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Abstract: Inspired by the reality that the collection of fixed/common fixed points can embrace any
symmetrical geometric shape comparable to a disc, a circle, an elliptic disc, an ellipse, or a hyperbola,
we investigate the subsistence of a fixed point and a common fixed point and study their geometry in
a partial metric space by introducing some novel contractions and notions of a fixed ellipse-like curve
and a common fixed ellipse-like curve which is symmetrical in shape but entirely different than that
of an ellipse in a Euclidean space. We look at new hypotheses essential for the collection of nonunique
fixed/common fixed points of some mathematical operators to incorporate an ellipse-like curve
keeping in view the symmetry in fixed/common fixed points approaches. Appropriate nontrivial
examples verify established conclusions. We conclude our work by applying our results to construct
the mathematical model and solve the Production–Consumption Equilibrium problem of economics.

Keywords: cost-effectiveness; n-ellipse-like curve; 2-ellipse-like curve; mathematical operators;
nonlinear systems; mathematical model; production–consumption equilibrium; partial metric space;
symmetrical

1. Introduction

A partial metric space is an endeavor to extend the metric space by substituting the
zero self distance d($1, $1) = 0 by the condition ρ($1, $1) ≤ ρ($1, $2). Nonzero self-distance
appears to be reasonable in the case of finite sequences. In fact, partial metrics are more
accommodating than the metrics because these induce partial orders and have more general
topological properties as the self-distance of each of its points is not essentially zero. The
inspiration at the back of the introduction of partial metric space was to improve and
enhance the theorem of Banach [1], which could be applied to both the partially computed
and totally computed sequences. S.G. Matthews [2], encouraged by an understanding of
computer science, initiated it and revealed that Banach’s conclusion could be epitomized
by the partial metric conditions so that it can be applied in program verification. The
uniqueness of the fixed points is applicable to relate denotational and operational semantic
models. For this, the nonlinear systems or mathematical models are studied in a partial
metric space by taking a contractive function and are demonstrated as the fixed points of
the introduced function. Two models are concluded to be equivalent by the uniqueness
of the fixed point. These are extremely beneficial in computer science, especially in the
investigation of semantics and domains, and were introduced to study computer programs.

The presence of the fixed/common fixed point of a self map performs a key function
in the theory of fixed points and has a lot of applications to numerous applications in day-
to-day life (see [3–5], and so on). However, suppose a self map has nonunique fixed points.
In that case, looking at the symmetrical geometrical figures embraced by the collection of
fixed points or common fixed points is extremely appealing and natural. The exploration
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of novel contractions, which assures that a given closed figure is a fixed figure, may be
considered as an imminent nonlinear problem having importance in the application as well
as the theory of real-life problems through nonlinear systems. Numerous examples exist in
the literature wherein the collection of fixed points incorporates a particular symmetrical
geometric figure. In other words, a self map fixes a particular symmetrical geometrical
figure. Nevertheless, it may not be true at all times. There may exist a self map that maps a
particular symmetrical geometric diagram to itself but may not fix all of the points of that
diagram. If interested in the symmetrical geometry of fixed points, we may refer [4–15] and
so on.

In the present work, we examine novel hypotheses to find the symmetrical geometry
of the fixed points by introducing some novel contractions and establishing the presence of
fixed and common fixed points in complete partial metric spaces wherein the self distance is
not necessarily zero. Furthermore, we announce a concept of a fixed n-ellipse-like curve and
a common fixed n-ellipse-like curve, which are symmetrical in shape but entirely different
than that of the ellipse in a Euclidean space. Next, we verify the established conclusions
by nontrivial illustrative examples. These fixed n-ellipse-like curve conclusions encourage
more applications and explorations in partial metric spaces. Furthermore, we utilize
our conclusions to model and solve an initial value problem appearing in Production–
Consumption Equilibrium. It is well-known that the consumption and production of
material goods are related to each other, and not one or the other exists without the other.
Consumption is the method of utilizing goods or services by deriving utility from them
and subsequently fulfilling our needs through production which is an action embraced,
where raw materials are converted into a finished good with the utilization of components
of production such as land, labor and so on.

2. Preliminaries

We start with the discussion of partial metrics and the convergence which we will
utilize in the subsequent sections.

Definition 1 ([2]). A function ρ : U × U → R+ is a partial metric if
(ρ1) ρ($1, $1) = ρ($2, $2) = ρ($1, $2) iff $1 = $2;
(ρ2) ρ($1, $1) ≤ ρ($1, $2);
(ρ3) ρ($1, $2) = ρ($2, $1);
(ρ4) ρ($1, $2) ≤ ρ($1, $3) + ρ($3, $2)− ρ($3, $3), $1, $2, $3 ∈ U .

A partial metric is a striving to generalize the metric by removing the hypothesis
d($1, $1) = 0 and adding the hypothesis d($1, $1) ≤ d($1, $2).

Example 1 ([2]). A function ρ : U × U → R+ is a partial metric if

(i) U = R+ and ρ($1, $2) = max{$1, $2}, $1, $2 ∈ U .
(ii) U = {[$1, $2] : $1, $2 ∈ R, $1 ≤ $2} and ρ([$1, $2], [$3, $4]) = max{$2, $4} −max{$1,

$3}.

Definition 2 ([2]). Consider a sequence {$n} in a partial metric space (U , ρ). Then,

1. {$n} ⊆ U is Cauchy if limn,m→∞ ρ($n, $m) exists and is finite;
2. {$n} ⊆ U converges to a point u iff limn→∞ ρ($n, $1) = ρ($1, $1);
3. (U , ρ) is complete if each Cauchy sequence {$n} converges to $1 ∈ U , that is, limn→∞ ρ($n,

$1) = limn,m→∞ ρ($n, $m) = ρ($1, $1).

3. Main Results

We explore here the fixed point/common fixed point for some novel contractions and
examine their symmetrical geometry by introducing notions of a fixed n-ellipse-like curve
and a common fixed n-ellipse-like curve and framing novel hypotheses in a partial metric
space, wherein a point’s distance from itself is not necessarily zero.
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We symbolize partial metric by ρ and partial metric space by (U , ρ).

Definition 3. If κk are n collinear points in U and a ∈ [0, ∞) such that σn
k=1ρ(κk, κk) + σn

k 6=j=1
ρ(κk, κj) < a, then n-ellipse-like curve Eρ(κ1, κ2, . . . , κn; a), which has foci at κk in (U , ρ), is
a collection of points satisfying σn

k=1ρ($1, κk) = a, $1 ∈ U and k = 1, 2, . . . , n, that is, an
n-ellipse-like curve is the locus of points, and the sum of whose distances to these n foci κk is a
constant a.

The midpoint C of the line joining n−foci is known as the center of the n-ellipse-like
curve. The line that passes through n−foci is the principal axis and a line perpendicular to
the principal axis passing through the center is the orthogonal principal axis.

Definition 4. If κ1 and κ2 are any two points in U and a ∈ [0, ∞) such that ρ(κ1, κ1)+ ρ(κ2, κ2)+
ρ(κ1, κ2) < a, then a 2-ellipse-like curve Eρ(κ1, κ2; a), which has foci at κ1 and κ2 in (U , ρ), is a
collection of points satisfying ρ($1, κ1) + ρ($1, κ2) = a, $1 ∈ U , that is, a 2-ellipse is the locus of
points, the sum of whose distances to the foci κ1 and κ2 is constant a.

