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Abstract: Noise in an image can affect one’s extraction of image information, therefore, image denois-
ing is an important image pre-processing process. Many of the existing models have a large number
of estimated parameters, which increases the time complexity of the model solution and the achieved
denoising effect is less than ideal. As a result, in this paper, an improved image-denoising algorithm
is proposed based on the TV model, which effectively solves the above problems. The L1 regular-
ization term can make the solution generated by the model sparser, thus facilitating the recovery of
high-quality images. Reducing the number of estimated parameters, while using the inverse gradient
to estimate the regularization parameters, enables the parameters to achieve global adaption and
improves the denoising effect of the model in combination with the TV regularization term. The split
Bregman iteration method is used to decouple the model into several related subproblems, and the
solutions of the coordinated subproblems are derived as optimal solutions. It is also shown that the
solution of the model converges to a Karush–Kuhn–Tucker point. Experimental results show that the
algorithm in this paper is more effective in both preserving image texture structure and suppressing
image noise.

Keywords: image denoising; inverse gradient; regularization parameter; split Bregman iterative
method; Karush–Kuhn–Tucker condition

1. Introduction

Symmetry in a mathematical functional equation refers to a transformation or oper-
ation, including the operators in fractional calculus, fractal, and local fractional calculus
that leave the equation unchanged [1]. In image processing, the transformation and inverse
transformation of matrices, mapping and inverse mapping, Fourier transform, and inverse
variation all fall under the category of symmetry. The concept of symmetry is therefore
widely used in image denoising.

Image denoising is an active research problem in the field of image processing. Com-
mon noises generated during image acquisition or transmission include Gaussian noise,
impulse noise, Poisson noise, etc. These noises often lead to image quality degradation.
The process of recovering a clean, high-quality image from the observed low-quality noisy
image f : Ω→ R is known as image denoising, and this process is reversible. Here, the
image domain Ω denotes the bounded connected open set R2, which has a Lipschitz
boundary. The process of directly recovering a noisy image is undesirable because it lacks
some a priori information about the image. Over the last few decades, researchers have
proposed many solutions to this problem and have applied these methods to problems
such as noise removal from acquired images in seismic surveys [2], hyper parameterized
model identification [3], and fault estimation [4]. Among these, regularization methods are
widely used in image processing [5,6] and have produced a general form of Gaussian noise
removal models.

min
u

{
λ

2
‖u− f ‖2

2 + R(u)
}

(1)

here, R(u) denotes the regularization term, which is typically used to describe a priori
information about the image, such as smoothness, continuity, and bounded variation.
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λ denotes the regularization parameter, which is used to balance ‖u− f ‖2
2 and R(u). The

data fidelity term ‖u− f ‖2
2 has a penalty on the reconstructed image u. The aim is to bring

the observed noisy image f closer to the original high-quality image by solving model (1).
In model (1), the key to improving the denoising ability of the model is the correct

