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Abstract: Several topological indices are known to have widespread implications in a variety of
research areas. Over the years, the Kirchhoff index has turned out to be an extremely significant
and efficient index. In this paper, we propose the exact formulas for the expected values of the
random polyomino chain to construct the multiplicative degree-Kirchhoff index and the additive
degree-Kirchhoff index. We also carefully examine the highest degree of the expected values
for a random polyomino chain through the multiplicative degree-Kirchhoff index and additive
degree-Kirchhoff index.

Keywords: topological index; resistance distance; additive degree-Kirchhoff index; random polyomino
chain; multiplicative degree-Kirchhoff index

1. Introduction

Resistance distance is regarded as the distance graph function, which is essential for
random walk of the graph and the spring network. Based on the idea of electrical networks,
Klein and Randić [1] proposed the notion of the Kirchhoff index and resistance distance of
graphs in 1993. Suppose G as a symmetric graph with the vertex set {ῠ1, ῠ2, ῠ3, ..., ῠη}, and
the corresponding electrical networkN is obtained when each edge of the graph is replaced
by a fixed resistance (unit resistance). For a graph G, the resistance distance between any
two vertices is denoted by γ̆(ῠi, ῠj), where ῠi, ῠj ∈ G. However, in electrical networks, the
resistance distance is known as effective resistance between nodes. The effective resistance
can be calculated from Kirchhoff’s circuit laws and Ohm’s laws. The sum of all pairs of
vertices of resistance distances is known as the Kirchhoff index of G, represented as Kf(G),
and written as

Kf(G) = ∑
i<j

γ̆(ῠi, ῠj) =
1
2

η

∑
i=1

η

∑
j=1

γ̆(ῠi, ῠj) =
1
2

η

∑
i=1

γ̆(ῠi|(G), (1)

where

γ̆(ῠi|(G) =
η

∑
j=1

γ̆(ῠi, ῠj). (2)

Chen and Zhang [2] introduced a modern graph invariant in 2007, which is stated as

Kf∗(G) = ∑
1≤i<j≤η

δ̆i δ̆jγ̆(ῠi, ῠj) =
1
2

η

∑
i=1

η

∑
j=1

δ̆i δ̆jγ̆(ῠi, ῠj), (3)
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where δ̆i indicates the vertex’s degree ῠi of the graph G.
Gutman et al. [3] introduced the idea of the additive degree-Kirchhoff index in 2012,

defined as
Kf+(G) = ∑

1≤i<j≤η

(δ̆i + δ̆j)γ̆(ῠi, ῠj). (4)

Many studies have been carried out to compute Kirchhoff indices for specific classes of
graphs, to find bounds for the Kirchhoff indices of graphs, and to find the characteristic
extremal graphs [4–10]. Recently, a study has been made to explore the Kirchhoff index
based on the degree of vertices regarding irregular polygonal chains. These efforts led
to the expected values of the degree-Kirchhoff indices (both additive and multiplicative),
Gutman index, and Schultz index of a random polyphenylene chain being obtained [11].
For extended studies on random polygonal chains, mostly readers referred to the recent
papers [12–15]. The motivation of the purposed study can be elaborated as:

• Some scholars study the calculation methods of degree-Kirchhoff index for some
special classes of graphs such as linear hexagonal chain, hexagonal chain, ladder
diagram, ladder chain, linear polynomial chain, linear hexagon chain, and so on. This
work was still unattended for a random polyomino chain.

• In [2], the authors have established a beautiful relation between the multiplicative
degree-Kirchhoff index and the eigenvalues of the normalized Laplacian matrix.

Inspired by the above literature, this paper is dedicated to establish the exact formulas
for the expected values of the additive and multiplicative degree-Kirchhoff indices via a
random polyomino chain. Moreover, the highest degree of the expected values of these
indices is also characterized.

