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Abstract: We introduce the novel concept of (α-ψ)-fuzzy contractive mappings on fuzzy double-
controlled metric spaces and demonstrate some fixed-point results. The theorems presented general-
ize some intriguing findings in the literature. Thus, we prove the fixed-point theorem in the settings
of fuzzy double-controlled metric spaces. Furthermore, we provide several examples and an applica-
tion of our result on the existence of the solution to an integral equation.
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1. Introduction

The fixed-point theory is a fast-growing and exciting field of mathematics with various ap-
plications in diverse areas of mathematics, including nonlinear analysis. It stems from the Banach
contraction principle, which was proved in 1922 in a metric space setting [1]. Numerous expan-
sions of the Banach Theorem appeared, which led to the generalization of the notion of classical
metric spaces, such as the concept of b-metric spaces by Bakhtin [2], expanded b-metric spaces
by Kamran et al. [3], controlled metric-type spaces by Mlaiki et al. [4], which was later developed
into double-controlled metric-type spaces by Abdeljawad et al. [5], and double-controlled quasi
metric-like spaces by Haque et al. [6]. Recently, Azmi [7] produced some fixed-point results
on double-controlled metric-type spaces by utilizing the (α-ψ)-contractive mappings. Lately, a new
geometric generalization of the fixed-point theory appeared as the fixed-circle problem [8–11].

In 1965, Zadeh proposed the fuzzy set theory [12] as a natural extension of the concept
of a set and established the groundwork for fuzzy mathematics, and the interest in the fuzzy
set has grown since then. Combining the probabilistic metric space with the fuzzy set, a new
concept of fuzzy space was introduced in [13], with applications in applied sciences, such
as signal processing and medical imaging, and in a variety of mathematical disciplines, such
as topology, logic, analysis, algebra, artificial intelligence, and fixed-point theory. Many
authors have used fuzzy sets extensively in many branches of mathematics. For instance,
Puri and Ralescu [14] introduced the differentials of fuzzy functions, whereas Buckley and
Feuring [15] established the theory of fuzzy partial differential equations, and Kaleva [16]
pioneered fuzzy differential equations. Fuzzy metric spaces are one of the most studied
topics in fuzzy set theory, introduced by Kramosil and Michalek [17]. Afterward, many
authors extended the fuzzy metric space notion and developed it in various directions.
For example, George and Veeramani [18] modified the notion of fuzzy metric space and
illustrated that every fuzzy metric produces a Hausdorff topology. Nadaban introduced
the concept of fuzzy b-metric space [19], and some fixed-point results in fuzzy b-metric
space were carried out by Kim et al. [20]. Then, Mehmood et al. [21] defined the concept
of extended fuzzy b-metric space and established the contraction principle. Afterward,
Saleem et al. presented the concept of fuzzy double-controlled metric space and illustrated
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the Banach contraction principle [22], while in [23] they examined the notion of extended
b-rectangular and controlled rectangular fuzzy metric-like spaces. The fixed-point results
on fuzzy triple-controlled metric spaces were explored by Furqan et al. [24]. The α-
admissible mappings and the notion of (α-ψ)-contractive mappings on complete metric
spaces with various fixed-point theorems were developed by Samet et al. [25]. Motivated
by Samet’s work, Gopal and Vetro [26] discussed the concept of (α-ψ)-fuzzy contractive
mappings and established some fixed-point results.

Inspired by the work of Gopal and Vetro [26], we introduce the notion of (α-ψ)-fuzzy
contractive mappings on fuzzy double-controlled metric spaces and establish some fixed-
point results.

2. Preliminaries

We recall some notions and definitions which will be needed in the sequel.

Definition 1 ([22]). A binary operation ∗ : [0, 1]2 → [0, 1] is a continuous t-norm if it satisfies
the following conditions:

1. ∗ is commutative and associative.
2. ∗ operation is continuous.
3. ζ ∗ 1 = ζ for all ζ ∈ [0, 1].
4. ζ1 ∗ ξ1 ≤ ζ2 ∗ ξ2, if ζ1 ≤ ζ2 and ξ1 ≤ ξ2, for all ζ1, ζ2, ξ1, ξ2 ∈ [0, 1].

Next, we recall the definition of fuzzy metric space as stated by George and Veeramani [18].