choice of the regularization term R(u). The intrinsic features of an image can be obtained
by using model-based methods [7,8], discriminative-based methods [9], and variational-
based methods [10,11] to find suitable a priori information about the image. This paper
focuses on variational-based approaches. The classical variational model is the ROF model
the fully variational TV model proposed by Rudin et al. The TV model can be used
for image restoration [12], image reconstruction [13,14], blind deconvolution [15], and
vector-valued images [16]. Although the TV model provides better results, it still does not
describe the local details of the image very well. The specific reason is that, in numerical
experiments, the difference grid of the TV model depends only on the horizontal and
vertical directions and does not guarantee the Euler–Lagrange equations of the response
spread in the direction of the edge tangents. In addition, the TV model does not preserve
the geometric features of the image and is prone to step artifact effects in flat regions. To
overcome these drawbacks, many improvement models have been proposed. For example,
Lui et al.’s deep learning-based image segmentation method effectively solved the problem
of adhesion and overlap between adjacent particles of mineral images [17]. Zhou et al.
proposed a radical unsupervised remote sensing image classification method to further
improve the classification accuracy of the model [18]. Zhao et al. designed a residual
network structure by dividing the input feature map into two parts, which reduced the
network parameters and improved the network inference speed [19]. In another example,
Wang et al. proposed a fractional-order TV model, which has served better in color image
denoising and decomposition [20]. Kazemi Golbaghi et al. proposed a new fractional-order
full variational model, a model whose order depends on the image automatically assigned
to it and is better able to capture the edges and details of the image [21]. Lian et al. proposed
a non-convex fractional-order television model that has an excellent ability to overcome step
effects and maintain neat contours [22]. Although these methods can eliminate step artifacts
to some extent, they are computationally complex and often result in phenomena such as
blurring of edges or leaving residual noise. To further improve the performance of the
model, a well-known approach is to use second-order (or higher-order) variations instead
of TV terms, which also avoids step artifact effects to some extent. Duan et al. decomposed
the image into two parts, structure and texture, and proposed an edge-weighted second-
order variational model for image decomposition; this model has improved recovery over
the TV model [23]. Fang et al. combined convolutional neural networks with traditional
variational models, using relevant edge features obtained from noisy images as a priori
information to make the models strongly adaptive [24]. Phan et al. used bounded Hessian
regularize to eliminate step effects and preserve image edge structure [25]. However, the
second-order variational model, while avoiding the step artifact effect to some extent, may
not be as effective as the first-order variational model in terms of denoising. In addition,
the number of parameters [26] involved in estimating the model is larger, and solving all of
them at the same time is difficult. This fact motivates us to find methods that reduce the
number of parameters but still have a better denoising effect. In other words, the proposed
model not only removes step artifact effects better and retains more image information, but
also simplifies the computational complexity of the parameters.

The main contributions of this paper are: firstly, the inclusion of the L1 parameter
regularization term makes the solution of the TV model more sparse, and, to some extent,
also improves the step artifact effect generated by the TV model. Secondly, the number
of parameters to be estimated is reduced and the inverse gradient multiscale is used
to capture the edges of the image to estimate the regularization parameters, making the
parameters globally adaptive. Applying this regularization parameter to the model together
with the TV regularization term can significantly improve the quality of image denoising.
Finally, the split Bregman iteration method (SBIM) is used to decouple the multivariate
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image denoising model into several related solvable subproblems, and the solutions of the
coordinated subproblems are obtained as optimal solutions to the original problem. It is
also shown that the solution of the model converges to a Karush–Kuhn–Tucker (KKT) point.

2. Related Work

The proposed algorithm is closely related to the regularization term, so this section
focuses on several image-denoising problems that contain different regularization terms.

2.1. The ROF Model

The classical ROF model, proposed by Rudin et al. in 1992, can be represented in the
form of a minimized energy generalization function as follows.

argmin
u
{λ

2
‖u− f ‖2

2 + ‖∇u‖1 } (2)

Here, ‖∇u‖1 denotes the TV regularization term. The TV term is capable of suppress-
ing solutions where the model produces oscillations and discontinuities and is often used
to deal effectively with image edges. However, the degree of diffusion of model (2) in
the local normal direction is always zero, which also usually leads to the generation of
segmental constant solutions. In other words, the TV regularization term tends to give rise
to step artifact effects in the model.

2.2. p-Order TV-Based Model

In order to overcome the step artifact effect produced by the ROF model, some re-
searchers have introduced a p-order full variational-based model, which can be expressed
as follows.

argmin
u
{λ

2
‖u− f ‖2

2 + ‖∇
pu‖1 } (3)

When p = 2 and
∥∥∇2u

∥∥
1 =

m
∑

i=1

l
∑

j=1

√
uxx(i, j)2 + uxy(i, j)2 + uyx(i, j)2 + uyy(i, j)2,

model (3) is a higher order full variance model, about which there are applications such as
the Laplacian penalty [27,28], the anisotropic second-order regularization [29], the Hessian
Schatten-norm regularization [30], etc. In fact, the segmented linear solution generated by
the second-order derivative of the segmented vanishing can be a better fit for smooth inten-
sity changes. As a result, such models have better denoising performance than TV models
in terms of maintaining smooth regions. However, this model tends to lead to blurred edges.
When 0 < p < 1, model (3) is transformed into a fractional-order variational model, which
is also better at removing step artifact effects, but has a higher computational complexity.