Definition 5. Let Eρ(κ1, κ2, . . . , κn; a) be an n-ellipse-like curve having foci at κi, i = 1, 2, . . . , n,
in (U ,ρ). Then, Eρ(κ1, κ2, . . . , κn; a) is a fixed n-ellipse-like curve of M : U → U if M$1 =
$1, $1 ∈ Eρ(κ1, κ2, . . . , κn; a), a ∈ [0, ∞).

In particular, Eρ(κ1, κ2; a) is a fixed 2-ellipse-like curve of M : U → U if M$1 =
$1, $1 ∈ Eρ(κ1, κ2; a), a ∈ [0, ∞).

Example 2. Let U = R+ be equipped with ρ : U × U → R+, which is described as ρ($1, $2) =
max{$1, $2}, $1, $2 ∈ U ; then, a 2-ellipse-like curve

Eρ(3, 4; 13) = {$1 ∈ U : ρ(3, $1) + ρ(4, $1) = 13}
= {$1 ∈ U : max{3, $1}+ max{4, $1} = 13}
= {6.5},

that is, a 2-ellipse-like curve centered at 3.5 having foci at 3 and 4, and a = 13 is {6.5}.

Example 3. Let A = first quadrant of R2 and ρ : U × U → R+ be described as ρ($1, $2) =

max{|$1|, |$2|}, $1 = ($1, $2), $2 = ($2
1, $2

2), |$1| =
√

$2
1 + $2

2, |$2| =
√
($2

1)
2 + ($2

2)
2, and

$1, $2 ∈ U , then a 2-ellipse-like curve

Eρ(κ1, κ2; a) = {$1 ∈ U : ρ(κ1, $1) + ρ(κ2, $1) = a}

=
{

$1 ∈ U : max{
√

1
4
+

1
4

,
√

$2
1 + $2

2

}
+ max

{√1
4
+ 4,

√
$2

1 + $2
2} = 6

}
,

(1)

that is, a 2-ellipse-like curve centered at ( 1
2 , 5

4 ) having foci at κ1 = ( 1
2 , 1

2 ), κ2 = ( 1
2 , 2), and a = 6

is given by Equation (1).

Remark 1. A Scottish mathematician and scientist, James Clerk Maxwell [16], was the first one
to study multifocal ellipse. Following Maxwell [16] and, Erdös and Vincze [7], we conclude that
an n-ellipse-like curve is the generalization of the 2-ellipse-like curve, which allows more than two
foci and is also known as a multifocal ellipse. The n-ellipse-like curve with one focus is the circle
(1- ellipse-like curve), and with two foci is the 2-ellipse-like curve. Noticeably, all of these shapes
are symmetrical.

We denote the family of monotone increasing as well as continuous functions ψ :
[0, ∞) → [0, ∞) satisfying ψ(0) = 0 by ψ and the set of lower semi-continuous functions
φ : [0, ∞)→ [0, ∞) satisfying φ(0) = 0 by φ.
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Definition 6. Let ψ ∈ ψ, φ ∈ φ. A self mapM : U → U of a partial metric space (U , ρ) is known
as a partial (ψ, φ)−contraction if

ψ(ρ(M$1,M$2)) ≤ ψ(M($1, $2))− φ(N($1, $2)), $1 6= $2, ∀$1, $2 ∈ U , (2)

where

M($1, $2) = max
{

ρ($1, $2), ρ($1,M$1), ρ($2,M$2),
1
2
(ρ($1,M$1) + ρ($2,M$2)),

1
2
(ρ($1,M$2) + ρ($2,M$1))

}
;

N($1, $2) = max
{

ρ($1, $2), ρ($1,M$1), ρ($2,M$2),
ρ($1,M$1)(ρ($1,M$2)+ρ($2,M$1)−ρ($2,M$2))

1+ρ($1,$2)

}
.

Definition 7. Let ψ ∈ ψ, φ ∈ φ. A self mapM : U → U of (U , ρ) is known as a partial (ψ, φ)Eρ
−

contraction if

ψ(ρ($1,M$1)) ≤ ψ(M′($1, $2, $3))− φ(N′($1, $2, $3)), $1 6= $2 6= $3, $1 6=M$1, ∀$1, $2, $3 ∈ U , (3)

where

M′($1, $2, $3) = max{ρ($1, $2) + ρ($1, $3), ρ($1,M$1), ρ($2,M$2),
1
3
(ρ($1,M$1) + ρ($1,M$2)+

ρ($1,M$3) + ρ($2,M$2) + ρ($3,M$3) + ρ($2, $3)), ρ($1,M$2) + ρ($1,M$3)};

N′($1, $2, $3) = max
{

ρ($1, $2) + ρ($1, $3), ρ($1,M$1), ρ($2,M$2), ρ($3,M$3),

ρ($1,M$1)(ρ($1,M$2)− ρ($2,M$2))

1 + ρ($1,M$2)
,

ρ($1,M$1)(ρ($1,M$2)− ρ($3,M$3))

1 + ρ($1,M$3)

}
.

Definition 8. Let ψ ∈ ψ, φ ∈ φ. The self mapsM,N : U → U of (U , ρ) are a partial (ψ, φ)−
contraction for a pair of maps if

ψ(ρ(M$1,N $2)) ≤ ψ(M′′($1, $2))− φ(N′′($1, $2)), $1 6= $2, ∀$1, $2 ∈ U , (4)

where

M′′($1, $2) = max{ρ($1, $2), ρ($1,M$1), ρ($2,N $2),
1
2
(ρ($1,M$1) + ρ($2,N $2))};

N′′($1, $2) = max
{

ρ($1, $2), ρ($1,M$1), ρ($2,N $2),
ρ($1,M$1)(ρ($1,N $2)+ρ($2,M$1)−ρ($2,N $2))

1+ρ($1,$2)

}
.

Definition 9. Let ψ ∈ ψ, φ ∈ φ. The self mapsM, N : U → U of (U , ρ) are a partial (ψ, φ)E⊂−
contraction for a pair of maps if

ψ(ρ(M$1,N $1)) ≤ ψ(M′′′($1, $2, $3))− φ(N′′′($1, $2, $3)), $1 6= v 6= $3,

$1 6=M$1 6= N $1, ∀$1, $2, $3 ∈ U ,
(5)

where

M′′′($1, $2, $3) = max{ρ($1, $2) + ρ($1, $3), ρ($1,M$1), ρ($2,N $2),
1
3
(ρ($1,M$1) + ρ($1,N $2)

+ ρ($1,N $3) + ρ($2,N $2) + ρ($3,N $3) + ρ($2, $3)), ρ($1,M$2) + ρ($1,M$3)};

N′′′($1, $2, $3) = max
{

ρ($1, $2) + ρ($1, $3), ρ($1,M$1), ρ($2,N $2), ρ($3,N $3),

ρ($1,M$1)(ρ($1,N $2)− ρ($2,M$2))

1 + ρ($1,N $2)
,

ρ($1,M$1)(ρ($1,N $3)− ρ($3,M$3))

1 + ρ($1,N $3)

}
.
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Theorem 1. LetM : U → U be a partial (ψ, φ)−contraction of a complete partial metric space
(U , ρ). Then,M has exactly one fixed point, and the sequence of iterates {$n} converges to a unique
fixed point in U .