Definition 2. Let X be a nonempty set. A fuzzy metric space is a triple (X ,M, ∗), where ∗
is a continuous t-norm andM is a fuzzy set on X 2 × (0,+∞), satisfying the following, for all
ζ, ξ ∈ X :

(F1) M(ζ, ξ, t) > 0 for all t > 0;
(F2) M(ζ, ξ, t) = 1 for all t > 0, if and only if ζ = ξ;
(F3) M(ζ, ξ, t) =M(ξ, ζ, t), symmetric in ζ and ξ, and for all t > 0;
(F4) M(ζ, ξ, .) : (0,+∞)→ [0, 1] is continuous;
(F5) M(ζ, v, t + s) ≥M(ζ, ξ, t) ∗M(ξ, v, s) for all v ∈ X and for all t, s > 0.

A more general concept of a fuzzy metric space is the fuzzy b-metric space [19].

Definition 3. Let X be a nonempty set, given any real number b ≥ 1, let ∗ be a continuous
t-norm. A fuzzy setM on X 2 × (0,+∞) is called a fuzzy b-metric on X , if for all ζ, ξ, v ∈ X ,
and t, s > 0, the following conditions hold:

(F1) M(ζ, ξ, t) > 0;
(F2) M(ζ, ξ, t) = 1, if and only if ζ = ξ;
(F3) M(ζ, ξ, t) =M(ξ, ζ, t), symmetric in ζ and ξ for all t > 0;
(F4) M(ζ, v, t + s) ≥M(ζ, ξ, t/b) ∗M(ξ, v, s/b);
(F5) M(ζ, ξ, .) : (0,+∞)→ [0, 1] is continuous.
The quadruple (X ,M, ∗, b) is called a fuzzy b-metric space.

Next, we define the notion of fuzzy double-controlled metric space [22].

Definition 4 ([22]). Consider two non-comparable functions β, µ : X 2 → [1,+∞), defined
on a nonempty set X , and let ∗ be a continuous t-norm operation. A fuzzy setMβ,µ on X 2 ×
(0,+∞) is called a fuzzy double-controlled metric on X , if for all ζ, ξ, v ∈ X the following
conditions hold:

(FD1) Mβ,µ(ζ, ξ, t) > 0 for all t > 0;
(FD2) Mβ,µ(ζ, ξ, t) = 1 for all t > 0, if and only if ζ = ξ;
(FD3) Mβ,µ(ζ, ξ, t) =Mβ,µ(ξ, ζ, t), symmetric in ζ and ξ, and for all t > 0;
(FD4) Mβ,µ(ζ, v, t + s) ≥Mβ,µ(ζ, ξ, t

β(ζ,ξ) ) ∗Mβ,µ(ξ, v, s
µ(ξ,v)

), for all s, t > 0;
(FD5) Mβ,µ(ζ, ξ, .) : (0,+∞)→ [0, 1] is continuous.
Then, (X ,Mβ,µ, ∗) is called a fuzzy double-controlled metric space. From now on, the class

of fuzzy double-controlled metric space will be denoted as FDCM.
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Remark 1. The class of fuzzy double-controlled metric space is larger than the class of fuzzy b-
metric spaces, as one can see by taking β(ζ, ξ) = µ(ζ, ξ) = b. Moreover, the class of fuzzy b-metric
spaces is effectively larger than that of fuzzy metric spaces, taking b = 1.

Example 1 ([22]). Let X = [0, 1], and define β, µ : X 2 → [1,+∞) by β(ζ, ξ) = 2(ζ + ξ) and
µ(ζ, ξ) = 2(ζ2 + ξ2 + 1). Let

Mβ,µ(ζ, ξ, t) = exp−
(ζ−ξ)2

t , ζ, ξ ∈ X , t > 0.

Then, (X ,Mβ,µ, ∗) is an FDCM with product t-norm.
Axioms (FD1) to (FD3) and (FD5) are straightforward; we only prove (FD4). Note

Mβ,µ(ζ, ξ,
t

β(ζ, ξ)
) = exp

− (ζ−ξ)2
t

β(ζ,ξ) = exp−
(ζ−ξ)2

t/2(ζ+ξ) .

≤ exp−
(ζ−ξ)2

t ≤ exp−
(ζ−ξ)2

t+s .

Moreover,

Mβ,µ(ξ, v,
s

µ(ξ, v)
) = exp

− (ξ−v)2
s

µ(ξ,v) = exp
− (ξ−v)2

s/2(ξ2+v2+1) .

≤ exp−
(ξ−v)2

s ≤ exp−
(ξ−v)2

t+s .

Observe

Mβ,µ(ζ, v, t + s) = exp−
(ζ−v)2

t+s = exp−
(ζ−ξ+ξ−v)2

t+s .