2.3. Lasso Regression Model

The Lasso regression model was first proposed by Robert Tibshirani. The model allows
for variable selection and complexity adjustment (regularization) when fitting a generalized
linear model. Thus, the Lasso regression model can be used to solve approximate solutions
to the original problem regardless of whether the target-dependent variable is continuous,
binary, or multivariate discrete. In image processing, the Lasso regularization term allows
the model to produce a sparse matrix of weights for feature selection. To a certain extent, it
can also prevent the underfitting of the model. The model can be expressed as follows.

argmin
u
‖ f − Au‖2

2 + λ‖u‖1 (4)

However, the model is not derivable everywhere and it is not possible to obtain a
solution to the model by direct derivation. Some researchers have used the coordinate
descent method and the Least Angle Regression method for solving.
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3. The Proposed New Model
3.1. New Models

Typically, images have different structures in different regions. Image denoising aims
to remove noise while retaining as much structural information as possible. Whereas the
TV regularization term can effectively preserve the structural information of the image, the
lasso regularization term can improve the sparsity of the model solution. Therefore, we
propose an improved TV model.

argmin
u
{1

2
‖Au− f ‖2

2 + α‖∇u‖1 + β‖u‖1 } (5)

Model (5) is effective in removing image noise, preserving image edge information,
and eliminating step artifacts produced by the conventional TV model and its variants.
However, parameter estimation for this model is a major challenge and the effectiveness
of the step artifact removal depends on the robust parameters chosen. In model (5) we
consider a simultaneous multiplication by κ, κ > 0, and set β = κα, which gives the
following form.

argmin
u
{κ

2
‖Au− f ‖2

2 + β‖∇u‖1 + βκ‖u‖1 } (6)

argmin
u
{ κ

2β
‖Au− f ‖2

2 + ‖∇u‖1 + κ‖u‖1 } (7)

To simplify the parameters, let λ = κ
β , then the following model can be obtained.

argmin
u
{λ

2
‖Au− f ‖2

2 + ‖∇u‖1 + κ‖u‖1 } (8)

In model (8), λ is the parameter for the data fidelity term and κ > 0 is the equilibrium
regularization parameter. The model has the following advantages: (i) in practice, the
equilibrium parameter κ of model (8) plays a preferential role in eliminating noise or
facilitating the elimination of step artifacts; (ii) the parameters λ of the model are easier to
estimate than α and β of model (5).

In solving the model, estimating the values of the parameters is an important task.
In [31,32] it was demonstrated that the simultaneous use of the inverse gradient-driven
parameters with the TV regularization term can significantly improve the denoising quality
of damaged images. Therefore, this paper further improves the denoising performance of
the model by introducing a multi-scale inverse gradient adaptive regularization parameter
that depends on the noisy image, which is expressed as follows.

λ( f ) =
µ

1 + τmaxρ

∣∣Gρ ∗ ∇ f
∣∣2
2

(9)

Here, Gρ = 1
2πρ2 exp(− x2

1+x2
2

2ρ2 ) is a two-dimensional Gaussian kernel function, * de-
notes a two-dimensional convolution operation, τ is a constant taking value in the range
10−4 ∼ 10−2 and µ = 2/9. For the scale parameter ρ, only five scale levels are considered
in this paper, ρ = 1, 2, 3, 4, 5,respectively. The regularization parameter λ( f ) is globally
adaptive to noisy images. Thus, model (8) can be rewritten as.

argmin
u
{λ( f )