Proof. Let the initial point $0 ∈ U and the Picard sequence {$n} ⊆ U be $n+1 =M$n, n ∈
N0. If $n+1 = $n, n ∈ N0, then $n is a fixed point of M. Hence the conclusion. Let
$n 6= $n+1, n ∈ N0. Substituting $1 = $n and $2 = $n+1 into inequality (2),

ψ(ρ(M$n,M$n+1)) ≤ ψ(M($n, $n+1))− φ(N($n, $n+1)),

where

M($n, $n+1) = max{ρ($n, $n+1), ρ($n,M$n), ρ($n+1,M$n+1),
1
2
(ρ($n,M$n) + ρ($n+1,M$n+1)),

1
2
(ρ($n,M$n+1) + ρ($n+1,M$n))}

= max{ρ($n, $n+1), ρ($n, $n+1), ρ($n+1, $n+2),
1
2
(ρ($n, $n+1) + ρ($n+1, $n+2)),

1
2
(ρ($n, $n+2) + ρ($n+1, $n+1))}.

Since,

ρ($n, $n+2) ≤ ρ($n, $n+1) + ρ($n+1, $n+2)− ρ($n+1, $n+1),

that is, ρ($n, $n+2) + ρ($n+1, $n+1) ≤ ρ($n, $n+1) + ρ($n+1, $n+2),

that is,
1
2
(ρ($n, $n+2) + ρ($n+1, $n+1)) ≤

1
2
(ρ($n, $n+1) + ρ($n+1, $n+2))

≤ max{ρ($n, $n+1), ρ($n+1, $n+2)}.

(6)

Now, M($n, $n+1) ≤ max{ρ($n, $n+1), ρ($n+1, $n+2)}

N($n, $n+1) = max
{

ρ($n, $n+1), ρ($n,M$n), ρ($n+1,M$n+1),

ρ($n,M$n)(ρ($n,M$n+1)− ρ($n+1,M$n+1)− ρ($n+1,M$n))

1 + ρ($n, $n+1)

}
= max

{
ρ($n, $n+1), ρ($n, $n+1), ρ($n+1, $n+2),

ρ($n, $n+1)(ρ($n, $n+2)− ρ($n+1, $n+2)− ρ($n+1, $n+1))

1 + ρ($n, $n+1)

}
N($n, $n+1) ≤ max{ρ($n, $n+1), ρ($n+1, $n+2)}.

(7)

Hence,

ψ(ρ($n+1, $n+2)) ≤ ψ(max{ρ($n, $n+1), ρ($n+1, $n+2)})−
φ(max{ρ($n, $n+1), ρ($n+1, $n+2)}).

(8)

When ρ($n, $n+1) ≤ ρ($n+1, $n+2), then

ψ(ρ($n+1, $n+2)) ≤ ψ(ρ($n+1, $n+2))− φ(ρ($n+1, $n+2))

< ψ(ρ($n+1, $n+2)),
(9)

a contradiction. Hence, ρ($n+1, $n+2) ≤ ρ($n, $n+1), that is, {ρ($n, $n+1)} is the sequence
of positive real numbers, which is decreasing.

Thus, limn→∞ ρ($n, $n+1) = l (l ≥ 0).
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Now, taking n→ ∞ in inequality (8),

ψ(l) ≤ ψ(l)− lim
n→∞

inf φ(ρ($n, $n+1))

≤ ψ(l)− φ(l)

< ψ(l),

(10)

a contradiction, i.e., limn→∞ ρ(ρn, $n+1) = 0.
Since

dρ($n, $n+1) = 2ρ($n, $n+1)− ρ($n, $n)− ρ($n+1, $n+1)

dρ($n, $n+1) ≤ 2ρ($n, $n+1)→ 0.

Now, we demonstrate that limn,m→∞ ρ($n, $m) = 0, using a contradiction method.
Suppose limn,m→∞ ρ($n, $m) 6= 0. Then, there exist two sub-sequences {$nk} and

{$mk} and an ε > 0 for which

k < mk < nk, ρ($mk , $nk ) > ε, (11)

that is,
ρ($mk , $nk−1) < ε. (12)

Now, using inequalities (11) and (12)

ε < ρ($mk , $nk ) ≤ ρ($mk , $nk−1) + ρ($nk−1, $nk )− ρ($nk−1, $nk−1)

< ε + ρ($nk−1, $nk )

< ε, as k→ ∞,

i.e., limk→∞ ρ($mk , $nk ) = ε.
Now,

ρ($mk−1, $nk−1) ≤ ρ($mk−1, $nk ) + ρ($nk , $nk−1)− ρ($nk , $nk )

≤ ρ($mk−1, $nk ) + ρ($nk , $nk−1)

≤ ρ($mk−1, $mk ) + ρ($mk , $nk )− ρ($mk , $mk ) + ρ($nk , $nk−1)

≤ ρ($mk−1, $mk ) + ρ($mk , $nk ) + ρ($nk , $nk−1)

→ ε, as k→ ∞,

i.e., limk→∞ ρ($mk−1, $nk−1) = ε.
Now, from inequality (2)

ψ(ρ($mk , $nk )) = ψ(ρ(M$mk−1,M$nk−1))

≤ ψ(M($mk−1, $nk−1))− φ(N($mk−1, $nk−1)),
(13)

where

M($mk−1, $nk−1) =max{ρ($mk−1, $nk−1), ρ($mk−1,M$mk−1), ρ($nk−1,M$nk−1),
1
2
(ρ($mk−1,M$mk−1) + ρ($nk−1,M$nk−1)),

1
2
(ρ($mk−1,M$nk−1) + ρ($nk−1,M$mk−1))}

=max{ρ($mk−1, $nk−1), ρ($mk−1, $mk ), ρ($nk−1, $nk ),
1
2
(ρ($mk−1, $mk ) + ρ($nk−1, $nk )),

1
2
(ρ($mk−1, $nk ) + ρ($nk−1, $mk ))}.

(14)
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1
2
(ρ($mk−1, $nk ) + ρ($nk−1, $mk )) ≤

1
2
(ρ($mk−1, $mk ) + ρ($mk , $nk )− ρ($mk , $mk )

+ ρ($nk−1, $nk ) + ρ($nk , $mk )− ρ($nk , $nk ))

≤ 1
2
(ρ($mk−1, $mk ) + ρ($mk , $nk )

+ ρ($nk−1, $nk ) + ρ($nk , $mk )).

(15)

Using inequality (15) and letting k→ ∞ in inequality (14),

lim
k→∞

M($mk−1, $nk−1) = ε. (16)

N($mk−1, $nk−1) =max
{

ρ($mk−1, $nk−1), ρ($mk−1,M$mk−1), ρ($nk−1,M$nk−1),

ρ($mk−1,M$mk−1)ρ($mk−1,M$nk−1)

1 + ρ($mk−1,M$nk−1)
,

ρ($nk−1,M$nk−1)ρ($nk−1,M$mk−1)

1 + ρ($nk−1,M$mk−1)

}
=max

{
ρ($mk−1, $nk−1), ρ($mk−1, $mk ), ρ($nk−1, $nk ),

ρ($mk−1, $mk )ρ($mk−1, $nk )

1 + ρ($mk−1, $nk )
,

ρ($nk−1, $nk )ρ($nk−1, $mk )

1 + ρ($nk−1, $mk )

}
→ ε, as k→ ∞,

(17)

that is,
lim
k→∞

N($mk−1, $nk−1) = ε. (18)

Using inequalities (16) and (18) in inequality (13) and taking k→ ∞

lim
k→∞

ψ(ρ($mk , $nk )) ≤ ψ(ε)− φ(ε)

ψ(ε) < ψ(ε),

a contradiction. Thus, limm,n→∞ ρ($m, $n) = 0, and sequence {$n} is a Cauchy sequence in
a complete partial metric space (U , ρ). As a result, a point $1 ∈ U which satisfies

lim
n,m→∞

ρ($m, $n) = 0 = lim
n→∞

ρ($n, $1) = ρ($1, $1).

