissipative theory (e.g., the
Israel–Stewart theory [33–35]), the transport equation for the heat flux reads as follows:

τhαβVγqβ;γ + qα = −κhαβ
(
T,β + Taβ

)
− 1

2
κT2

(
τVβ

κT2

)
;β

qα, (38)

where κ denotes the thermal conductivity and T and τ denote the temperature and relax-
ation time, respectively.

In the spherically symmetric case under consideration, the transport equation has only
one independent component which may be obtained from Equation (38) by contracting
with the unit’s space-like vector Kα, which reads as follows:

τVαq,α + q = −κ(KαT,α + Ta)− 1
2

κT2
(

τVα

κT2

)
;α

q. (39)

Sometimes, the last term in Equation (38) may be neglected [36], producing the so-
called truncated transport equation, which reads as follows:

τVαq,α + q = −κ(KαT,α + Ta). (40)

4. The Homologous and Quasi-Homologous Conditions

In order to specify some of our models, we shall impose the condition of a vanishing
complexity factor. However, for time-dependent systems, we also need to elucidate what
the simplest pattern of evolution is for the system.

In [31], the concept of homologous evolution was introduced, in analogy with the
same concept in classical astrophysics, to represent the simplest mode of evolution of the
fluid distribution.

Thus, the field equation in Equation (A3), written as

DR

(
U
R

)
=

4π

E
q +

σ

R
, (41)

can be easily integrated to obtain
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U = ã(t)R + R
∫ r

0

(
4π

E
q +

σ

R

)
R′dr̃, (42)

where ã is an integration function or

U =
UΣ(e)

RΣ(e)
R− R

∫ r
Σ(e)

r

(
4π

E
q +

σ

R

)
R′dr̃. (43)

If the integral in the above equations vanishes, we have from Equation (42) or (43) that

U = ã(t)R. (44)

This relationship is characteristic of the homologous evolution in Newtonian hydro-
dynamics [37–39]. In our case, this may occur if the fluid is shear-free and non-dissipative
or if the two terms in the integral cancel each other out.

In [31], the term “homologous evolution” was used to characterize relativistic systems
satisfying, aside from Equation (44), the condition

RI
RI I

= constant, (45)

where RI and RI I denote the areal radii of two concentric shells (I, I I) described by
r = rI = constant and r = rI I = constant, respectively.

The important point we want to stress here is that Equation (44) does not imply Equa-
tion (45). Indeed, Equation (44) implies that for the two shells of fluids I and I I, we have

UI
UI I

=
AI I ṘI

A1ṘI I
=

RI
RI I

, (46)

which implies Equation (45) only if A = A(t), which through a simple coordinate transfor-
mation becomes A = constant. Thus, while in the non-relativistic regime, Equation (45)
always follows from the condition that the radial velocity is proportional to the radial
distance, in the relativistic regime, the condition (44) implies Equation (45) only if the fluid
is geodesic.

In [40], the homologous condition was relaxed, leading to what was defined as quasi-
homologous evolution restricted only by Equation (44), implying

4π

R′
Bq +

σ

R
= 0. (47)

5. Shearing Expansion-Free Motion

If the fluid evolves with the vanishing expansion scalar (Θ = 0), then from Equation (8),
we have

Ḃ
B
= −2

Ṙ
R

, (48)

or, integrating

B =
g(r)
R2 , (49)

where g(r) is an arbitrary function of r.
By substituting Equation (48) into (A3), we obtain

Ṙ′

R
+ 2

Ṙ
R

R′

R
− Ṙ

R
A′

A
= 4πqAB, (50)

which can be integrated for Ṙ 6= 0, producing

A =
R2Ṙ
τ1(t)

exp
[
−4π

∫
qAB

R
Ṙ

dr
]

, (51)
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where τ1(t) is an arbitrary function of t. With Equations (49) and (51), the line element in
Equation (1) becomes

ds2 = −
{

R2Ṙ
α

exp
[
−4π

∫
qAB

R
Ṙ

dr
]}2

dt2

+
α2

R4 dr2 + R2(dθ2 + sin2 θdφ2), (52)

which is the general metric for a shearing expansion-free anisotropic dissipative fluid,
where without loss of generality (by reparametrizing r and t), we have g = τ1 = α, where α
is a unit constant with dimensions [r2].

We shall now proceed to find exact analytical solutions satisfying the expansion-
free condition.