2
‖Au− f ‖2

2 + ‖∇u‖1 + κ‖u‖1 }, (10)

the value of the scaling parameter ρ corresponds to the value of
∣∣Gρ ∗ ∇ f

∣∣
2. Of all the values∣∣Gρ ∗ ∇ f

∣∣
2, we choose the maximum value as the value of the parameter λ( f ) estimated

by the model.
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3.2. Solving the Model

It can be seen that model (10) is a larger-scale non-convex optimization problem and
solving model (10) directly is difficult. An effective numerical solution method is SBIM,
which is commonly used to solve high-dimensional signal processing problems such as
machine learning, computer vision, image, and signal processing. This method is closely
related to the dual decomposition, the alternating direction multiplier method, and the
Dykstra’s alternating projection method, etc. SBIM involves decomposing a larger global
problem into a series of solvable local sub-problems related to variables and computing the
global solution by using the solutions of the sub-problems.

In this paper, model (11) is solved by iteratively updating the original variables and
the corresponding dual variables of the augmented Lagrange function. Specifically, this
paper introduces auxiliary variables v and w then reformulates model (10) as the following
constrained optimization problem.argmin

u
{ λ( f )

2 ‖Au− f ‖2
2 + ‖∇u‖1 + κ‖u‖1 }

s.t. v =∇u , w = u

 (11)

To simplify the process of solving model (11), this paper introduces two dual variables
(Lagrange multipliers) y = (y1, y2)

T and p = (p1, p2)
T . The problem is then reformu-

lated as.

minmax
u,v,w,y,p

L(u, v, w, y, p)

= λ( f )
2 ‖Au− f ‖2

2 + ‖v‖1 + 〈y, v−∇u〉+ τ1
2 ‖v−∇u‖2

2 + κ‖w‖1 + 〈p, w− u〉+ τ2
2 ‖w− u‖2

2 ,
(12)

where L(u, v, w, y, p) denotes the augmented Lagrange function τ1 and τ2 denote the penalty
parameters. Further rewriting of the problem (12) yields.

minmax
u,v,w,b1,b2

L(u, v, w, b1, b2)

= λ( f )
2 ‖Au− f ‖2

2 + ‖v‖1 +
τ1
2

∥∥∥v−∇u− bk
1

∥∥∥2

2
+ κ‖w‖1 +

τ2
2

∥∥∥w− u− bk
2

∥∥∥2

2
,

(13)

here, b1 = −y/τ1 and b2 = −p/τ2. All the variables in problem (13) are difficult to solve
simultaneously because all of them are coupled together. If SBIM is used multiple variables
of the problem can be decoupled into corresponding sub-problems. At this point, one can
consider fixing the other variables and solving the subproblems for each variable to obtain
the optimal solution to the original problem, as shown in Algorithm 1.

Algorithm 1: SBI to solve the problem (13).

Input:

(1) Set parameters κ, τ1 and τ2;
(2) initialization: original values of u0, v0, w0, b0

1, b0
2;

(3) Iterate (14a)–(14e) below until stopping criterion is met;



uk+1 := argminuL (u, vk, wk, bk
1, bk

2 ) (14a)
vk+1 := argminvL (uk, v, wk, bk

1, bk
2 ) (14b)

wk+1 := argminwL (uk, vk, w, bk
1, bk

2 ) (14c)
bk+1

1 := argminb1
L (uk, vk, wk, bk

1, bk
2 ) (14d)

bk+1
2 := argminb2

L (uk, vk, wk, bk
1, bk

2 ) (14e)

Output: u := uk+1 as the restored image.