The graph of polyominoes [16] (also known as chessboards [17] or arrangements that
use square cells [18]) is a symmetrical geometric graph that is attained when two congruent
ordinary squares (have either a common edge or are disjoint) with sides of distance 1
(known as a cell) are arranged in a plane. Polyomino graphs have numerous applications
in structural chemistry and statistical physics. An irregular polyomino chain is known as a
subgraph of a polyomino graph [19]. A polyomino chain Qη having “η” squares, that is to
be considered as a polyomino chainQη−1 having “η− 1” squares adjacent to a indicated in
picture, a new terminal square by a cut edge as shown in Figure 1.

Figure 1. A polyomino chain Qη with η squares.

If Qη = z̆1, z̆2, · · · , z̆η is a polyomino chain having η(≥ 2) squares, z̆κ as the κth
square of Qη connected to z̆κ−1 with a cut edge µ̆κ−1ω̆κ , where µ̆κ−1 ∈ z̆κ−1 and ω̆κ ∈ z̆κ ,
(2 ≤ κ ≤ η). A vertex ῠ is known as ortho-vertex (ŏκ) and para-vertex ( p̆κ) of z̆κ if the
distance between ῠ and ω̆κ is one and two, respectively. It is easy to establish that ω̆η = λ̆1,
ŏη = λ̆2, λ̆4, and p̆η = λ̆3 in z̆η (see Figure 1).

A polyomino chain Qη is known as a polyomino ortho-chain Qo
η and polyomino

para-chain Qp
η if µ̆κ = ŏκ and µ̆κ = p̆κ with 2 ≤ κ ≤ η − 1, respectively.

Two distinct connections to the para- or ortho-vertices are possible for the ending
square η ≥ 2 to provide the local arrangements, written as Q1

η+1Q2
η+1 (see Figure 2).
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Figure 2. The two types of local arrangements in polyomino chains.

A polyomino chain is known as polyomino chainQ(η, t) with η squares if the terminal
squares are added gradually. At each stage κ = (3, 4, · · · , η), a random choice is made from
the following constructions:

1. Qκ−1 → Q1
κ with probability t,

2. Qκ−1 → Q2
κ with probability 1− t,

where probability t is constant, independent of the step parameter κ. Particularly, the
irregular polyomino chainQ(η, 1) is known as the polyomino ortho-chainQo

η . Additionally,
Q(η, 0) is termed as the polyomino para-chain Qp

η .

2. The Expected Value of the Multiplicative Degree-Kirchhoff Index of a Random
Polyomino Chain

The multiplicative degree-Kirchhoff index Kf∗(Qη) for a random polyomino chain
Qη is a random variable. Here, we propose a precise formula for its expected value
E(Kf∗(Qη)).

Let the terminal square is spanned by vertices {λ̆1, λ̆2, λ̆3, λ̆4} and a new edge is
labeled as µ̆η λ̆1 (as shown in Figure 1). For each ῠ ∈ VQη

, we have

γ̆(λ̆1, ῠ) = γ̆(µ̆η , ῠ) + 1, γ̆(λ̆2, ῠ) = γ̆(µ̆η , ῠ) + 1 +
3
4

, (5)

γ̆(λ̆3, ῠ) = γ̆(µ̆η , ῠ) + 1 + 1, γ̆(λ̆4, ῠ) = γ̆(µ̆η , ῠ) + 1 +
3
4

, (6)

∑
ῠ∈VQη

δ̆Qη+1(ῠ) = 10η − 1. (7)

Meanwhile,

4

∑
i=1

δ̆(λ̆i)γ̆(λ̆1, λ̆i) =2× 3
4
+ 2× 1 + 2× 3

4
= 5, (8)

4

∑
i=1

δ̆(λ̆i)γ̆(λ̆2, λ̆i) =3× 3
4
+ 2× 3

4
+ 2× 1 =

23
4

, (9)

4

∑
i=1

δ̆(λ̆i)γ̆(λ̆3, λ̆i) =3× 1 + 2× 3
4
+ 2× 3

4
= 6, (10)

4

∑
i=1

δ̆(λ̆i)γ̆(λ̆4, λ̆i) =3× 3
4
+ 2× 1 + 2× 3

4
=

23
4

. (11)
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Theorem 1. The expected value (for η ≥ 1) is provided as the multiplicative degree-Kirchhoff index
of an arbitrary polyomino chain