≥ exp−
(ζ−ξ)2

t exp−
(ξ−v)2

s .

≥ Mβ,µ(ζ, ξ,
t

β(ζ, ξ)
) ∗Mβ,µ(ξ, v,

s
µ(ξ, z)

).

Thus, (X ,Mβ,µ, ∗) is an FDCM, which is not a fuzzy b-metric space, because
β(ζ, ξ) = 2(ζ + ξ) 6= µ(ζ, ξ) = 2(ζ2 + ξ2 + 1) 6= b.

The next example illustrates a fuzzy b-metric space which is not a fuzzy metric space.

Example 2. Let X = [0, 1] and let b = 2. Define

M(ζ, ξ, t) = exp−
(ζ−ξ)2

t , for all ζ, ξ ∈ X , t > 0.

Then, (X ,M, ∗) is a fuzzy b-metric space which is not a fuzzy metric space.
Axioms (F1) to (F3) and (F5) are straightforward; we only prove (F4). Note that

(ζ − ξ)2

t + s
≤ 2

(ζ −v)2

t + s
+ 2

(v− ξ)2

t + s
≤ (ζ −v)2

t
2

+
(v− ξ)2

s
2

.

Hence,

M(ζ, ξ, t + s) = exp−
(ζ−ξ)2

t+s ≥ exp−
(ζ−v)2

t exp−
(v−ξ)2

s .

≥ M(ζ, v,
t
2
) ∗M(v, ξ

s
2
).

This shows that (X ,M, ∗) is a fuzzy b-metric space which is not a fuzzy metric space.
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Next, we define the concept of sequence convergence in FDCM and the notion
of the open ball in this topology.

Definition 5. Let (X ,Mβ,µ, ∗) be an FDCM. Then, the following:
(1) A sequence {ζn} converges to ζ ∈ X , if limn→+∞Mβ,µ(ζn, ζ, t) = 1 for all t > 0.
(2) A sequence {ζn} is called Cauchy, ifMβ,µ(ζn, ζn+m, t) = 1, for each m ∈ N and t > 0.
(3) (X ,Mβ,µ, ∗) is called complete FDCM, if every Cauchy sequence is convergent.
(4) The open ball B(ζ0, r, t) with center ζ0, radius r ∈ (0, 1), and t > 0 is defined as follows:

B(ζ0, r, t) = {ξ ∈ X :Mβ,µ(ζ0, ξ, t) > 1− r}.

Remark 2. The topology in the fuzzy metric space is different from the topology in the metric space
because the definition of the open balls is different in both spaces. For instance, if (Y ,D) is any
metric space, then a circle with center y0 is defined as

Cy0,r = {y ∈ Y : D(y, y0) = r},

while the open ball with center y0 is defined as

By0,r = {y ∈ Y : D(y, y0) < r},

which is different from the way the open ball is defined in Definition 5.

Definition 6 ([22]). Let (X ,Mβ,µ, ∗) be an FDCM. The fuzzy double-controlled metricMβ,µ is
said to be triangular if the following condition holds:

(
1

Mβ,µ(ζ, ξ, t)
− 1) ≤ (

1
Mβ,µ(ζ, v, t)

− 1) + (
1

Mβ,µ(ξ, v, t)
− 1), (1)

for all ζ, ξ, v ∈ X and for all t > 0.

Next, we state a lemma which is useful in proving our results, for details consult [22].

Lemma 1. Let {ζn} be a Cauchy sequence in an FDCM (X ,Mβ,µ, ∗) such that ζn 6= ζm
whenever m, n ∈ N with n 6= m. Then, the sequence {ζn} can converge to at most one limit point.

3. The Main Results

Inspired by Gopal and Vetro [26], who introduced the concept of (α-ψ)-fuzzy con-
tractive mapping on fuzzy metric spaces, we introduce two concepts: α-admissible map-
pings and (α-ψ)-fuzzy contractive mappings on fuzzy double-controlled metric space
(X ,Mβ,µ, ∗) as follows:

Definition 7. Let (X ,Mβ,µ, ∗) be an FDCM. We say T : X −→ X is α-admissible if there
exists α : X 2 × (0,+∞)→ [0,+∞), such that for all t > 0,

ζ, ξ ∈ X , α(ζ, ξ, t) ≥ 1 =⇒ α(Tζ, Tξ, t) ≥ 1. (2)

Let Ψ denote the family of all right continuous functions ψ : [0,+∞)→ [0,+∞) with
ψ(r) < r for all r > 0.