6. Solutions

As mentioned before, the expansion-free condition alone is not enough to integrate the
field equations. We need to resort to additional restrictions in order to close the full system
of equations. Here, two different families of solutions will be obtained. On the one hand,
we shall consider non-geodesic fluids satisfying the vanishing complexity factor condition,
complemented by the quasi-homologous condition or with some simple assumptions on
the metric variables. On the other hand, we shall consider geodesic fluids satisfying the
vanishing complexity factor condition or the quasi-homologous condition.

6.1. Non-Geodesic, YTF = 0, Quasi-Homologous Evolution and Θ = 0 Solutions

We shall start by assuming the quasi-homologous condition and the vanishing com-
plexity factor condition for a non-geodesic fluid. As mentioned before, by imposing Θ = 0,
we obtain

Ḃ
B
+

2Ṙ
R

= 0 ⇒ B =
α

R2 . (53)

Let us now impose the quasi-homologous condition from Equation (44):

Ṙ = ã(t)AR. (54)

Then, from Θ = 0 and U = ãR, we have

B =
α

R2 , (55)

A =
Ṙ
ãR

. (56)

With the above conditions, the physical variables read as follows:

8πµ = −3ã2 − R4

α2

[
2R′′

R
+ 5
(

R′

R

)2

− α2

R6

]
, (57)

4πq =
3ã
α

RR′, (58)

8πPr = −3ã2 +
R4

α2

[
2Ṙ′

Ṙ
R′

R
−
(

R′

R

)2

− α2

R6

]
, (59)

8πP⊥ = 3ã2 +
R4

α2

[
Ṙ′′

Ṙ
+

Ṙ′

Ṙ
R′

R
+

(
R′

R

)2
]

, (60)

where we have chosen ã = constant.
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Next, the condition YTF = 0 produces

−3ã2 +
R4

α2

[
Ṙ′′

Ṙ
− Ṙ′

Ṙ
R′

R
− R′′

R
+

(
R′

R

)2
]
= 0. (61)

In order to find a solution to the above equation, we shall proceed as follows. We shall
write R as

R = F(δ1r + δ2t + δ3) ≡ F(z), (62)

where F is an arbitrary function of its argument with dimensions [r], δ1 and δ2 are two
arbitrary constants with dimensions [1/r] and δ3 is a dimensionless constant.

By feeding Equation (62) back into Equation (61), we obtain

−3ã2 +
δ2

1 F4

α2

 ∂3F
∂z3

∂F
∂z

− 2
∂2F
∂z2

F
+

(
∂F
∂z
F

)2
 = 0. (63)

By introducing the variable ω(F) ≡ ∂F
∂z , we have

∂F
∂z

= ω, (64)

∂2F
∂z2 = ωFω, (65)

∂3F
∂z3 = ω2ωFF + ωω2

F, (66)

with the help of which Equation (63) becomes

−3ã2 +
δ2

1 F4

α2

[
ωωFF + ω2

F −
2ωωF

F
+

ω2

F2

]
= 0, (67)

where the subscript F denotes the derivative with respect to F and whose solution reads

ω =
k
F

, k =
ãα√
2δ1

. (68)

Using the above results, we may write the following for R:

R =
√

2k(δ1r + δ2t + δ3), (69)

and the physical variables read as follows:

8πµ = −9
2

ã2 +
1

2k(δ1r + δ2t + δ3)
, (70)

4πq =
3ã2
√

2
, (71)

8πPr = −9
2

ã2 − 1
2k(δ1r + δ2t + δ3)

, (72)

8πP⊥ =
9
2

ã2. (73)

The corresponding expressions for the mass function and the shear are

m =
ã2

4

[√
2k(δ1r + δ2t + δ3)

]3
+

1
2

√
2k(δ1r + δ2t + δ3), (74)
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σ = −3ã, (75)

whereas for the temperature, using Equation (40), we find

T =
2ãT0(t)

δ2
(δ1r + δ2t + δ3) +

3ã
8πk

, (76)

where T0(t) is a function of integration which, in principle, may be obtained from the
boundary conditions on either boundary surface.

6.2. Non-Geodesic, YTF = 0, Θ = 0, A = γB and γ = Constant Solutions

The next model will also be obtained by imposing YTF = 0 and Θ = 0, but instead of
assuming the quasi-homologous evolution as in the preceding model, we shall assume that
A and B are proportional to each other (A = γB, with γ = constant).