The computational efficiency of Algorithm 1 depends on how well the individual
subproblems are solved with high accuracy. The subproblems represented by (14a)–(14e)
are shown to be solved as follows.
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3.2.1. Solution of Related Sub-Problems

(1) Subproblem (14a). This subproblem is a smooth convex optimization problem and
can be expressed as.

uk+1 = argminu

{
λ( f )

2

∥∥∥Auk − f
∥∥∥2

2
+

τ1

2

∥∥∥vk −∇uk − bk
1

∥∥∥2

2
+

τ2

2

∥∥∥wk − uk − bk
2

∥∥∥2

2

}
(15)

The Euler–Lagrange equations for this problem can be obtained by using the varia-
tional method.

(λ( f )AT A + τ1∇T∇+ τ2 · I)uk+1 = λ( f )AT f + τ1∇Tvk − τ1∇Tbk
1 + τ2wk − τ2bk

2 (16)

For different boundary conditions, the solution process of the linear Equation (16)
corresponds to different numerical methods. The Laplace operator ∆ is semi-negative
definite when using the zero Neumann boundary condition or the zero Dirichlet boundary
condition. In this case, the preprocessed conjugate gradient (PCG) method is the solution
that can be used. In this paper, the boundary conditions used are assumed to be periodic,
then problem (16) can be solved using fast Fourier variation.

uk+1 = F−1(
F(λ( f )AT f + τ1∇Tvk − τ1∇Tbk

1 + τ2wk − τ2bk
2)

F(λ( f )AT A + τ1∇T∇+ τ2 · I)
) (17)

Here, F(·) and F−1(·) denote the fast Fourier variation and its inverse variation.

(2) Subproblem (14b). This subproblem can be expressed as.

vk+1 = argminv

{∥∥∥vk
∥∥∥

1
+

τ1

2

∥∥∥vk −∇uk − bk
1

∥∥∥2

2

}
(18)

It can be found that problem (18) is a convex optimization problem and, according to
Theorem 1, the local solution of this problem can be solved by a threshold operator.

vk+1 = shrink(∇uk + bk
1,

1
τ1
) =

∇uk + bk
1∣∣∇uk + bk
1

∣∣max(
∣∣∣∇uk + bk

1

∣∣∣− 1
τ1

, 0) (19)

Theorem 1. For a convex optimization problem

Xk+1 = argminv

{
α‖X‖1 +

β

2
‖X−Y‖2

2

}
the solution to this problem is defined [0, 1]2and can be formulated concretely as.

Xk+1 = shrink(Y,
α

β
) =

Y
|Y| ·max(|Y| − α

β
, 0)

(3) Subproblem (14c). Subproblem (14c) can be expressed as.

wk+1 = argminw

{
κ
∥∥∥wk

∥∥∥
1
+

τ2

2

∥∥∥wk − uk − bk
2

∥∥∥2

2

}
(20)

Similarly to subproblem (14b), this subproblem is also a convex optimization problem
and one of its local solutions can be expressed in the following form.

wk+1 = shrink(uk + bk
2,

κ

τ2
) =

uk + bk
2∣∣uk + bk
2

∣∣max(
∣∣∣uk + bk

2

∣∣∣− κ

τ2
, 0) (21)
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3.2.2. Update of the Multiplier

It can be noted that the multipliers b1 and b2 are functions on the dual variables y and
p, respectively, and the process of iteratively updating the multipliers is also the process
of iteratively updating y and p. The use of SBIM to solve model (10) is accompanied
by the generation of multipliers. The multipliers should be updated as the subproblem
is continuously updated. A total of 2 multipliers are involved in this paper and the
corresponding iterative update equations are given below.{

bk+1
1 = 2bk

1 +∇uk − vk

bk+1
2 = 2bk

2 + uk − wk (22)

4. Convergence Analysis

In this section, we perform a convergence analysis of the proposed algorithm based
on Theorem 2 [33].