Remark 3. Note that for any ψ ∈ Ψ, then limn→+∞ ψn(r) = 0, for all r > 0, where ψn is the n-th
iterate of ψ.
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Definition 8. Let (X ,Mβ,µ, ∗) be an FDCM, and we say T : X −→ X is an (α-ψ)-fuzzy
contractive mapping if there exists two functions α : X 2 × (0,+∞) → [0,+∞) and ψ ∈ Ψ
such that

α(ζ, ξ, t)(
1

Mβ,µ(Tζ, Tξ, t)
− 1) ≤ ψ(

1
Mβ,µ(ζ, ξ, t)

− 1), (3)

for all ζ, ξ ∈ X and for all t > 0.
We now state and prove our first main finding.

Theorem 1. Let (X ,Mβ,µ, ∗) be a complete FDCM, where β, µ : X 2 → [1, 1/τ) are two non-
comparable functions (for some τ ∈ (0, 1)). Let T : X → X be an (α-ψ)-fuzzy contractive mapping,
for some ψ ∈ Ψ, satisfying the following conditions:

(1) T is α-admissible;
(2) There exists ζ0 ∈ X such that α(ζ0, Tζ0, t) ≥ 1 for all t > 0;
(3) T is continuous;
(4) For any ζ ∈ X , both

lim
n→+∞

β(ζn, ζ), and lim
n→+∞

µ(ζ, ζn) exist and are finite, (4)

where the sequence {ζn} is defined as ζn = Tnζ0, for some ζ0 ∈ X .

Then, T admits a fixed point, i.e., there exists some ζ∗ ∈ X such that T(ζ∗) = ζ∗.

Proof. Let ζ0 ∈ X so that α(ζ0, Tζ0, t) ≥ 1 for all t > 0, and we have a sequence {ζn} in X
with Tnζ0 = ζn, for all n ∈ N.

Note that if ζm = ζm+1 for some m ∈ N, then this implies that Tmζ0 is a fixed point
of the mapping T. Thus, without loss of generality, we may assume that ζn 6= ζn+1 for all n ∈ N.

From the hypotheses we have that α(ζ0, ζ1, t) = α(ζ0, Tζ0, t) ≥ 1, as T is α-admissible,
this implies that α(Tζ0, Tζ1, t) = α(ζ1, ζ2, t) ≥ 1. By induction, we can easily deduce

α(ζn, ζn+1, t) ≥ 1, for all n ∈ N, and for all t > 0. (5)

Thus, utilizing equation (5), and equation (3), we obtain

(
1

Mβ,µ(ζn, ζn+1, t)
− 1) = (

1
Mβ,µ(Tζn−1, Tζn, t)

− 1).

≤ α(ζn−1, ζn, t)(
1

Mβ,µ(Tζn−1, Tζn, t)
− 1).

≤ ψ(
1

Mβ,µ(ζn−1, ζn, t)
− 1), repeating the process.

≤ ψ(ψ(
1

Mβ,µ(ζn−2, ζn−1, t)
− 1)) = ψ2(

1
Mβ,µ(ζn−2, ζn−1, t)

− 1).

≤ · · · ≤ ψn(
1

Mβ,µ(ζ0, ζ1, t)
− 1). (6)

Considering the limit as n goes to infinity in equation (6) and using the fact that

limn→+∞ ψn(r) = 0 with r =
1

Mβ,µ(ζ0, ζ1, t)
− 1, we obtain

lim
n→+∞

Mβ,µ(ζn−1, ζn, t) = 1 for all t > 0. (7)

For any n, m ∈ N, with n < m, then
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Mβ,µ(ζn, ζm, t) ≥Mβ,µ(ζn, ζn+1,
t
2

β(ζn, ζn+1)
) ∗Mβ,µ(ζn+1, ζm,

t
2

µ(ζn+1, ζm)
).

≥Mβ,µ(ζn, ζn+1,
t
2

β(ζn, ζn+1)
) ∗Mβ,µ(ζn+1, ζn+2,

t
22

β(ζn+1, ζn+2)µ(ζn+1, ζm)
)

∗Mβ,µ(ζn+2, ζm,
t

22

µ(ζn+1, ζm)µ(ζn+2, ζm)
).

≥Mβ,µ(ζn, ζn+1,
t
2

β(ζn, ζn+1)
) ∗Mβ,µ(ζn+1, ζn+2,

t
22

β(ζn+1, ζn+2)µ(ζn+1, ζm)
)

∗Mβ,µ(ζn+2, ζn+3,
t

23

β(ζn+2, ζn+3)µ(ζn+1, ζm)
)

∗Mβ,µ(ζn+3, ζm,
t

23

µ(ζn+1, ζm)µ(ζn+2, ζm)µ(ζn+3, ζm)
).