Thus, from the three conditions above, we obtain

3
γ2

R̈
R
− 2R′′

R
+

(
2R′

R

)2

= 0. (77)

In order to find a solution to Equation (77), we assume for R the form

R = F(s1r + s2t + s3) ≡ F(z), (78)

where s1 and s2 are constants with dimensions [1/r] and s3 is a dimensionless constant.
By replacing Equation (78) in (77), we obtain(

3s2
2

γ2 − 2s2
1

)
Fzz

F
+

4s2
1F2

z
F2 = 0. (79)

Next, by introducing the variable y, defined by

y =
Fz

F
, (80)

we may write Equation (79) as

yz + β0y2 = 0, with β0 =
3s2

2 + 2s2
1γ2

3s2
2 − 2s2

1γ2
. (81)

The above equation may be easily integrated, producing

y =
1

β0z + β1
, (82)

where β1 is a constant of integration.
By feeding Equation (82) back into Equation (80) and integrating once again, we obtain

F = R =

(
β0z + β1

β2

) 1
β0

, (83)

where β2 is a new constant of integration with dimensions [1/rβ0 ].
The physical variables for this model read as follows:
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8πµ =

(
β0z+β1

β2

) 4
β0

[
s2

1(2β0 − 7)− 3s2
2

γ2

]
α2(β0z + β1)2

+

(
β2

β0z + β1

) 2
β0

, (84)

4πq =

(
β0z+β1

β2

) 4
β0 s1s2(5− β0)

γα2(β0z + β1)2 , (85)

8πPr =

(
β0z+β1

β2

) 4
β0

[
s2

2(2β0−7)
γ2 − 3s2

1

]
α2(β0z + β1)2 −

(
β2

β0z + β1

) 2
β0

,

(86)

8πP⊥ =

(
β0z+β1

β2

) 4
β0 (1 + β0)

(
s2

1 −
s2

2
γ2

)
α2(β0z + β1)2 , (87)

m =

(
β0z+β1

β2

) 7
β0

(
s2

2
γ2 − s2

1

)
2α2(β0z + β1)2 +

1
2

(
β0z + β1

β2

) 1
β0

, (88)

σ = − 3s2

γα(β0z + β1)

(
β0z + β1

β2

) 2
β0

, (89)

T =

(
β0z+β1

β2

) 2
β0

γα

T0(t)−
τs2

2(5− β0)(2− β0)
(

β0z+β1
β2

) 2
β0

4πκγα(1− β0)(β0z + β1)2



+

(
β0z+β1

β2

) 2
β0 s2(5− β0)

4πγκβ0α(β0z + β1)
. (90)

As in the preceding models, the temperature is obtained using the truncated trans-
port equation.

6.3. Non-Geodesic, YTF = 0, Θ = 0, A = A(r) and R = R1(t)R2(r) Solutions

We shall now find a solution satisfying the conditions Θ = 0 and YTF = 0, as well as
A = A(r) and the condition that R is a separable function (i.e., R = R1(t)R2(r)).

From Θ = 0 and YTF = 0, we may write

3
A2

(
R̈
R
− 2Ṙ2

R2 −
Ȧ
A

Ṙ
R

)
+

1
B2

(
A′′

A
+

A′

A
R′

R

)
= 0. (91)

By imposing the further conditions A = A(r) and R = R1(t)R2(r), we see that a simple
solution to Equation (91) reads as follows:

R1(t) =
ν0

t + ν1
, (92)

R2(r) = ν2 Aν3−1, (93)

A = ν4(ν3r + ν5)
1

ν3 , (94)
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where ν0 and ν3 are dimensionless constants and ν1, ν2, ν4 and ν5 are constants with dimen-
sions [r], [r2], [1/(r1/ν3)] and [r], respectively.