Theorem 2. A basic model for non-negative matrix decomposition is to use the least squares
loss function to measure the approximation of the matrix, resulting in the following standard
non-negative matrix decomposition problem.

min f (X, Y) ,
1
2
‖XY−M‖2

2 s.t. X ≥ 0, Y ≥ 0 (23)

Let
{

Zk
}∞

k=1
be the sequence generated by using SBIM on (23). If

{
Zk
}∞

k=1
satisfies

the condition lim
k→∞

(zk+1 − zk) = 0, then the cumulative point
{

Zk
}∞

k=1
is a KKT point of

model (23).
Assume that U and V are auxiliary variables introduced in the process of solv-

ing model (23) and that Λ and Π are Lagrange multipliers. Define a relevant six-tuple
Z , (X, Y, U, V, Λ, Π), then the KKT condition that model (23) should satisfy is shown below.

(XY−M)YT + Λ = 0
XT(XY−M) + Π = 0

X−U = 0
Y−V = 0

Λ ≤ 0 ≤ U, Λ�U = 0
Π ≤ 0 ≤ V, Π�V = 0

(24)

Based on the splitting operator, the Lagrange function for the problem (12) can be
expressed as.

L(uk+1, vk+1, wk+1, yk+1, pk+1)

= λ( f )
2 ‖Au− f ‖2

2 + ‖v‖1 −
〈
yT , v−∇u

〉
+ τ1

2 ‖v−∇u− b1‖2
2

+κ‖w‖1 −
〈

pT , w− u
〉
+ τ2

2 ‖w− u− b2‖2
2.

(25)

Let X be the KKT condition as shown below.
λ( f )AT(Au∗ − f )− p∗ = 0

v∗ −∇u∗ = 0
w∗ − u∗ = 0

0 ∈ ∂‖v∗‖1 + y∗

0 ∈ κ∂‖w∗‖+ p∗

(26)

Proof . First, let xk = (uk, vk, wk, bk
1, bk

2) be the iteration in Algorithm 1,
x̃k = (uk, vk, wk, τ1bk

1, τ2bk
2). The subproblem (15) about u can be obtained by applying
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SBIM to the problem (12), which in turn leads to the optimality condition (16). At this point,
Equation (27) holds.



λ( f )AT A (uk+1 − uk ) + τ1∇T∇ (uk+1 − uk ) + τ2 (uk+1 − uk )
= λ( f )AT f + τ1∇Tvk − τ1∇Tbk

1 + τ2wk − τ2bk
2 − λ( f )AT Auk − τ1∇T∇uk − τ2uk

vk+1 − vk = shrink (∇uk + bk
1, 1

τ1
)− vk

wk+1 − wk = shrink (uk + bk
2, κ

τ2
)− wk

bk+1
1 − bk

1 = bk
1 +∇uk − vk

bk+1
2 − bk

2 = bk
1 + uk − wk

(27)

It follows from Theorem 1 that lim
k→∞

(xk − xk+1) = 0 and that the left-hand side of

Equation (27) tends to 0 when k→ ∞ , and, by extension, the right-hand side of Equa-
tion (27) also tends to 0. Therefore, when k→ ∞ , all terms tend to be 0

(λ( f )AT Auk + τ1∇T∇uk + τ2uk − (λ( f )AT f
+τ1∇Tvk − τ1∇Tbk

1 + τ2wk − τ2bk
2))→ 0

(shrink(∇uk + bk
1, 1

τ1
)− vk)→ 0

(shrink(uk + bk
2, κ

τ2
)− wk)→ 0

(bk
1 +∇uk − vk)→ 0

(bk
1 + uk − wk)→ 0

(28)

The following system of equations is easily obtained by analyzing the expressions (27)
and (28). 