Mβ,µ(ζn, ζm, t) ≥Mβ,µ(ζn, ζn+1,
t

2β(ζn, ζn+1)
) ∗Mβ,µ(ζn+1, ζn+2,

t
22β(ζn+1, ζn+2)µ(ζn+1, ζm)

)

∗Mβ,µ(ζn+2, ζn+3,
t

23β(ζn+2, ζn+3)µ(ζn+1, ζm)
)

...

∗Mβ,µ(ζm−2, ζm−1,
t

2m−1β(ζm−2, ζm−1)µ(ζm−2, ζm)µ(ζm−3, ζm) · · · µ(ζn+1, ζm)
)

∗Mβ,µ(ζm−1, ζm,
t

2mµ(ζm−1, ζm)µ(ζm−2, ζm)µ(ζm−3, ζm) · · · µ(ζn+1, ζm)
).

Taking the limit as n→ +∞ in the above inequality and using equation (7) and equation (4),
we obtain

lim
n→+∞

Mβ,µ(ζn, ζm, t) = 1 ∗ 1 ∗ 1 ∗ · · · ∗ 1 = 1. (8)

This implies that the sequence {ζn} is a Cauchy sequence in X , as X is a complete
FDCM, so there exists some ζ∗ ∈ X such that ζn → ζ∗, i.e.,

lim
n→+∞

Mβ,µ(ζn, ζ∗, t) = 1. (9)

The continuity of T implies that T(ζn)→ T(ζ∗), i.e., limn→+∞Mβ,µ(T(ζn), T(ζ∗), t) = 1,
for all t > 0. Thus, we have

lim
n→+∞

Mβ,µ(ζn+1, T(ζ∗), t) = lim
n→+∞

Mβ,µ(T(ζn), T(ζ∗), t) = 1, for all t > 0. (10)

This yields ζn → T(ζ∗), and by Lemma 1 we obtain T(ζ∗) = ζ∗, so ζ∗ is a fixed point
of T.

As a special case, if we let β(ζ, ξ) = µ(ζ, ξ) = b, then Theorem 1 provides a proof
for the case of complete fuzzy b-metric space as shown in the next corollary.

Corollary 1. Let (X ,M, ∗) be a complete fuzzy b-metric space, let T : X → X be an (α-ψ)-fuzzy
contractive mapping, for some ψ ∈ Ψ, satisfying the following conditions:

(1) T is α-admissible;
(2) There exists ζ0 ∈ X such that α(ζ0, Tζ0, t) ≥ 1 for all t > 0;
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(3) T is continuous.

Then, T has a fixed point, i.e., there exists some ζ∗ ∈ X such that T(ζ∗) = ζ∗.

Proof. By taking β(ζ, ξ) = µ(ζ, ξ) = b in Theorem 1 and repeating the same steps of the proof.
Thus, T has a fixed point because it meets all the requirements of Theorem 1.

It should be observed that Theorem 1 is an extension of Theorem 3.5 in [26], because
taking β(ζ, ξ) = µ(ζ, ξ) = 1, the fuzzy double-controlled metric space becomes fuzzy
metric space. In addition, Corollary 2 provides an alternative proof for Theorem 3.5 in [26].

Corollary 2. Let (X ,M, ∗) be a complete fuzzy metric space, let T : X → X be an (α-ψ)-fuzzy
contractive mapping, for some ψ ∈ Ψ, satisfying the following conditions:

(1) T is α-admissible;
(2) There exists ζ0 ∈ X so that α(ζ0, Tζ0, t) ≥ 1 ∀t > 0;
(3) T is continuous.

Then, T admits a fixed point, i.e., some ζ∗ ∈ X can be found so that T(ζ∗) = ζ∗.

Proof. By taking β(ζ, ξ) = µ(ζ, ξ) = 1 in Theorem 1 and repeating the proof. Thus, T has
a fixed point, because it fulfills every requirement of Theorem 1.

The following is a supporting example for the main Theorem 1.