E(Kf∗(Qη)) = (
100

3
− 25

6
t)η3 + (

25
2

t− 10)η2 + (−25
3

t− 7
3
)η − 1. (12)

Proof. By Equation (3), it is clear that

Kf∗(Qη+1) = ∑
{µ̆,ῠ}⊆VQη

δ̆(µ̆)δ̆(ῠ)γ̆(µ̆, ῠ) + ∑
ῠ∈VQη

∑
λ̆i∈Vz̆η+1

δ̆(ῠ)δ̆(λ̆i)γ̆(ῠ, λ̆i) + ∑
{λ̆i ,λ̆j}⊆Vz̆η+1

δ̆(λ̆i)δ̆(λ̆j)γ̆(λ̆i, λ̆j). (13)

Note that

∑
{µ̆,ῠ} ⊆VQη

δ̆(µ̆)δ̆(ῠ)γ̆(µ̆, ῠ) = ∑
{µ̆,ῠ} ⊆VQη \{µ̆η}

δ̆(µ̆)δ̆(ῠ)γ̆(µ̆, ῠ)+

∑
ῠ∈VQη \{µ̆η}

δ̆(ῠ)δ̆Qη+1(µ̆η)γ̆(µ̆η , ῠ),

= ∑
{µ̆,ῠ} ⊆VQη \{µ̆η}

δ̆(µ̆)δ̆(ῠ)γ̆(µ̆, ῠ)+

∑
ῠ∈VQη \{µ̆η}

δ̆(ῠ)(δ̆Qη
(µ̆η) + 1)γ̆(µ̆η , ῠ),

= Kf∗(Qη) + ∑
ῠ∈VQη

δ̆(ῠ)γ̆(µ̆η , ῠ).

By Equations (5) and (6), we obtain

∑
ῠ∈VQη

∑
λ̆i∈Vz̆η+1

δ̆(ῠ)δ̆(λ̆i)γ̆(ῠ, λ̆i) = ∑
ῠ∈VQη

δ̆(ῠ)[3(γ̆(µ̆η , ῠ) + 1) + 2(γ̆(µ̆η , ῠ) + 1 +
3
4
)

+ 2(γ̆(µ̆η , ῠ) + 1 + 1) + 2(γ̆(µ̆η , ῠ) + 1 +
3
4
)]

= ∑
ῠ∈VQη

δ̆(ῠ)[9γ̆(µ̆η , ῠ) + 14],

= 9 ∑
ῠ∈VQη

δ̆(ῠ)(γ̆(µ̆η , ῠ)) + 14 ∑
ῠ∈VQη

δ̆(ῠ),

= 9 ∑
ῠ∈VQη

δ̆(ῠ)(γ̆(µ̆η , ῠ)) + 14(10η − 1).

∑
(λ̆i ,λ̆j)⊆Vz̆η+1

δ̆(λ̆i)δ̆(λ̆j)γ̆(λ̆i, λ̆j) =
1
2

4

∑
i=1

4

∑
j=1

δ̆(λ̆i)δ̆(λ̆j)γ̆(λ̆i, λ̆j),

=
1
2

4

∑
i=1

δ̆(λ̆i)
4

∑
j=1

δ̆(λ̆j)γ̆(λ̆i, λ̆j),

=
1
2
(3.5 + 2.

23
4

+ 2.6 + 2.
23
4
),

=25.

Then,
Kf∗(Qη+1) = Kf∗(Qη) + 10 ∑

ῠ∈VQη

δ̆(ῠ)γ̆(µ̆η , ῠ) + 14(10η − 1) + 25. (14)
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For a random polyomino chainQη , a random variable is given as ∑v∈VQη
δ̆(ῠ)γ̆(µ̆η , ῠ).