Suppose $1 6=M$1; then,

ψ(ρ(M$1, $n)) = ψ(ρ(M$1,M$n−1))

≤ ψ(M($1, $n−1))− φ(N($1, $n−1)),
(19)

where

M($1, $n−1) = max{ρ($1, $n−1), ρ($1,M$1), ρ($n−1,M$n−1),
1
2
(ρ($1,M$1) + ρ($n−1,M$n−1)),

1
2
(ρ($1,M$n−1) + ρ($n−1,M$1))}

= max{ρ($1, $n−1), ρ($1,M$1), ρ($n−1, $n),
1
2
(ρ($1,M$1) + ρ($n−1, $n)),

1
2
(ρ($1, $n) + ρ($n−1,M$1))}

→ max{ρ($1, $1), ρ($1,M$1)}, as n→ ∞,

= ρ($1,M$1).

(20)
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N($1, $n−1) = max
{

ρ($1, $n−1), ρ($1,M$1), ρ($n−1,M$n−1),

ρ($1,M$1)ρ($1,M$n−1)

1 + ρ($1,M$n−1)
,

ρ($n−1,M$n−1)ρ($n−1,M$1)

1 + ρ($n−1,M$1)

}
→ max{ρ($1, $1), ρ($1,M$1)}, as n→ ∞,

= ρ($1,M$1).

(21)

Now, using properties of functions ψ and φ and inequalities (20) and (21) in inequality (19)

ψ(ρ(M$1, $1)) ≤ ψ(ρ($1,M$1)− φ(ρ($1,M$1))

< ψ(ρ($1,M$1)),

a contradiction, that is,M$1 = $1.
Next, supposeM has more than one fixed point, and $2 is one more fixed point ofM,

which is different from $1, that is, $1 6= $2. Now, using inequality (2),

ψ(ρ(M$1,M$2)) ≤ ψ
(

max
{

ρ($1, $2), ρ($1,M$1), ρ($2,M$2),
1
2
(ρ($1,M$1) + ρ($2,M$2)),

1
2
(ρ($1,M$2) + ρ($2,M$1))

})
− φ

(
max

{
ρ($1, $2), ρ($1,M$1), ρ($2,M$2),

ρ($1,M$1)ρ($1,M$2)

1 + ρ($1,M$2)
,

ρ($2,M$2)ρ($2,M$1)

1 + ρ($2,M$1)

})
ψ(ρ($1, $2)) ≤ ψ

(
max

{
ρ($1, $2), ρ($1, $1), ρ($2, $2),

1
2
(ρ($1, $1) + ρ($2, $2)),

1
2
(ρ($1, $2) + ρ($2, $1))

})
− φ

(
max

{
ρ($1, $2), ρ($1, $1), ρ($2, $2),

ρ($1, $1)ρ($1, $2)

1 + ρ($1, $2)
,

ρ($2, $2)ρ($2, $1)

1 + ρ($2, $1)

})
ψ(ρ($1, $2)) ≤ ψ(ρ($1, $2))− φ(ρ($1, $2))

ψ(ρ($1, $2)) < ψ(ρ($1, $2)),

(22)

a contradiction, that is, $1 = $2.

Example 4. Let U = R+ be equipped with partial metric ρ : U × U → R+, which is described as
ρ($1, $2) = max{$1, $2}. Clearly, (U , ρ) is complete.

Let ψ($1) = $2
1 and φ($1) =

{
$2

1
2 + 1, $1 6= 0

0, $1 = 0
.

Let a self-mapM : U → U be described asM$1 =

{
0, $1 ∈ [0, 10]
$1
50 , otherwise

, $1 ∈ U .

Then,M validates the partial (ψ, φ)−contraction 1. Consequently,M has exactly one fixed
point 0, and the sequence { n

n2+1} converges to 0.

Example 5. Let U = {$n = 2n : n ∈ N ∪ {0}} and a partial metric ρ : U × U → R+ be
described as ρ($1, $2) = max{$1, $2}. Clearly, (U , ρ) is complete.

Let ψ($1) = $2
1 + $1 and φ($1) =

{
0, $1 = 0
$1
10 + 1, $1 6= 0

, $1 ∈ U .

Let a self-mapM : U → U be described asM$1 =

{
$0, $1 = $0
$n
2 , $1 = $n, n ≥ 1

.

Now, we assert thatM validates partial (ψ, φ)−contraction, that is,

ψ(ρ(M$n,M$m))

ψ(M($n, $m))− φ(N($1, $2))
≤ 1.
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Case (i) When n = 0 and m ≥ 1,

ψ(ρ(M$n,M$m))

ψ(M($n, $m))− φ(N($1, $2))
=

ψ(m)

ψ(2m)− φ(2m)

=
5(m2 + m)

20m2 + 9m− 5
≤ 1

4
< 1.

Case (ii) When n > m ≥ 1

ψ(ρ(M$n,M$m))

ψ(M($n, $m))− φ(N($1, $2))
=

ψ(n)
ψ(2n)− φ(2n)

=
5(n2 + n)

20n2 + 9n− 5
≤ 1

4
< 1.

Thus,M is a partial (ψ, φ)−contraction and has exactly one fixed point 0, and the constant
sequence {0} converges to 0.

Theorem 2. Let (U , ρ) be a complete partial metric space, and mapsM, N : U → U are partial
(ψ, φ)−contractions. Then,M has a common fixed point satisfyingM$1 = N $1 = $1.

Proof. Let $0 ∈ U . Let the sequence {$n}, n ∈ {0} ∪N be described as

$2n+1 =M$2n, $2n+2 = N $2n+1. (23)

If $2n = $2n+1, then $2n is a fixed point ofM. Thus,

ρ($2n+1, $2n+2) = ρ(M$2n,N $2n+1)

≤ ψ(M′′($2n, $2n+1))− φ(N′′($2n, $2n+1)),

where

M′′($2n, $2n+1) = max{ρ($2n, $2n+1), ρ($2n,M$2n), ρ($2n+1,N $2n+1),
1
2
(ρ($2n,M$2n) + ρ($2n+1,N $2n+1))}

= max{ρ($2n, $2n+1), ρ($2n, $2n+1), ρ($2n+1, $2n+2),
1
2
(ρ($2n, $2n+1) + ρ($2n+1, $2n+2)),

1
2
(ρ($2n, $2n+2) + ρ($2n+1, $2n+1))}

≤ max{ρ($2n, $2n+1), ρ($2n+1, $2n+2),
1
2
(ρ($2n, $2n+1) + ρ($2n+1, $2n+2)− ρ($2n+1, $2n+1) + ρ($2n+1, $2n+1))}

≤ max{ρ($2n, $2n+1), ρ($2n+1, $2n+2)}

and

N′′($2n, $2n+1) = max
{

ρ($2n, $2n+1), ρ($2n,M$2n), ρ($2n+1,M$2n+1),

ρ($2n,M$2n)(ρ($2n,N $2n+1) + ρ($2n+1,M$2n)− ρ($2n+1,N $2n+1))

1 + ρ($2n, $2n+1)

}
= max

{
ρ($2n, $2n+1), ρ($2n, $2n+1), ρ($2n+1, $2n+2),

ρ($2n, $2n+1)(ρ($2n, $2n+2) + ρ($2n+1, $2n+1)− ρ($2n+1, $2n+2))

1 + ρ($2n, $2n+1)

}
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≤ max
{

ρ($2n, $2n+1), ρ($2n, $2n+1), ρ($2n+1, $2n+2),

ρ($2n, $2n+1)ρ($2n, $2n+1)

1 + ρ($2n, $2n+1)

}
≤ max{ρ($2n, $2n+1), ρ($2n+1, $2n+2)}

ρ($2n+1, $2n+2) ≤ ψ(max{ρ($2n, $2n+1), ρ($2n+1, $2n+2)})− φ(max{ρ($2n, $2n+1), ρ($2n+1, $2n+2)}).