The physical variables for this model read as follows:

8πµ =
(t + ν1)

2(ν3r + ν5)
−2ν3+2

ν3

ν2
0 ν2

2 ν2ν3−2
4

−
ν4

0 ν4ν3−4
4 ν4

2(5ν2
3 − 12ν3 + 7)(ν3r + ν5)

2(ν3−2)
ν3

α2(t + ν1)4

− 3(ν3r + ν5)
−2
ν3

ν2
4(t + ν1)2

, (95)

4πq =
ν2

2 ν2
0(4− 3ν3)ν

2ν3−3
4 (ν3r + ν5)

ν3−3
ν3

α(t + ν1)3 , (96)

8πPr = −5(ν3r + ν5)
−2
ν3

ν2
4(t + ν1)2

− (t + ν1)
2(ν3r + ν5)

−2ν3+2
ν3

ν2
0 ν2

2 ν2ν3−2
4

+
ν4

0 ν4ν3−4
4 ν4

2(ν
2
3 − 1)(ν3r + ν5)

2(ν3−2)
ν3

α2(t + ν1)4 , (97)

8πP⊥ =
ν4

0 ν4ν3−4
4 ν4

2(2ν2
3 − 3ν3 + 1)(ν3r + ν5)

2(ν3−2)
ν3

α2(t + ν1)4

− 2(ν3r + ν5)
−2
ν3

ν2
4(t + ν1)2

, (98)

σ =
3

ν4(t + ν1)(ν3r + ν5)
1

ν3

, (99)

m =
ν3

0 ν3
2 ν3ν3−5

4 (ν3r + ν5)
3ν3−5

ν3

2(t + ν1)5 +
ν0ν2νν3−1

4 (ν3r + ν5)
ν3−1

ν3

2(t + ν1)

−
ν7

0 ν7
2 ν

7(ν3−1)
4 (ν3 − 1)2(ν3r + ν5)

5ν3−7
ν3

2α2(t + ν1)7 , (100)

T =
(ν3r + ν5)

−1
ν3

ν4

T0(t)−
3τ(4− 3ν3)

4πκν4(t + ν1)2(ν3r + ν5)
1

ν3

− (4− 3ν3)

4πκν3(t + ν1)
ln(ν3r + ν5)

]
. (101)

6.4. Geodesic Models

We shall now consider geodesic fluids, for which we have

A(t, r) = 1. (102)
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That aside, from the expansion-free condition, we have

B(t, r) =
α

R2 . (103)

From the above, it follows that the general expressions for the physical variables in
this case read as follows:

8πµ = −3Ṙ2

R2 −
R4

α2

[
2

R′′

R
+ 5
(

R′

R

)2
]
+

1
R2 , (104)

4πq =
RṘ′

α
+

2R′Ṙ
α

, (105)

8πPr = −
2R̈
R
− Ṙ2

R2 +

(
RR′

α

)2

− 1
R2 , (106)

8πP⊥ =
R̈
R
− 4Ṙ2

R2 +
R4

α2

[
R′′

R
+ 2
(

R′

R

)2
]

, (107)

producing

2π(µ + Pr + 2P⊥) = −3
(

Ṙ
R

)2

. (108)

The first model will be obtained from the vanishing complexity factor condition. Thus,
from the condition YTF = 0, we obtain

R̈
R
− 2Ṙ2

R2 = 0 ⇒ R =
1

b1(r)t + b2(r)
≡ 1

b1(r)
[
t + b2(r)

b1(r)

] , (109)

where b1 and b2 are two arbitrary functions of their argument with dimensions [1/r2] and
[1/r], respectively.

By feeding Equation (109) back into Equation (103), we see that by reparameterizing r,
we may choose without loss of generality b1 = 1/α. Thus, our metric variables become

R =
α

[t + αb2(r)]
, B =

[t + αb2(r)]
2

α
. (110)

For this metric, the physical variables, the mass function and the shear read as follows:

8πµ = − 3

(t + αb2)
2 +

2α3b′′2
(t + αb2)

5 −
9α4(b′2)

2

(t + αb2)
6

+
(t + αb2)

2

α2 , (111)

4πq =
4α2b′2

(t + αb2)
4 , (112)

8πPr = −
5

(t + αb2)
2 +

α4(b′2)
2

(t + αb2)
6 −

(t + αb2)
2

α2 , (113)

8πP⊥ = − 2

(t + αb2)
2 +

4α4(b′2)
2

(t + αb2)
6 −

α3b′′2
(t + αb2)

5 , (114)
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m =
α3

2(t + αb2)5 −
α7(b′2)

2

2(t + αb2)9 +
α

2(t + αb2)
, (115)

σ =
3

t + αb2
, (116)

T = T0(t) +
1

πκ(t + αb2)

[
1− 2τ

(t + αb2)

]
. (117)

A second geodesic model will be obtained from the quasi-homologous condition
(Equation (44)) which, as discussed before, implies Equation (45) in the geodesic case,
implying in turn that R is a separable function. For this case, we obtain

R =
g(r)

t
, B =

t2

α
, (118)

where g(r) is an arbitrary function of r. Since R has a dimension of [r] (as t), then the
dimension (units) of g should be [r2].