We writeRη = E(∑ῠ∈VQη
δ̆(ῠ)γ̆(µ̆η , ῠ)) to represent its expected value. Consider these two

significant situations, for instance:

Case 1: Qη → Q1
η+1

Here, µ̆η correlates to the vertex labeled λ̆2 or λ̆4. As a result, ∑ῠ∈VQη
δ̆(ῠ)γ̆(µ̆η , ῠ) is

equivalent to ∑ῠ∈VQη
δ̆(ῠ)γ̆(λ̆2, ῠ).

Case 2: Qη → Q2
η+1

Here, µ̆η correlates to the vertex labeled λ̆3. As a result, ∑ῠ∈VQη
δ̆(ῠ)γ̆(µ̆η , ῠ) is equivalent

to ∑ῠ∈VQη
δ̆(ῠ)γ̆(λ̆3, ῠ).

Since the probabilities for the above mentioned two cases in random polyomino chains are
t and 1− t, respectively, we can determine the expected valueRη as:

Rη =E( ∑
ῠ∈VQη

δ̆(ῠ)γ̆(µ̆η , ῠ)).

=t( ∑
ῠ∈VQη

δ̆(ῠ)γ̆(λ̆2, ῠ)) + (1− t)( ∑
ῠ∈VQη

δ̆(ῠ)γ̆(λ̆3, ῠ)),

=t
{

∑
ῠ∈VQη−1

δ̆(ῠ)[γ̆(µ̆η−1, ῠ) + 1 +
3
4
] + ∑

ῠ∈z̆η

δ̆(ῠ)[γ̆(λ̆2, ῠ)]
}

+ (1− t)
{

∑
ῠ∈VQη−1

δ̆(ῠ)[γ̆(µ̆η−1, ῠ) + 1 + 1] + ∑
ῠ∈z̆η

δ̆(ῠ)[γ̆(λ̆3, ῠ)]
}

,

=t
{

∑
ῠ∈VQη−1

δ̆(ῠ)[γ̆(µ̆η−1, ῠ)] +
7
4 ∑

ῠ∈VQη−1

δ̆(ῠ) +
23
4

}
+ (1− t)

{
∑

ῠ∈VQη−1

δ̆(ῠ)γ̆(µ̆η−1, ῠ) + 2 ∑
ῠ∈VQη−1

δ̆(ῠ) + 6
}

,

=t
{

∑
ῠ∈VQη−1

δ̆(ῠ)γ̆(µ̆η−1, ῠ) +
7
4
(10η − 11) +

23
4

}
+ (1− t)

{
∑

ῠ∈VQη−1

δ̆(ῠ)γ̆(µ̆η−1, ῠ) + 2(10η − 11) + 6
}

,

= ∑
ῠ∈VQη−1

δ̆(ῠ)γ̆(µ̆η−1, ῠ) + (20− 5
2

t)η +
5
2

t− 16.

Now, by applying the properties of mathematical expectation and check that E(Rη) = Rη ,
we obtain

Rη = Rη−1 + (20− 5
2
t)η +

5
2
t− 16. (15)

The boundary condition is

R1 = E( ∑
ῠ∈VQ1

δ̆(ῠ)γ̆(µ̆1, ῠ)) = 5.

Using the recurrence relation in Equation (15), we obtain

Rη = R1 + (20− 5
2
t)[η + (η − 1) + ... + 2] + (η − 1)(

5
2
t− 16),

= (10− 5
4
t)η2 + (

5
4
t− 6)η + 1.



Symmetry 2023, 15, 718 6 of 10

Through the use of the expectation operator and Equation (14), we obtain

E(Kf∗(Qη+1)) = E(Kf∗(Qη)) + 10Rη + 14(10η − 1) + 25,

= E(Kf∗(Qη)) + 10[(10− 5
4
t)η2 + (

5
4
t− 6)η + 1] + 140η + 11, (16)

= E(Kf∗(Qη)) + (100− 25
2
t)η2 + (

25
2
t+ 80)η + 21.

The used condition is

E(Kf∗(Q1)) =
1
2

4

∑
i=1

4

∑
j=1

δ̆(λ̆i)δ̆(λ̆j)γ̆(λ̆i, λ̆j).