Proceeding as in Theorem 1, sequence {$n} is a Cauchy in a complete partial metric
space (U , ρ). Hence, $1 ∈ U , which satisfies

lim
n,m→∞

ρ($m, $n) = 0 = lim
n→∞

ρ($n, $1) = ρ($1, $1).

Suppose that $1 6= N $1 and {$2nk} are a subsequence of {$2n} and hence of {$n}

ψ(ρ($2nk+1,N $1)) = ψ(ρ(M′′$2nk ,N ′′$1))

≤ ψ(M($2nk , $1))− φ(N($2nk , $1)),
(24)

where

M′′($2nk , $1) = max{ρ($2nk , $1), ρ($2nk ,M$2nk ), ρ($1,N $1),
1
2
(ρ($2nk ,M$2nk ) + ρ($1,N $1))}

= max{ρ($2nk , $1), ρ($2nk , $2nk+1), ρ($1,N $1),
1
2
(ρ($2nk , $2nk+1)) + ρ($1,N $1)}

→ max{ρ($1, $1), ρ($1,N $1)}, as n→ ∞,

= ρ($1,N $1)

(25)

N′′($2n, $1) = max
{

ρ($2n, $1), ρ($2n,M$2n), ρ($1,N $1),

ρ($2n,M$2n)(ρ($2n,N $1) + ρ($1,M$2n)− ρ($1,N $1))

1 + ρ($2n, $1)

}
= max

{
ρ($2n, $1), ρ($2n, $2n+1), ρ($1,N $1),

ρ($2n, $2n+1)(ρ($2n,N $1) + ρ($1, $2n+1)− ρ($1,N $1))

1 + ρ($2n, $1)

}
→ max{ρ($1, $1), ρ($1,N $1)}, as n→ ∞,

= ρ($1,N $1).

(26)

Now, using properties of functions ψ, φ and substituting inequalities (25) and (26) in
inequality (24),

ψ(ρ($1,N $1)) ≤ ψ(ρ($1,N $1)− φ(ρ($1,N $1))

< ψ(ρ($1,N $1)),

a contradiction, that is, N $1 = $1.
Similarly, if we choose {$2nk+1} to be a subsequence of {$2n+1} and hence of {$n}, we

obtainM$1 = $1 and henceM$1 = N $1 = $1.
Next, supposeM andN have more than one common fixed point, and $2 is one more

common fixed point ofM different from $1, that is, $1 6= $2. Now, using inequality (4)
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ψ(ρ(M$1,N $2)) ≤ ψ
(

max
{

ρ($1, $2), ρ($1,M$1), ρ($2,N $2),
1
2
(ρ($1,M$1) + ρ($2,N $2))

})
,

− φ
(

max
{

ρ($1, $2), ρ($1,M$1), ρ($2,M$2),

ρ($1,M$1)(ρ($1,N $2) + ρ($2,M$1)− ρ($2,N $2))

1 + ρ($1, $2)

})
ψ(ρ($1, $2)) ≤ ψ

(
max

{
ρ($1, $2), ρ($1, $1), ρ($2, $2),

1
2
(ρ($1, $1) + ρ($2, $2))

})
,

− φ
(

max
{

ρ($1, $2), ρ($1, $1), ρ($2, $2),
ρ($1, $1)(ρ($1, $2) + ρ($2, $1)− ρ($2, $2))

1 + ρ($1, $2)

})
ψ(ρ($1, $2)) ≤ ψ(ρ($1, $2))− φ(ρ($1, $2))

ψ(ρ($1, $2)) < ψ(ρ($1, $2)),

(27)

a contradiction. Hence, $1 = $2.

Next, we give the subsequent example to justify Theorem 2 and to indicate the sig-
nificant fact that the continuity or compatibility (or their weaker variants (see Tomar and
Karapinar [17] and Singh and Tomar [18]) are not essential for the presence of a unique
common fixed point satisfying a partial (ψ, φ)−contraction.

Example 6. Let U = {$n = n : n ∈ N∪ {0}} and partial metric ρ : U × U → R+ be described
as ρ($1, $2) = max{$1, $2}. Then, (U , ρ) is a complete partial metric space. Let ψ($1) = $2

1 + $1

and φ($1) =

{
0, $1 = 0
$1
10 + 1, $1 6= 0

, $1 ∈ U .

Let self-mapsM,N : U → U be described as

M$1 =

{
$0, $1 = $0

$n − 1 $1 = $n, n ≥ 1
and N $1 =

{
$0, $1 = $0

$n + 1 $1 = $n, n ≥ 1
.

Now, we assert thatM and N validate partial (ψ, φ)−contraction for a pair of maps, that is,

ψ(ρ(M$n,N $m))

ψ(M′′($n, $m))− φ(N′′($1, $2))
≤ 1.

Case (i) When n = 0 and m ≥ 1,

ψ(ρ(M$n,N $m))

ψ(M′′($n, $m))− φ(N′′($1, $2))
=

ψ(m + 1)
ψ(m + 1)− φ(m + 1)

=
10(m2 + 3m + 2)
10m2 + 29m + 9

< 1.

Case (ii) When m > n ≥ 1,

ψ(M$n,M$m))

ψ(M($n, $m))− φ(N($1, $2))
=

ψ(m + 1)
ψ(m + 1)− φ(n + 1)

=
10(m2 + 3m + 2)
10m2 + 29m + 9

< 1.

Thus,M and N satisfy partial (ψ, φ)−contraction for a pair of maps and have exactly one
common fixed point 0.

Remark 2. Theorems 1 and 2 evidenced a common fixed point for two self maps in a partial metric
space via partial (ψ, φ)−contraction, wherein we have neither utilized compatibility nor any of its
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variants (see Singh and Tomar [18]). In addition, we have neither utilized continuity nor any of its
variants (see Tomar and Karapinar [17]). Theorems 1 and 2 are improvement and generalization
of contractions used in [1–3,6,19], and so on to partial metric spaces for discontinuous self maps.
Illustrative examples have demonstrated that these extensions, improvements and generalizations
are genuine. Furthermore, by taking distinct values of ψ and φ, we achieve some novel conclusions
and generalizations of celebrated and recent conclusions in the literature.

Now, motivated by Joshi et al. [8], we investigate the subsistence of a fixed 2-ellipse-
like curve to explore the symmetrical geometry of fixed points in a partial metric space.