The physical variables for this model read as follows:

8πµ = − 3
t2 −

α2

t4

[
2g′′

g
+

(
g′

g

)2
]
+

t2

g2 , (119)

4πq = −3αg′

t3g
, (120)

8πPr = −
5
t2 +

α2

t4

(
g′

g

)2

− t2

g2 , (121)

8πP⊥ = − 2
t2 +

α2

t4
g′′

g
, (122)

m =
g
2t

[
g2

t4 −
(

αg′

t3

)2

+ 1

]
, (123)

σ =
3
t

, (124)

T = T0(t) +
3

4πκt

(
1− 3τ

t

)
ln g. (125)

7. Discusion

The main lesson we can extract from this work is that the expansion-free condition
allows for a wide range of models for the evolution of spherically symmetric self-gravitating
systems, including dissipative fluids with anisotropic pressure.

As mentioned in the Introduction, one of the most interesting features of expansion-
free models is the appearance of a vacuum cavity within the fluid distribution. Whether or
not such models may be used to describe the formation of voids observed at cosmological
scales (see [41,42] and the references therein) is still an open question. We skipped over this
issue in a hope of a resolution a posteriori.

Let us now analyze in some detail the obtained solutions.
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The first model satisfies the quasi-homologous and vanishing complexity factor condi-
tions and is described by Equations (69)–(76). By choosing k, δ1, δ2 and δ3 > 0, we ensure
the positivity of the expression within the square root in Equation (69), which implies
that because of Equation (68) that ã > 0, and therefore all fluid elements are moving
outward. In the limit t→ ∞, the areal radii of all fluid elements tend toward infinity, and
the fluid distribution becomes a shell. In addition, with the above choice, we ensure that
R′ > 0, thereby avoiding the appearance of shells crossing singularities. In this same limit,
8πµ = 8πPr = −8πP⊥ = − 9ã2

2 , which means that the inertial mass density (µ + Pr) is
negative. It is worth noticing that the inertial mass density is always negative and not only
in the limit t→ ∞. On the other hand, we see that the expression within the square bracket
in the “gravitational term” in Equation (A9) (the first term on the right of Equation (A9)) is
negative as t → ∞, producing a positive DTU (i.e., such a term acts as a repulsive force).
For sufficiently small values of ã, the other parameters of the solution may be chosen such
that for some finite time interval, the energy density is positive. Since the heat flux is
constant, no contributions from the transient period (terms proportional to τ) appear in the
expression of the temperature. Thus, this solution might be used to model expansion-free
evolution only for a limited time interval.

The second model also satisfies the vanishing complexity factor condition, but instead
of the quasi-homologous evolution, we assumed that the metric functions A and B were
proportional. Its evolution is described by Equations (83)–(90). By choosing for all the
parameters of the solution to be positive (thereby avoiding shells crossing singularities),
then in the limit t → ∞, the areal radii of all fluid elements tend toward infinity, and the
fluid distribution becomes a shell. However, in this case, depending on the specific values of
the parameter β0, the behavior of the model may be very different. Indeed, as follows from
Equations (84)–(87) in the limit t → ∞, the physical variables tend toward zero if β0 > 2
and diverge to infinity if β0 < 2. If β0 = 2, then the model has a static limit described by the
equation of the state 8πµ = 8πPr = − 3

β2
2α2

(
s2

1 +
s2

γ2

)
with a negative energy density and

radial pressure. In this case (β0 = 2), both q and P⊥ are constant at all times, implying that
the transient effects in temperature vanish, as is apparent from Equation (90).

The third solution satisfies the vanishing complexity factor condition, the metric
function A only depends on r, and R is a separable function. The full description of this
model is provided by Equations (92)–(101). They describe a collapsing fluid for which, in
the limit t→ ∞, the energy density and the radial pressure diverge and satisfy the equation
of the state µ = −Pr > 0, whereas the heat flux vector and the tangential pressure vanish.
In this limit, the transient effects vanish too. An appropriate choice of the parameters
allows one to obtain well-behaved physical variables, at least for a finite time interval.

All three solutions described above are non-geodesic. The next two models instead
have a vanishing four-acceleration.