=
1
2

4

∑
i=1

δ̆(λ̆i)
4

∑
j=1

δ̆(λ̆j)γ̆(λ̆i, λ̆j),

=
1
2
[2(5 + 5 + 5 + 5)],

=20.

and Equation (16) can be rewritten as

E(Kf∗(Qη)) = E(K f ∗(Qη−1)) + (100− 25
2
t)(η − 1)2 + (

25
2
t+ 80)(η − 1) + 21.

Using the recurrence relation in above equation, we obtain

E(Kf∗(Qη)) = E(Kf∗(Q1)) + (100− 25
2
t)[(η − 1)2 + (η − 2)2 + ... + 12]

+ (
25
2
t+ 80)[(η − 1) + (η − 2) + ... + 1] + 21(η − 1),

= E(K f ∗(Q1)) + (100− 25
2
t)

η(η − 1)(2η − 1)
6

+ (
25
2
t+ 80)

η(η − 1)
2

+ 21(η − 1),

= (
100

3
− 25

6
t)η3 + (

25
2
t− 10)η2 + (−25

3
t− 7

3
)η − 1.

Particularly,

If t = 1, E(Kf∗(Qo
η)) =

175
6 η3 + 5

2 η2 − 32
3 η − 1.

If t = 0, E(Kf∗(Qp
η)) =

100
3 η3 − 10η2 − 7

3 η − 1.

Corollary 1. Let Qη(η ≥ 3) be a random polyomino chain. Then,

E(Kf∗(Qo
η)) ≤ E(Kf∗(Qη)) ≤ E(Kf∗(Qp

η)).

Proof. With reference to Theorem 1, we have

E(Kf∗(Qη)) = (−25
6

η3 +
25
2

η2 − 25
3

η)t+
100

3
η3 − 10η2 − 7

3
η − 1.

Note that η ≥ 3, by a direct calculation, one has

∂E(Kf∗(Qη))

∂t
= −25

6
η3 +

25
2

η2 − 25
3

η = −25
6

η(η2 − 3η + 2) < 0.

If t = 1, the polyomino ortho-chain Qo
η realizes a minimum of E(Kf∗(Qη)).

If t = 0, the polyomino para-chain Qp
η realizes a maximum of E(Kf∗(Qη)).
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3. The Expected Value of the Additive Degree-Kirchhoff Index of a Random
Polyomino Chain

Theorem 2. The expected value of the additive degree-Kirchhoff index of a random polyomino chain
for η ≥ 1 is

E(Kf+(Qη)) = (
80
3
− 10

3
t)η3 + (10t− 36)η2 − (

20
3
t+

23
3
)η.

Proof. As described above, the polyomino chain Qη+1 is obtained by joining Qη to a new
terminal polyomino with a cutting edge, as shown in Figure 2. By using Equation (4),
one has

Kf+(Qη+1) = ∆1 + ∆2 + ∆3. (17)

where;

∆1 = ∑
{µ̆,ῠ}⊆VQη

(δ̆(µ̆) + δ̆(ῠ))γ̆(µ̆, ῠ),

∆2 = ∑
ῠ∈VQη

∑
λ̆i∈Vz̆η+1

(δ̆(ῠ) + δ̆(λ̆i))γ̆(ῠ, λ̆i),

∆3 = ∑
(λ̆i ,λ̆j)⊆Vz̆η+1

(δ̆(λ̆i) + δ̆(λ̆j))γ̆(λ̆i, λ̆j).

Put γ̆(µ̆η |Qη) = ∑ῠ∈VQη
γ̆(µ̆η , ῠ), as discussed in Theorem 1, one has

∆1 = ∑
{µ̆,ῠ}⊆VQη

(δ̆(µ̆) + δ̆(ῠ))γ̆(µ̆, ῠ),

= ∑
{µ̆,ῠ}⊆VQη \µ̆η

(δ̆(µ̆) + δ̆(ῠ))γ̆(µ̆, ῠ) + ∑
ῠ∈VQη \µ̆η

(δ̆(ῠ) + δ̆Qη+1(µ̆η))γ̆(µ̆η , ῠ),

= ∑
{µ̆,ῠ} ⊆VQη \µ̆η

(δ̆(µ̆) + δ̆(ῠ))γ̆(µ̆, ῠ) + ∑
ῠ∈VQη \µ̆η

(δ̆(ῠ) + δ̆Qη
(µ̆η) + 1)γ̆(µ̆η , ῠ),

=Kf+(Qη) + ∑
ῠ∈VQη

γ̆(µ̆η , ῠ),

=Kf+(Qη) + γ̆(µ̆η |Qη).