Theorem 3. Let E(κ1, κ2, a) be an ellipse-like curve in a partial metric space (U , ρ). If map
M : U → U is a partial (ψ, φ)E⊂−contraction and $1 6= κ1 6= κ2, $1, κ1, κ2 ∈ U , a = 1

2
inf{ρ($1,M$1) : $1 6=M$1, $1 ∈ U} and κ1 =Mκ1, κ2 =Mκ2, then E⊂(κ1, κ2; a) is a fixed
2-ellipse-like curve ofM.

Proof. LetM$1 6= $1, $1 ∈ Eρ(κ1, κ2; a) be any arbitrary point and, by definition of a,

ρ(κ1, κ1) + ρ(κ2, κ2) + ρ(κ1, κ2) < a < ρ($1,M$1). (28)

Now,
ψ(ρ($1,M$1)) ≤ ψ(M($1, κ1, κ2))− φ(N($1, κ1, κ2)), (29)

where

M($1, κ1, κ2) = max{ρ($1, κ1) + ρ($1, κ2), ρ($1,M$1), ρ(κ1,Mκ1),
1
3
(ρ($1,M$1) + ρ($1,Mκ1) + ρ($1,Mκ2) + ρ(κ1,Mκ1) + ρ(κ2,Mκ2) + ρ(κ1, κ2)),

ρ($1,Mκ1) + ρ($1,Mκ2)}
= max{ρ($1, κ1) + ρ($1, κ2), ρ($1,M$1), ρ(κ1, κ1),
1
3
(ρ($1,M$1) + ρ($1, κ1) + ρ($1, κ2) + ρ(κ1, κ1) + ρ(κ2, κ2) + ρ(κ1, κ2)),

ρ($1, κ1) + ρ($1, κ2)}

< max{a, ρ($1,M$1), a,
1
3
(a + a + a), a}, (using Equation (28))

= ρ($1,M$1),

and

N($1, κ1, κ2) = max
{

ρ($1, κ1) + ρ($1, κ2), ρ($1,M$1), ρ(κ1,Mκ1), ρ(κ2,Mκ2),

ρ($1,M$1)(ρ($1,Mκ1)− ρ(κ1,Mκ1))

1 + ρ($1,Mκ1)
,

ρ($1,M$1)(ρ($1,Mκ2)− ρ(κ2,Mκ2))

1 + ρ($1,Mκ2)

}
= max

{
ρ($1, κ1) + ρ($1, κ2), ρ($1,M$1), ρ(κ1, κ1), ρ(κ2, κ2),

ρ($1,M$1)(ρ($1, κ1)− ρ(κ1, κ1))

1 + ρ($1, κ1)
,

ρ($1,M$1)(ρ($1, κ2)− ρ(κ2, κ2))

1 + ρ($1, κ2)

}
< max{a, ρ($1,M$1), ρ(κ1, κ1), ρ(κ2, κ2), ρ($1,M$1), ρ($1,M$1)}
= ρ($1,M$1).

Now,

ψ(ρ($1,M$1) ≤ ψ(ρ($1,M$1))− φ(ρ($1,M$1))

< ψ(ρ($1,M$1)),
(30)
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a contradiction. Hence, M$1 = $1, $1 ∈ Eρ(κ1, κ2, $1), that is, Eρ(κ1, κ2; a) is a fixed 2-
ellipse-like curve ofM.

The subsequent example validates Theorem 3.

Example 7. LetM = R+ and ρ :M×M −→ R+ be described as
ρ($1, $2) = max{$1, $2}+ |$1 − $2|. The 2-ellipse-like curve

Eρ(5, 6, 21) = {$1 ∈ U : ρ(5, $1) + ρ(6, $1) = 21}
= {$1 ∈ U : max{5, $1}+ |5− $1|+ max{6, $1}+ |6− $1| = 21}

= {1
2

, 8}.
(31)

Let ψ($1) = $1 and φ($1) =

{
0, $1 = 0
$1
10 + 1, otherwise

. Define a self mapM : U → U as

M$1 =


$1, $1 ∈ Eρ(5, 6, 21)
5, $1 = 5
6, $1 = 6
$1 + 21, otherwise

.

Now, a = 1
2 min{ρ($1,M$1) : $1 6=M$1} = 21.

Then, a self mapM validates the postulates of Theorem 3. Noticeably,M fixes the 2-ellipse-like
curve Eρ(5, 6, 21).

Corollary 1. Let Eρ(κ1, κ2; a) be a 2-ellipse-like curve in a partial metric space (U , ρ). If map
M : U → U satisfies

ρ($1,M$1) ≤ µ max{ρ($1, $2), ρ($1,M$1), ρ($2,M$2),
1
2
(ρ($1,M$1) + ρ($2,M$2)),

1
2
(ρ($1,M$2) + ρ($2,M$1))}, µ ∈ [0, 1) and $1, $2 ∈ U ,

(32)

with $1 6= κ1, $1 6= κ2 ∈ U and κ1 =Mκ1, κ2 =Mκ2, $1 ∈ Eρ(κ1, κ2, a), then Eρ(κ1, κ2; a)
being a fixed ellipse-like curve ofM.

Corollary 2. Let Eρ(κ1, κ2; a) be a 2-ellipse-like curve in a partial metric space (U , ρ). If map
M : U → U satisfies

ρ($1,M$1) ≤ µ max
{

ρ($1, $2), ρ($1,M$1), ρ($2,M$2),
1
2
(ρ($1,M$1) + ρ($2,M$2)),

1
2
(ρ($1,M$2) + ρ($2,M$1)),

ρ($1,M$1)(ρ($1,M$2)− ρ($2,M$2))

1 + ρ($1,M$2)
,

ρ($1,M$1)(ρ($1,M$2)− ρ($3,Mϑ))

1 + ρ($1,Mϑ)

}
, µ ∈ [0, 1) and $1, $2 ∈ U ,

(33)

with $1 6= κ1, $1 6= κ2 ∈ U and κ1 =Mκ1, κ2 =Mκ2, $1 ∈ Eρ(κ1, κ2, a), then Eρ(κ1, κ2; a) is
a fixed 2-ellipse-like curve ofM.

Theorem 4. Let Eρ(κ1, κ2, . . . , n; a) be an n-ellipse-like curve in a partial metric space (U , ρ). If
map M : U → U is a partial (ψ, φ)E⊂−contraction and $1 6= κi, i = 1, 2, . . . , v and $1, κi ∈
U , a = 1

2 inf{ρ($1,M$1) : $1 6= M$1, $1 ∈ U} and κi = Mκi, i = 1, 2, . . . , n, then
Eρ(κ1, κ2, . . . , κn; a) is a fixed n-ellipse-like curve ofM.

Proof. It may be concluded on similar lines as Theorem 3.
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To obtain a common fixed ellipse-like curve, first define

a1 =
1
2

inf{ρ($1,M$1) : $1 6=M$1, $1 ∈ U}

a2 =
1
2

inf{ρ($1,N $1) : $1 6= N $1, $1 ∈ U}

a3 =
1
2

inf{ρ(M$1,N $1) :M$1 6= N $1, $1 ∈ U}

and
a∗ = min{a1, a2, a3}. (34)

Theorem 5. Let Eρ(κ1, κ2; a∗) be a 2-ellipse-like curve in a partial metric space. If mapsM,N :
U → U are satisfying partial (ψ, φ)E⊂−contraction for a pair of maps and mapM satisfies partial
(ψ, φ)E⊂−contraction with $1 6= κ1 6= κ2, $1, κ1, κ2 ∈ U and κ1 = Mκ1, κ2 = Mκ2, then
Eρ(κ1, κ2; a∗) is a common fixed 2-ellipse-like curve of mapsM and N .