Example 3. Let X = [0, 1], and the control functions β, µ : X 2 → [1,+∞) are defined
as β(ζ, ξ) = ζ + ξ + 1 and µ(ζ, ξ) = ζ2 + ξ2 + 1. Define the fuzzy setMβ,µ by

Mβ,µ(ζ, ξ, t) = exp
−|ζ−ξ|

t . (11)

Then, one can easily show that (X ,Mβ,µ, ∗) is a complete fuzzy double-controlled metric
space, and we will verify condition (FD4) only. Note that

M(ζ, ξ,
t

β(ζ, ξ)
) = exp

−|ζ−ξ|
t

β(ζ,ξ) = exp
−β(ζ,ξ)|ζ−ξ|

t ≤ exp
−|ζ−ξ|

t ≤ exp
−|ζ−ξ|

t+s , s > 0.

Similarly,

M(ξ, v,
s

µ(ξ, v)
) = exp

−|ξ−v|
s

µ(ξ,v) = exp
−µ(ξ,v)|ξ−v|

s ≤ exp
−|ξ−v|

s ≤ exp
−|ξ−v|

t+s , t > 0.

Hence, for t, s > 0,

M(ζ, ξ,
t

β(ζ, ξ)
) ∗M(ξ, v,

s
µ(ξ, v)

) ≤ exp
−|ζ−ξ|

t+s .exp
−|ξ−v|

t+s ≤ exp
−|ζ−v|

t+s = M(ζ, v, t + s).

Let T : X −→ X , α : X × X × (0,+∞) → [0,+∞), and ψ : [0,+∞) → [0,+∞) be
defined as T(ζ) = 1− ζ

4 , ψ(r) = r/2 and

α(ζ, ξ, t) =

{
1 if ζ, ξ ∈ (0, 1],
0 otherwise,

It is easy to see that T is α-admissible and continuous, because for ζ, ξ ∈ X , with α(ζ, ξ, t) ≥ 1,
then α(Tζ, Tξ, t) = α(1− ζ

4 , 1− ξ
4 , t) ≥ 1.
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To illustrate that T is (α-ψ)-fuzzy contractive mapping, we have to show (Equation (3)) holds:

α(ζ, ξ, t)(
1

Mβ,µ(Tζ, Tξ, t)
− 1) ≤ (

1
Mβ,µ(Tζ, Tξ, t)

− 1).

= (
1

exp
−|Tζ−Ty|

t

− 1) = (
1

exp
−|ζ−ξ|

4t

− 1).

≤ exp
|ζ−ξ|

t − 1
2

= ψ(
1

Mβ,µ(ζ, ξ, t)
− 1).

Thus, T satisfies the hypothesis of Theorem 1; hence, there exists a fixed point ζ∗ = 4/5, such
that T(4/5) = 4/5.

In the next theorem, we replace the continuity hypotheses of T in Theorem 1 with
another regularity hypothesis.

Theorem 2. Let (X ,Mβ,µ, ∗) be a triangular complete FDCM, where β, µ : X 2 → [1, 1/τ)
are two non-comparable functions (τ ∈ (0, 1)). Let T : X → X be an (α-ψ)-fuzzy contractive
mapping, for some ψ ∈ Ψ, satisfying the following conditions:

(1) T is α-admissible;
(2) There exists ζ0 ∈ X such that α(ζ0, Tζ0, t) ≥ 1 for all t > 0;
(3) If {ζn} is a sequence in X such that α(ζn, ζn+1, t) ≥ 1 for all n ∈ N and ζn → ζ as n →

+∞, then α(ζn, ζ, t) ≥ 1 for all n ∈ N.
(4) For any ζ ∈ X , both

lim
n→+∞

β(ζn, ζ), and lim
n→+∞

µ(ζ, ζn) exist and are finite, (12)

where the sequence {ζn} is defined as ζn = Tnζ0, for some ζ0 ∈ X .

Then, T has a fixed point, i.e., there exists some ζ∗ ∈ X such that T(ζ∗) = ζ∗.

Proof. Following the proof of Theorem 1, we get that {ζn} is a Cauchy sequence in a com-
plete FDCM (X ,Mβ,µ, ∗). This implies there exists some ζ∗ ∈ X such that ζn → ζ∗

as n→ +∞. Thus, by hypothesis (3), we obtain

α(ζn, ζ∗, t) ≥ 1 for all n ∈ N and for all t > 0. (13)

Using the fact thatMβ,µ is triangular and by Equation (12) and Equation (3) we have

(
1

Mβ,µ(Tζ∗, ζ∗, t)
− 1) ≤ (

1
Mβ,µ(Tζ∗, Tζn, t)

− 1) + (
1

Mβ,µ(ζn+1, ζ∗, t)
− 1).

≤ α(ζn, ζ∗, t)(
1

Mβ,µ(Tζn, Tζ∗, t)
− 1) + (

1
Mβ,µ(ζn+1, ζ∗, t)

− 1).