By Equations (5) and (6), one has

∆2 = ∑
ῠ∈VQη

∑
λ̆i∈Vz̆η+1

(δ̆(ῠ) + δ̆(λ̆i))γ̆(ῠ, λ̆i) = ∑
ῠ∈VQη

∑
λ̆i∈Vz̆η+1

δ̆(ῠ)γ̆(ῠ, λ̆i) + ∑
ῠ∈VQη

∑
λ̆i∈Vz̆η+1

δ̆(λ̆i)γ̆(ῠ, λ̆i),

= ∑
ῠ∈VQη

δ̆(ῠ)[γ̆(µ̆η , ῠ) + 1 + γ̆(µ̆η , ῠ) + 1 +
3
4
+ γ̆(µ̆η , ῠ) + 1 + 1 + γ̆(µ̆η , ῠ) + 1 +

3
4
]+

∑
ῠ∈VQη

{3[γ̆(µ̆η , ῠ) + 1] + 2[γ̆(µ̆η , ῠ) + 1 +
3
4
] + 2[γ̆(µ̆η , ῠ) + 1 + 1] + 2[γ̆(µ̆η , ῠ) + 1 +

3
4
]},

=4 ∑
ῠ∈VQη

δ̆(ῠ)γ̆(µ̆η , ῠ) +
13
2 ∑

ῠ∈VQη

δ̆(ῠ) + 9γ̆(µ̆η |Qη) + 56η,

=4 ∑
ῠ∈VQη

δ̆(ῠ)γ̆(µ̆η , ῠ) +
13
2
(10η − 1) + 9r(µ̆η |Qη) + 56η.

Note that,
4

∑
i=1

(λ̆κ , λ̆i) =
5
2
(where κ = 1, 2, 3, 4).



Symmetry 2023, 15, 718 8 of 10

∆3 = ∑
(λ̆i ,λ̆j)⊆Vz̆η+1

(δ̆(λ̆i) + δ̆(λ̆j))γ̆(λ̆i, λ̆j) =
1
2

4

∑
i=1

4

∑
j=1

(δ̆(λ̆i) + δ̆(λ̆j))γ̆(λ̆i, λ̆j),

=
4

∑
i=1

4

∑
j=1

δ̆(λ̆i)γ̆(λ̆i, λ̆j),

=
4

∑
i=1

δ̆(λ̆i)
4

∑
j=1

γ̆(λ̆i, λ̆j),

=
5
2

4

∑
i=1

δ̆(λ̆i),

=
45
2

.

Then, Equation (17) can be rewritten as

Kf+(Qη+1) = Kf+(Qη) + 4 ∑
ῠ∈VQη

δ̆(ῠ)γ̆(µ̆η , ῠ) + 10γ̆(µ̆η |Qη) + 121η + 16. (18)

For a random polyomino chain Qη , γ̆(µ̆η |Qη) is a random variable with expected value

Dη = E(γ̆(µ̆η |Qη)).

The following two possible cases helped us to proceed our work further.

Case 1: Qη → Q1
η+1

Here, µ̆η coincides with the vertices λ̆2 or λ̆4. Consequently, γ̆(µ̆η |Qη) is given by γ̆(λ̆2|Qη).
Case 2: Qη → Q2

η+1

Here, µ̆η coincides with the vertex λ̆3. Consequently, γ̆(µ̆η |Qη) is given by γ̆(λ̆3|Qη).