Proof. Let u ∈ Eρ(κ1, κ2; a) be any arbitrary point and $1 6= M$1 6= N $1. By definition
of a∗,

ρ(κ1, κ1) + ρ(κ2, κ2) + ρ(κ1, κ2) < a∗ ≤ min{ρ($1,M$1), ρ($1,N $1), ρ(M$1,N $1)}. (35)

LetM satisfy partial (ψ, φ)E⊂ contraction. Thus, using Theorem 1,

M$1 = $1. (36)

Now,
ψ(ρ(M$1,N $1)) ≤ ψ(M($1, κ1, κ2))− φ(N($1, κ1, κ2)), (37)

where

M($1, κ1, κ2) = max
{

ρ($1, κ1) + ρ($1, κ2), ρ($1,M$1), ρ(κ1,N κ1),

1
3
(ρ($1,M$1) + ρ($1,N κ1) + ρ($1,N κ2) + ρ(κ1,N κ1) + ρ(κ2,N κ2) + ρ(κ1, κ2)),

ρ($1,Mκ1) + ρ($1,Mκ2)
}

= max
{

ρ($1, κ1) + ρ($1, κ2), ρ($1,M$1), ρ(κ1, κ1),

1
3
(ρ($1,M$1) + ρ($1, κ1) + ρ($1, κ2) + ρ(κ1, κ1) + ρ(κ2, κ2) + ρ(κ1, κ2)),

ρ($1, κ1) + ρ($1, κ2)
}

≤ max
{

a, ρ($1,M$1), a,
1
3
(a + a + a), a

}
, (using Equation (28))

= ρ($1,M$1),

and

N($1, κ1, κ2) = max
{

ρ($1, κ1) + ρ($1, κ2), ρ($1,M$1), ρ(κ1,N κ1), ρ(κ2,N κ2),

ρ($1,M$1)(ρ($1,N κ1)− ρ(κ1,Mκ1))

1 + ρ($1,N κ1)
,

ρ($1,M$1)(ρ($1,N κ2)− ρ(κ2,Mκ2))

1 + ρ($1,N κ2)

}
= max

{
ρ($1, κ1) + ρ($1, κ2), ρ($1,M$1), ρ(κ1, κ1), ρ(κ2, κ2),

ρ($1,M$1)(ρ($1, κ1)− ρ(κ1, κ1))

1 + ρ($1, κ1)
,

ρ($1,M$1)(ρ($1, κ2)− ρ(κ2, κ2))

1 + ρ($1, κ2)

}
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≤ max{a, ρ($1,M$1), ρ(κ1, κ1), ρ(κ2, κ2), ρ($1,M$1), ρ($1,M$1)}
= ρ($1,M$1).

Now,

ψ(ρ(M$1,N $1) ≤ ψ(ρ($1,M$1))− φ(ρ($1,M$1))

< ψ(ρ($1,M$1)),

i.e.,
ρ(M$1,N $1) < ρ($1,M$1) < ρ(M$1,M$1),

a contradiction. Hence,M$1 = N $1 = $1, $1 ∈ Eρ(κ1, κ2; a∗), that is, a fixed 2-ellipse-like
curve ofM.

The following example validates Theorems 5.

Example 8. LetM = R+ and a partial metric ρ :M×M −→ R+ be described as:
ρ($1, $2) = max{$1, $2}+ |$1 − $2|. The 2-ellipse-like curve

Eρ(2, 6, 14) = {$1 ∈ U : ρ(2, $1) + ρ(6, $1) = 21}
= {$1 ∈ U : max{2, $1}+ |2− $1|+ max{6, $1}+ |6− $1| = 14}
= {1, 4}.

(38)

Let ψ($1) = $1 and φ($1) =

{
0, $1 = 0
$1
20 + 1, otherwise

.

Let self mapsM,N : U → U be described as

M$1 =

{
$1, $1 < 8
$1 + 10, otherwise

and N $1 =

{
$1, $1 < 8
$1 + 20, otherwise

.

Since a1 = 1
2 min{ρ($1,M$1) : $1 6= M$1} = 14, a2 = 1

2 min{ρ($1,N $1) : $1 6=
N $1} = 24, and a3 = 1

2 min{ρ(M$1,N $1) :M$1 6= N $1} = 19. Now, a∗ = min{a1, a2, a3}
= 14.

Then, a self map M validates all the assumptions of Theorem 5. Noticeably, M fixes the
2-ellipse-like curve Eρ(2, 6, 14).

Theorem 6. Let Eρ(κ1, κ2, . . . , κv; a∗) be a v−ellipse in a partial metric space. If mapsM,N : U
→ U are satisfying partial (ψ, φ)E⊂− contraction for a pair of maps andM satisfies (ψ, φ)E⊂−
contraction with $1 6= κi, i = 1, 2, . . . , v and $1, κi ∈ U and κi = Mκi, i = 1, 2, . . . , n, then
Eρ(κ1, κ2, . . . , κn; a∗) is a common fixed n-ellipse-like curve of mapsM and N .

Proof. It may be concluded on a similar pattern as that of Theorem 5.

Remark 3. An ellipse-like curve in partial metric space is an enhancement of an ellipse in metric
space (see [4,8]).

Remark 4. A fixed ellipse-like curve of the self map is not always unique (see Example 7). If the foci
κ1 and κ2 of an ellipse-like curve are concurrent, then fixed ellipse-like curve conclusions diminish
to corresponding fixed circle conclusions. Furthermore, Examples 2, 3, 7 and 8 demonstrate the
significant fact that the shape of the ellipse-like curve, which is symmetrical, may alter by altering
the center, principal axis, foci, or the partial metric under consideration.

4. Application in Production–Consumption Equilibrium

We utilize our conclusions to construct a mathematical model and solve an initial
value problem emerging in the dynamic market equilibrium problem, which is a significant
problem in economics. For production αP and consumption αC , whether the prices are
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rising or falling, day-to-day pricing trends, as well as prices, demonstrate an important
impact on markets. Consequently, the economist is interested in knowing the current price
P(t). Now, assume

αP = β1 + γ1P(t) + δ1
dP(t)

dt
+ $1

d2P(t)
dt2

αC = β2 + γ2P(t) + δ2
dP(t)

dt
+ $2

d2P(t)
dt2 ,

initially P(0) = 0, dP
dt (0) = 0, where β1, β2, γ1, γ2, δ1, δ2, $1, and $2 are constants.