≤ ψ(
1

Mβ,µ(ζn, ζ∗, t)
− 1) + (

1
Mβ,µ(ζn+1, ζ∗, t)

− 1), because ψ(r) < r.

< (
1

Mβ,µ(ζn, ζ∗, t)
− 1) + (

1
Mβ,µ(ζn+1, ζ∗, t)

− 1). (14)

Letting n→ +∞ in (Equation (14)), we obtain

lim
n→+∞

Mβ,µ(Tζ∗, ζ∗, t) = 1 for all t > 0, (15)

that is, T(ζ∗) = ζ∗, so T has a fixed point.

Next, we present an example for Theorem 2.
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Example 4. Consider X = [0,+∞) and let the control functions β, µ : X 2 → [1,+∞) be
defined as

β(ζ, ξ) =

{
max{ζ, ξ}+ 1 if ζ, ξ ∈ [0, 1],
1 otherwise,

and

µ(ζ, ξ) =

{
max{ζ, ξ}+ 2 if ζ, ξ ∈ [1, 2],
1 otherwise.

The fuzzy setMβ,µ is defined by

Mβ,µ(ζ, ξ, t) =
t

t + |ζ − ξ| . (16)

Then, one can easily show that (X ,Mβ,µ, ∗) is a complete fuzzy double-controlled metric
space which is triangular, and we will verify condition (FD4) only. Note that

Mβ,µ(ζ, ξ,
t

β(ζ, ξ)
) =

t
t + β(ζ, ξ)|ζ − ξ| ≤

t
t + |ζ − ξ| ≤

t + s
t + s + |ζ − ξ| .

Similarly,

Mβ,µ(ξ, v,
s

µ(ξ, v)
) =

s
s + µ(ξ, v)|ξ −v| ≤

s
s + |ξ −v| ≤

t + s
t + s + |ξ −v| .

Thus,

Mβ,µ(ζ, ξ,
t

β(ζ, ξ)
) ∗Mβ,µ(ξ, v,

s
µ(ξ, v)

) ≤ (
t + s

t + s + |ζ − ξ| )(
t + s

t + s + |ξ −v| ).

≤ t + s
t + s + |ζ −v| = M(ζ, v, t + s). (17)

Note that Equation (17) follows from the below inequality:

(
1

1 + |ζ − ξ| )(
1

1 + |ξ −v| ) =
1

1 + |ζ − ξ|+ |ξ −v|+ |ζ − ξ||ξ −v| .

≤ 1
1 + |ζ − ξ|+ |ξ −v| ≤

1
1 + |ζ −v| , then replace 1 by s + t

Let T : X −→ X and α : X 2 × (0,+∞)→ [0,+∞), be defined as

T(ζ) =

{
ζ2

4 if ζ ∈ [0, 1],
2 otherwise,

and

α(ζ, ξ, t) =

{
1 if ζ, ξ ∈ [0, 1], t > 0
0 otherwise.

Let ψ(r) = r/2 for r ≥ 0. To show T is α-admissible, for any ζ, ξ ∈ X , if α(ζ, ξ, t) ≥ 1, then
ζ, ξ ∈ [0, 1]; hence, both T(ζ), T(ξ) ∈ [0, 1] which implies that α(Tζ, Tξ, t) ≥ 1, for all t > 0.
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To show that T is (α-ψ)-fuzzy contractive mapping, we need to show Equation (3) holds. For
ζ, ξ > 1, the case is trivial; thus, we consider the case ζ, ξ ∈ [0, 1].

α(ζ, ξ, t)(
1

Mβ,µ(Tζ, Tξ, t)
− 1) ≤ (

1
Mβ,µ(Tζ, Tξ, t)

− 1).

= (
1

Mβ,µ(
ζ2

4 , ξ2

4 , t)
− 1) =

1
4t
|ζ2 − ξ2|.

≤ 1
2
(
|ζ − ξ|

t
) = ψ(

1
Mβ,µ(ζ, v, t)

− 1).

If {ζn} is any sequence in X such that α(ζn, ζn+1, t) ≥ 1 for all n ∈ N, and ζn → ζ
as n → +∞, then {ζn} ⊂ [0, 1]. Hence, we have ζ ∈ [0, 1] which implies that α(ζn, ζ, t) ≥ 1
for all n ∈ N. Therefore, all the hypotheses of theorem 2 are satisfied; consequently, T has fixed
points, which are ζ = 0 and ζ = 2.