λ( f )AT Au∗ + τ1∇T∇u∗ + τ2u∗ =
λ( f )AT f + τ1∇Tv∗ − τ1∇Tb∗1 + τ2w∗ − τ2b∗2

v∗ = shrink(∇u∗ + b∗1 , 1
τ1
)

w∗ = shrink(u∗ + b∗2 , κ
τ2
)

(29)

In summary, it can be found that the KKT condition is satisfied for all accumulations
concerning to x̃k. However, the KKT condition is the only necessary optimality condition
for the non-convex optimization problem (11). Therefore, there is no guarantee that the
optimal point of (24) is the point of accumulation. �

5. Numerical Experiments and Analysis
5.1. Image Dataset and Experimental Environment Setup

A Windows 10 system running with 8 CPUs of memory and MATLAB version R2018b
is the experimental environment set up for this paper. In this paper, the denoising per-
formance of the proposed model is evaluated using natural and artificial images with
different resolutions. The images used are all grey-scale images and the natural images
have multi-scale edges with rich texture structure, as shown in Figure 1.
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5.2. Image Quality Assessment Indicators

Common metrics used to evaluate the quality of image recovery are peak signal-to-
noise ratio (PSNR), structural self-similarity (SSIM), feature similarity, multi-scale structural
similarity, and perceptual similarity. In this paper, SSIM and PSNR are used as evaluation
metrics. the higher the PSNR value, the better the image recovery. The evaluation of SSIM
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relies on the human visual system (HVS) and SSIM ∈ [0, 1], the closer its value is to 1, the
better the structure retention of the image. The relevant definitions are as follows.

PSNR(u∗, u) = 10 log10(
2552MN

‖u∗ − u‖2
2

) (30)

SSIM(u∗, u) =
2µu∗µu + C1

µ2
u∗ + µ2

u + C1
· 2σu∗u + C2

σ2
u∗ + σ2

u + C2
(31)

Here, u∗ and u denote the recovered image and the original image, respectively, µ
denotes the mean, σ denotes the covariance, C1 and C2 denote the constants, and M, N
denotes the maximum width and length of the image, respectively.

5.3. Numerical Experiments

Random Gaussian noise with mean 0 and variance σ = 10, 20 was added to all test
images. The noisy images were processed for the first time using a mean filter and the
result was used as the initial value for the algorithm. Next, the denoising performance
was tested using the algorithm proposed in this paper. The proposed algorithm was
compared with the PSNR and SSIM of related algorithms under the same PSNR and SSIM
solution formulas to evaluate the algorithm’s denoising performance, including LATV [34],
TVAL3 [35], NGS [36], TVAL3 [37], and TVBH [11]. Experimenting with the algorithm of
this paper on natural images, the PSNR and SSIM values of the algorithm can be obtained
as shown below.

Adding random Gaussian noise with variance σ = 10, 20 to the natural image, the
PSNR and SSIM values of this algorithm and the comparison test can be obtained as shown
in Table 1, and the denoising effect is shown in Figures 2 and 3. Adding Gaussian noise with
the variance of σ = 20 to the artificial image and using the TVBH model at the parameter
ratio of 1/2, the denoising performance of the algorithm and the TVBH model is shown in
Figure 4.

Table 1. PSNR and SSIM of different algorithms with different variances.

Delta Methods
Evaluating Criterion (PSNR/SSIM)

Lena Barbara Boats Baboon

Delta = 10

LATV 32.2371/0.8834 29.8621/0.8824 31.1085/0.8931 27.5627/0.8906

T-ASTV 32.4306/0.8901 29.5901/0.8913 31.1069/0.8947 27.2326/0.8952

NGS 32.4195/0.8983 30.2378/0.8976 31.0814/0.8943 28.0918/0.8917

TVAL3 32.3914/0.8843 30.1947/0.8862 31.1716/0.9013 28.0125/0.8922

ours 32.4321/0.8987 30.4974/0.8932 31.8834/0.9029 28.3017/0.8923

Delta = 20

LATV 28.1323/0.8906 25.0115/0.9029 27.3971/0.9012 25.1216/0.9023

T-ASTV 28.4741/0.8878 25.5346/0.8989 27.4461/0.9063 24.9958/0.9046

NGS 28.4552/0.8924 25.8304/0.8968 27.3014/0.9103 24.8649/0.9014

TVAL3 28.4545/0.8929 25.8467/0.8994 27.40130.9046 25.1246/0.9127

ours 28.4938/0.9050 26.8427/0.9009 27.8708/0.9068 25.2037/0.9091

Note: The bolded font is the optimal value.