The first one satisfies the vanishing complexity factor condition and is described by
Equations (109)–(117). This model depicts a collapsing fluid for which as t→ ∞, the energy
density and the radial pressure diverge and satisfy the equation of the state µ = −Pr,
whereas the heat flux vector and the tangential pressure vanish, and the temperature tends
toward T0. For sufficiently large (but finite) values of t, the energy density is positive, the
radial pressure is negative, and the fluid evolves almost adiabatically.

Finally, the second geodesic model is described by Equations (118)–(125). In this model,
the vanishing complexity factor condition is replaced by the quasi-homologous condition.
As in the previous model, this one depicts a collapsing fluid for which as t→ ∞, the energy
density and the radial pressure diverge and satisfy the equation of the state µ = −Pr, the
heat flux vector and the tangential pressure vanish, and the temperature tends toward T0.
Additionally, for sufficiently large (but finite) values of t, the energy density is positive, the
radial pressure is negative, and the fluid evolves almost adiabatically.

To summarize, the five models presented here might describe some physical realistic
situations for finite time intervals. We noticed that neither of them satisfy the Darmois
conditions on either boundary surface, implying that these are thin shells.
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We would like to conclude with the following remarks:

• The analytical models presented here have the main advantage of simplicity, which
allows one to use them as test models for describing the evolution of voids. However,
they were obtained under specific restrictions, some of which are of a purely heuristic
nature. In order to get closer to a physically meaningful scenario, one should use
some observational data as input for solving the field equations. At this point, the
best candidate for that purpose appears to be the luminosity profile produced by the
dissipative processes within the fluid. Afterward, it seems unavoidable to resort to a
numerical approach in order to solve the field equations.

• In the first two models, the vanishing complexity factor condition leads to two differen-
tial equations (Equations (61) and (77)) which have been solved analytically, resorting
to the heuristic ansatz in Equations (62) and (78), respectively. Of course, a much more
satisfactory procedure would be to solve those equations using numerical methods.
However, this would be out of the scope of this work.
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Appendix A. Einstein Equations

Einstein’s field equations for the interior spacetime (Equation (1)) are given by

Gαβ = 8πTαβ, (A1)

and its non zero components read as follows:

8πT00 = 8πµA2 =

(
2

Ḃ
B
+

Ṙ
R

)
Ṙ
R
−
(

A
B

)2
[

2
R′′

R
+

(
R′

R

)2

− 2
B′

B
R′

R
−
(

B
R

)2
]

, (A2)

8πT01 = −8πqAB = −2
(

Ṙ′

R
− Ḃ

B
R′

R
− Ṙ

R
A′

A

)
, (A3)

8πT11 = 8πPrB2 = −
(

B
A

)2[
2

R̈
R
−
(

2
Ȧ
A
− Ṙ

R

)
Ṙ
R

]
+

(
2

A′

A
+

R′

R

)
R′

R
−
(

B
R

)2
, (A4)

8πT22 =
8π

sin2 θ
T33 = 8πP⊥R2 = −

(
R
A

)2[ B̈
B
+

R̈
R
− Ȧ

A

(
Ḃ
B
+

Ṙ
R

)
+

Ḃ
B

Ṙ
R

]
+

(
R
B

)2[A′′

A
+

R′′

R
− A′

A
B′

B
+

(
A′

A
− B′

B

)
R′

R

]
. (A5)

The component in Equation (A3) can be rewritten with Equations (8) and (10) as

4πqB =
1
3
(Θ− σ)′ − σ

R′

R
. (A6)
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Appendix B. Dynamical Equations

The non trivial components of the Bianchi identities (Tαβ
;β = 0) from Equation (A1) yield

Tαβ
;β Vα = − 1

A

[
µ̇ + (µ + Pr)

Ḃ
B
+ 2(µ + P⊥)

Ṙ
R

]
− 1

B

[
q′ + 2q

(AR)′

AR

]
= 0, (A7)

Tαβ
;β Kα =

1
A

[
q̇ + 2q

(
Ḃ
B
+

Ṙ
R

)]
+

1
B

[
P′r + (µ + Pr)

A′

A
+ 2(Pr − P⊥)

R′

R

]
= 0, (A8)

This last equation can be cast into the form

(µ + Pr)DTU = − (µ + Pr)
[ m

R2 + 4πPrR
]
− E2

[
DRPr + 2(Pr − P⊥)

1
R

]
− E

[
DTq + 2q

(
2

U
R

+ σ

)]
. (A9)
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