Since the aforementioned in irregular polyomino chains with probability, two scenarios
happen, t and 1− t, respectively, we can obtain the following result:

Dη =E(γ̆(µ̆η |Qη)),

=tγ̆(λ̆2|Qη) + (1− t)γ̆(λ̆3|Qη),

=t[γ̆(µ̆η−1|Qη−1) + 4(η − 1)(1 +
3
4
) +

5
2
] + (1− t)[γ̆(µ̆η−1|Qη−1) + 4(η − 1)(1 + 1) +

5
2
],

=γ̆(µ̆η−1|Qη−1) + (8− t)η + t− 11
2

.

By applying the properties of mathematical expectation to the equation mentioned above
and noting that E(Dη) = Dη , we obtain

Dη = Dη−1 + (8− t)η + t− 11
2

. (19)

The boundary condition is

D1 = E(γ̆(µ̆1|Q1)) =
5
2

.

Using the recurrence relation in Equation (19), one has

Dη =D1 + (8− t)[η + (η − 1) + ... + 2] + (η − 1)(t− 11
2
),

=(8− t)
η2

2
+ (

t

2
− 3

2
)η.

By applying the properties of mathematical expectation to Equation (18), we obtain
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E(Kf+(Qη+1)) =E(Kf+(Qη)) + 10Dη + 4Rη + 121η + 16,

=E(Kf+(Qη)) + 10[(8− t)
η2

2
+ (

t

2
− 3

2
)η] + 4[(10− 5

4
t)η2 + (

5
4
t− 6)η + 1] + 121η + 16,

=E(Kf+(Qη)) + (80− 10t)η2 + (10t+ 82)η + 20.

Thus,

E(Kf+(Qη)) = E(Kf+(Qη−1)) + (80− 10t)(η − 1)2 + (10t+ 82)(η − 1) + 20. (20)

The boundary condition is given as

E(Kf+(Q1)) = 20.

Using the recurrence relation in Equation (20) and the boundary condition, we obtain

E(Kf+(Qη)) =E(K f+(Q1)) + (80− 10t)[(η − 1)2 + (η − 2)2 + ... + 12]

+ (10t+ 82)[(η − 1) + (η − 2) + ... + 1] + 20(η − 1),

=20 + (80− 10t)
η(η − 1)(2η − 1)

6
+ (10t+ 82)

η(η − 1)
2

+ 20(η − 1),

=(
80
3
− 10

3
t)η3 + (10t+ 1)η2 − (

20
3
t+

23
3
)η.

In particular,

If t = 1, E(Kf+(Qo
η)) =

70
3 η3 + 11η2 − 43

3 η.
If t = 0, E(Kf+(Qp

η)) =
80
3 η3 + η2 − 23

3 η.

Corollary 2. Let Qη(η ≥ 3) be a random polyomino chain. Then,

E(Kf+(Qo
η)) ≤ E(Kf+(Qη)) ≤ E(Kf+(Qp

η)).

Proof. According to Theorem 2, we have

E(Kf+(Qη)) = (−10
3

η3 + 10η2 − 20
3

η)t+
80
3

η3 + η2 − 23
3

η.

Note that for η ≥ 3, by a direct calculation, we have

∂E(Kf+(Qη))

∂t
= −10

3
η3 + 10η2 − 20

3
η = −10

3
η(η2 − 3η + 2) < 0.

If t = 1, the polyomino ortho-chain Qo
η realizes a minimum of E(Kf+(Qη)).

If t = 0, the polyomino para-chain Qp
η realizes a maximum of E(Kf+(Qη)).

4. Conclusions

In this article, we computed the exact formulae for a highly specific category of a
polyomino graph, known as subgraphs or polyomino chains by using topological indices,
namely the multiplicative degree-Kirchhoff index and the additive degree-Kirchhoff index.
This study also characterizes the highest degree of the expected value for the mentioned
graph. The given strategy allows the computation of the expected value for the Schultz
index and Gutman index, which is extremely viable for a random polyomino chain. These
results are restricted to random polyomino chains. In the future, we hope to create some
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new structures/graphs and then study their topological indices to better understand their
underlying topologies.
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