In Table 1, when σ = 10, the PSNR and SSIM values for each algorithm are higher
for Lena, Barbara, Boats, and Baboon, but the proposed algorithm has higher values for
the evaluation metrics than the other algorithms in most cases. When σ = 20, the PSNR
and SSIM values of each algorithm decreased, but the proposed algorithm’s PSNR and
SSIM were still slightly higher than those of the other models. Therefore, the denoising
performance of the proposed algorithm has been improved.
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Figure 4. The denoising effect of artificial images on our algorithm and TVBH algorithm. Where
(a) shows the noisy image with σ = 20, (b), show the denoising effect of TVBH model, and (c) shows
the denoising effect of the algorithm in this paper.

Figure 2a shows the noisy image with σ = 10, Figure 2b,e show the denoising effect
of LATV, T-ASTV, T-ASTV, and TVAL3 algorithms, respectively, and Figure 2f shows the
denoising effect of the algorithm in this paper. In the red boxed line is the enlarged right eye
part. Overall, the denoising effect of each model is acceptable, but the clarity of Figure 2e
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is slightly higher than that of Figure 2b–d. Figure 2f also has higher clarity, looking at the
middle of the hat, where the texture is more obvious looking at the red boxed part, and
Figure 2b,e show a more obvious step effect, while Figure 2f also shows a step effect, but to
a lesser extent than Figure 2b,e. Thus, the proposed algorithm improves the step artifact
effect of the model.

Figure 3 presents the denoising effect of each model on the baboon for variance σ = 20.
Figure 3a shows the noisy image with variance, Figure 3b–e show the denoising effect of
the LATV, T-ASTV, T-ASTV, and TVAL3 algorithms, respectively, and Figure 3f shows the
denoising effect of the algorithms in this paper. It can be found that Figure 3b,e remove
some noise, but there is still a lot of noise remaining in the image. In contrast, Figure 3c,d
remove more noise, but there is blurring. A closer look shows that Figure 3f removes more
noise, while the image is not blurred and shows clearer texture detail.

In Figure 4, Figure 4a shows the noisy image with σ = 20, Figure 4b shows the
denoised image of the TVBH model, and Figure 4c shows the denoised image of the
proposed algorithm. Looking at the red boxed parts, we find that the whiteness of the
triangles, circles, and squares in Figure 4c is more obvious than in Figure 4a,b, indicating
that the proposed algorithm removes more Gaussian noise. Therefore, the proposed model
noise filtering is better.

6. Conclusions

In this paper, we propose an image denoising algorithm for multi-scale parameter
estimation, taking advantage of the fact that the TV regularization term can remove noise,
the preservation of edges, and the L1 norm regularization term can promote the sparsity of
the model solution and enhance the model to suppress step artifact effects. In the algorithm,
we only need to estimate the value of one parameter κ, which effectively reduces the
complexity of the estimated parameters. Furthermore, based on the values of PSNR and
SSIM of the proposed algorithm and the comparison algorithm, it can be determined that
the proposed algorithm has better denoising performance and the robustness of the model
to noise is enhanced. Moreover, based on the denoising effect plots, it can be found that
the step artifact effect of the image is suppressed and the noise filtering effect is enhanced.
Overall, the proposed algorithm has a better denoising performance and outperforms the
comparison model.

In the experiments, it can be found that although the model proposed in this paper
achieves good results, there are still some problems, such as the presence of a small amount
of noise in the image or the incomplete preservation of image details. In future research
work, on the one hand, some new concepts related to fuzzy fractional calculus [38], and
Hermite–Hadamard Inequalities [39–41] can be used instead of the concepts associated
with existing models to improve existing algorithms and thus improve the image denoising
performance of the models. On the other hand, the edge detection function can be applied
to detect the edges of the image, thus better preserving the texture details of the image [42].
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