4. Application

Let X = C([0, I],R) be the space of all continuous real-valued functions defined on the in-
terval [0, I], for some I > 0. Define the control functions β, µ : X 2 → [1,+∞) by β(ζ, ξ) =
ζ + ξ + 1 and µ(ζ, ξ) = ζ2 + ξ2 + 1. The fuzzy metricMβ,µ is defined on X by

Mβ,µ(ζ, ξ, t) = e−sups∈[0,I]
|ζ(s)−ξ(s)|

t , where ζ, ξ ∈ X , t > 0. (18)

Then, (X ,Mβ,µ, ∗) is a complete fuzzy double-controlled metric space.

Theorem 3. Consider (X ,Mβ,µ, ∗) a complete FDCM, as defined above. Let T : X −→ X be
an integral operator defined by

Tζ(s) = p(s) +
∫ s

0
K(s, x, ζ(x))dx, (19)

where p ∈ X , and K(s, x, ζ(x)) : [0, I]2 −→ R is a continuous function. If there exists a function
g : [0, I]× [0, I] → [0,+∞) such that for all s, x ∈ [0, I], we have g ∈ L1([0, I],R) satisfying
the following:

• |K(s, x, ζ(x))−K(s, x, ξ(x))| ≤ g(s, x)|ζ(x)− ξ(x)|;

• The integral
∫ s

0 g(s, x)dx is bounded, i.e., there exists some k ∈ (0, 1) such that
0 < sups∈[0,I]

∫ s
0 g(s, x)dx ≤ k < 1. Furthermore, this holds

e−supx∈[0,I]
k|ζ(x)−ξ(x)|

t ≥ 2 e−supx∈[0,I]
|ζ(x)−ξ(x)|

t .

Then, the integral Equation (19) has a solution.

Proof. First, we define α : X 2 × (0,+∞)→ [0,+∞) by

α(ζ, ξ, t) =


1/2 if ζ = ξ.
1/4 if ζ = 0, or ξ = 0.
1 otherwise ,

(20)

and let ψ(r) = r/2. For ζ, ξ ∈ X , consider the fuzzy metric:
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Mβ,µ(Tζ, Tξ, t) = e−sups∈[0,I]
|Tζ(s)−Tξ(s)|

t .

≥ e−sups∈[0,I]

∫ s
0 |K(s,x,ζ(x))−K(s,x,ξ(x))|dx

t .

≥ e−sups∈[0,I]

∫ s
0 g(s,x)|ζ(x)−ξ(x)|dx

t .

≥ e−supx∈[0,I]
|ζ(x)−ξ(x)|sups

∫ s
0 g(s,x)dx

t .

≥ e−supx∈[0,I]
k|ζ(x)−ξ(x)|

t .

≥ 2e−supx∈[0,I]
|ζ(x)−ξ(x)|

t = 2(Mβ,µ(ζ, ξ, t)). (21)

Hence, to show T is (α-ψ) fuzzy contractive mapping, we need to show (Equation (3))
holds.
For any ζ, ξ ∈ X , then by (20) and (21) we have

α(ζ, ξ, t)(
1

Mβ,µ(Tζ, Tξ, t)
− 1) ≤ 1

Mβ,µ(Tζ, Tξ, t)
− 1.

≤ 1
2Mβ,µ(ζ, ξ, t)

− 1 ≤ 1
2
(

1
Mβ,µ(ζ, ξ, t)

− 1).

= ψ(
1

Mβ,µ(ζ, ξ, t)
− 1).

We conclude that the operator T has a fixed point ζ∗ ∈ C([0, 1],R) which is a solution
of the integral Equation (19), because all the conditions of Theorem 1 are met.

5. Conclusions

The concept of fuzzy double-controlled metric spaces was the topic of this article.
On such spaces, we proposed the notion of (α-ψ)-fuzzy contractive mappings and es-
tablished some fixed-point results. Moreover, we provided applications of our finding
on the existence of a solution for an integral equation as well as some examples. Recently,
some researchers interested in the geometric generalization of the fixed-point theory have
studied the fixed-circle problem on metric spaces [8] and on s-metric spaces [9] by utilizing
various contractive mappings. For instance, in [10], a new fixed-circle theorem for self-
mappings on an s-metric space was presented using Wardowski-type contractions, and
more recently, Mlaiki et al. [29] investigated conditions to make any circle as a common
fixed circle for two or more self-mappings. We propose some suggestions for future re-
search directions, such as using fuzzy double-controlled metric spaces and (α-ψ)-fuzzy
contractive mappings to examine the fixed-circle problem.
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