Dynamic economic equilibrium is the condition wherein there is a balance among market
forces, that is, the current prices become stable between production and consumption, that
is, αP = αC . Thus,

β1 + γ1P(t) + δ1
dP(t)

dt
+ $1

d2P(t)
dt2 = β2 + γ1P(t) + δ2

dP(t)
dt

+ $2
d2P(t)

dt2 ,

(β1 − β2) + (γ1 − γ2)P(t) + (δ1 − δ2)
dP(t)

dt
+ ($1 − $2)

d2P(t)
dt2 = 0,

$
d2P(t)

dt2 + δ
dP(t)

dt
+ γP(t) = −β,

d2P(t)
dt2 +

δ

$

dP(t)
dt

+
γ

$
P(t) = − β

$
,

where β = β1 − β2, γ = γ1 − γ2, δ = δ1 − δ2, and $ = $1 − $2.
Now, our initial value problem is modeled as:

P′′(t) +
δ

$
P′(t) +

γ

$
P(t) = − β

$
, with P(0) = 0 and P′(0) = 0. (39)

If we study production and consumption duration time T, problem (39) is equivalent
to

P(t) =
∫ T

0
G(t, t∗)K(t∗, t, P(t))dt, (40)

where Green function G(t, t∗) is

G(t, t∗) =

{
te

γ
2δ (t

∗−t), 0 ≤ t ≤ s ≤ T
se

γ
2δ (t−t∗), 0 ≤ s ≤ t ≤ T

and K : [0, T]×U 2 → R is a continuous function.
Let an operatorM : U → U be described as

MP(t) =
∫ T

0
G(t, t∗)K(t∗, t, P(t))dt (41)

Now, the solution to the dynamic market equilibrium problem, which is expressed
as (39), is a fixed point ofM (41). Actually, the current price P(t) is regulated by (39). Let
C[0, T] symbolize the family of real continuous functions on [0, T], and we write U = C[0, T].
Define a distance function ρ : U × U → R+ as ρ($1, $2) = max{‖$1‖, ‖$2‖}, $1, $2 ∈
U ,where ‖$1‖ = supt∈[0,T] |$1(t)|. Clearly, (U , ρ) is a complete partial metric space.

Theorem 7. Consider the operatorM : U → U (41) in a complete partial metric space (U , ρ),
satisfying
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1. a continuous function G : U 2 → R that satisfies

sup
s∈[0,T]

∫ T

0
G(t, t∗)dt ≤ 2δ

γ
Te

γT
2δ ;

2. max{‖K(t∗, t, P1(t))‖, ‖K(t∗, t, P2(t))‖} ≤ γ
4δT e−

γT
2δ max{‖P1(t)‖, ‖P2(t)‖};

3. ‖K(t∗, t, Pi(t))‖ ≤ γ
2δT e−

γT
2δ ‖Pi(t)‖, i = 1, 2.

Then, the dynamic market equilibrium problem (39) has exactly one solution.

Proof. Let ψ($1) = $1, φ($1) = $1
2 , P1(t), P2(t) ∈ U . Using assumptions (1) and (2),

we obtain

ψ(ρ(MP1(t),MP2(t))) = max{‖MP1(t)‖, ‖MP2(t)‖}

= max
{∥∥∥ ∫ T

0
G(t, t∗)K(t∗, t, P1(t))dt

∥∥∥,
∥∥∥ ∫ T

0
G(t, t∗)K(t∗, t, P2(t))dt

∥∥∥}
= max

{
sup

t∈[0,T]

∣∣∣ ∫ T

0
G(t, t∗)K(t∗, t, P1(t))dt

∣∣∣, sup
t∈[0,T]

∣∣∣ ∫ T

0
G(t, t∗)K(t∗, t, P2(t))dt

∣∣∣}
≤ max

{
sup

t∈[0,T]

∫ T

0
|G(t, t∗)|

{
sup

t∈[0,T]
|K(t∗, t, P1(t))|, sup

t∈[0,T]
|K(t∗, t, P2(t))|

}
dt
}

≤ max{ sup
t∈[0,T]

|K(t∗, t, P1(t))|, sup
t∈[0,T]

|K(t∗, t, P2(t))|} sup
s∈[0,T]

∫ T

0
G(t, t∗)dt

≤ max{ γ

8δT
e−

γT
2δ
[

sup
t∈[0,T]

|P1(t)|, sup
t∈[0,T]

|P2(t)|
]
} sup

s∈[0,T]

[ ∫ s

0
se

γ
2δ (t−t∗)dt +

∫ T

s
te

γ
2δ (t−t∗)dt

]

< max{‖P1(t)‖, ‖P2(t)‖}
γ

8δT
e−

γT
2δ

2δ

γ
Te

γT
2δ

=
1
4

ρ(P1(t), P2(t)).
(42)

ρ(Pi(t),MPi(t)) = max{‖Pi(t)‖,
∥∥∥ ∫ T

0
G(t, t∗)K(t∗, t, Pi(t))dt

∥∥∥}
≤ max{‖Pi(t)‖,

2δ

γ
Te

γT
2δ

γ

2δT
e−

γT
2δ ‖Pi(t)‖}

= ρ(Pi(t), Pi(t)), i = 1, 2.

ρ(Pi(t),MPj(t)) = max{‖Pi(t)‖,
∥∥∥ ∫ T

0
G(t, t∗)K(t∗, t, Pj(t))dt

∥∥∥}
≤ max{‖Pi(t)‖,

2δ

γ
Te

γT
2δ

γ

2δT
e−

γT
2δ ‖Pj(t)‖}

= ρ(Pi(t), Pj(t)), i 6= j.

ψ(M(P1(t), P2(t)))− φ(N(P1(t), P2(t))) ≤ ρ(P1(t), P2(t))−
1
2

ρ(P1(t), P2(t))

=
1
2

ρ(P1(t), P2(t)).
(43)

Now, combining inequalities (4) and (43)

ψ(ρ(MP1(t),MP2(t))) ≤ ψ(M(P1(t), P2(t)))− φ(N(P1(t), P2(t))), ∀P1(t), P2(t) ∈ U ,
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where,

M(P1(t), P2(t)) = max{ρ(P1(t), P2(t)), ρ(P1(t),MP1(t)), ρ(P2(t),MP2(t)),
1
2
(ρ(P1(t),MP1(t)) + ρ(P2(t),MP2(t))),

1
2
(ρ(P1(t),MP2(t)) + ρ(P2(t),MP1(t)))}

and

N(P1(t), P2(t)) = max
{

ρ(P1(t), P2(t)), ρ(P1(t),MP1(t)), ρ(P2(t),MP2(t)),

ρ(P1(t),MP1(t))(ρ(P1(t),MP2(t)) + ρ(P2(t),MP1(t))− ρ(P2(t),MP2(t)))
1 + ρ(P1(t), P2(t))

}
.

Thus, all the postulates of Theorem 1 are validated. Hence, an initial value problem
(39) has exactly one solution in U .

5. Conclusions

This current work is motivated by the symmetrical geometry of fixed points per-
forming a remarkable role in nonlinear real-world problems or nonlinear systems and is
fascinating and innovative. We have demonstrated the subsistence of a fixed point, common
fixed point, ellipse-like curve and common fixed ellipse-like curve for some mathematical
operators in a partial metric space by initiating some novel contractions and notions which
are completely different from that of the ellipse in a Euclidean space. Appropriate nontriv-
ial examples have validated all the conclusions to compare with the existing ones. As a
result, we have explored the symmetrical geometry of the fixed points as well as common
fixed points in a partial metric space. Established theorems and corollaries are improved
and enhanced variants of renowned conclusions wherein compatibility and continuity
(neither their variants) have not been utilized. It is relevant to examine suitable postulates
which exclude the possibility of an identity map in Theorems 1, 3 and 4 and Corollaries
1 and 2 in some future work. Toward the end, we investigated the initial value problem
appearing in Production–Consumption Equilibrium, which determines the significance of
our conclusions. Our conclusions would provide a specific procedure and directions for
further investigating/modeling nonlinear systems involving some suitable mathematical
operators in a partial metric space which is fascinating in view of the reality that partial
metric allows a self distance that is not zero.
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