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Abstract: Malware, a lethal weapon of cyber attackers, is becoming increasingly sophisticated, with
rapid deployment and self-propagation. In addition, modern malware is one of the most devastating
forms of cybercrime, as it can avoid detection, make digital forensics investigation in near real-time
impossible, and the impact of advanced evasion strategies can be severe and far-reaching. This
makes it necessary to detect it in a timely and autonomous manner for effective analysis. This
work proposes a new systematic approach to identifying modern malware using dynamic deep
learning-based methods combined with heuristic approaches to classify and detect five modern
malware families: adware, Radware, rootkit, SMS malware, and ransomware. Our symmetry
investigation in artificial intelligence and cybersecurity analytics will enhance malware detection,
analysis, and mitigation abilities to provide resilient cyber systems against cyber threats. We validated
our approach using a dataset that specifically contains recent malicious software to demonstrate that
the model achieves its goals and responds to real-world requirements in terms of effectiveness and
efficiency. The experimental results indicate that the combination of behavior-based deep learning
and heuristic-based approaches for malware detection and classification outperforms the use of static
deep learning methods.

Keywords: cybersecurity analytics; digital forensics investigation; malware detection/mitigation;
artificial intelligence

1. Introduction

The growing influence of telecommunication networks and the metaphor of the inter-
net have revolutionized the way organizations carry out their activities. Indeed, the spectac-
ular evolution of technology, digitalization [1], cloud/fog/edge computing [2–4], quantum
computing [5], and the deployment of an exorbitant number of connected objects [6] have
given rise to unprecedented cybercriminal activities. The growing threats of stealthy cyber-
attacks on critical infrastructures [7], data centers, government organizations, and financial
sectors represent major challenges (from an individual and societal point of view). Complex
cyberattacks rely on malicious software, also known as malware [8], intended for financial
theft, cyber espionage, disruption, identity theft, exfiltration of sensitive data, and other
political motivations [9].

Presently, the world is experiencing phenomenal advances in the computer field;
however, the internationalization of cybercrime has also increased. In particular, during
the COVID-19 pandemic, the heavy reliance on digital systems has led to a high increase
of malware, such as ransomware [10]. COVID-19 has played an essential role in the
proliferation of cyber threats [11], while organizations and individuals struggle to adapt
to unpredictable new norms, further arming cyber attackers with modernized tools and
techniques to execute more dangerous cyberattacks.
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The current landscape of cyberattacks has led to an era of cyberwarfare [12], with no
limits or boundaries, and with very active cyber espionage (sometimes between states or
even between sovereign bodies). One of the most effective defenses used in the context of
cyberwarfare mainly focuses on the use of modern malware.

According to the Kaspersky Security Bulletin (KSB) [13], in 2022, cybercriminals
attacked users with 400.000 new malicious files daily (5% growth compared to 2021).
Kaspersky’s security researchers also discovered that the share of ransomware encoun-
tered daily increased by 181% compared to 2021, reaching 9500 encrypting files per day.
Kaspersky security experts identified a 10% increase in the share of malicious files targeting
the Android platform every day. The infamous 2022 campaigns, i.e., Harly [14] and the
Triada Trojan [15], ambushed thousands of Android users around the world and are prime
examples of this trend. The 2022 SpyCloud Ransomware Defense Report [16] surveyed
over 300 individuals in active IT security roles at US, UK, and Canadian organizations,
with at least 500 employees rating the threat of ransomware in 2022. The survey revealed
that 90% of organizations were affected by ransomware in 2022 [17], which is a significant
increase when compared to 2021, where the percentage was 72.5%.

Symantec [18] indicated that more than 50% of new malware are actually variants of
existing ones.

In addition, the AV-TEST Institute registers more than 450,000 new malicious programs
(malware) every day, as well as potentially unwanted applications (PUAs) [19]. Figure 1
shows the total amount of malware and PUAs for the year 2022:
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Figure 1. Total amount of malware and PUAs from 2008 to 2022.

Cyberattackers attempt to exploit known and unknown vulnerabilities to develop
successful infections. With the massive deployment of an exorbitant number of connected
objects, it is easy to imagine the scale of malware attacks that can be launched on these
devices. This results in a major challenge that needs to be addressed.

In this increasingly digital world, the healthy functioning of ecosystems depends on
the reliability and security of services, operations, and transactions that are ensured using
encryption algorithms. However, this approach is inefficient when using a conventional
computer. This implies that innovative solutions are need to improve classical cryptography.
Quantum cryptography (which is a combination of quantum mechanics and classical
cryptography with unconditional security) and quantum key distribution (QKD) could be
designed to deal with quantum communication attacks. Indeed, quantum cryptography is
based on the transmission of randomly generated qubits, which ensures the inviolability
of exchanges under all circumstances [20,21]. These qubits constitute keys are used in
encryption protocols. To send qubits over long distances, the preferred medium is the
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photon, which allows the encoding of information on observable variables, such as the
polarization of light.

Moreover, quantum technology, such as quantum communications (ensuring the
inviolability of information communicated along network fiber channels) and quantum
computers (designed to perform tasks much more accurately and efficiently than conven-
tional computers [22], which should lead to computers able to perform certain calculations
efficiently) could provide new opportunities for the development of quantum machine
learning and can help to achieve more secure communications [23]. Given the constraints
of time, data volume, and complexity, quantum technology has the potential to enhance
AI capabilities and serve as an accelerator for innovation by processing large sets of data,
solving complex problems faster, and integrating multiple sets of data. Quantum tech-
nology could be a promising solution to bringing artificial intelligence into a new era in
terms of execution speed and huge amounts of data processing, enabling AI to tackle more
complex problems. Such a breakthrough could provide unprecedented momentum to
many problems that require intensive calculations, which is becoming increasingly difficult
as more complex data and relationships are added within the variables. For this purpose,
large-scale quantum (LSQ) combined with artificial intelligence would be a major revo-
lution for cybersecurity. Therefore, leveraging massive quantum computing capabilities
could provide a strategic superpower for cybercriminals to perform adversarial cyber
activities with devastating impacts.

Figure 2 shows the distribution of malware from January 2022 to June 2022. We
observed 6% IoT malware, 19% crypto-jacking, 28% malicious intrusions, 53% malicious
office and PDFs, 105% ransomware, and 167% encrypted threats [24].
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Figure 2. Global Malware trends by 2022.

It is imperative to develop resilient defense mechanisms against cyberattacks based
on known and unknown malware. However, due to the multitude of samples and families
of malware, it is hard to provide a rapid and automatic response in real time to deal with
modern malware issues. Therefore, one must integrate advanced artificial intelligence (AI)
techniques, such as deep learning (DL), which have been proven useful in other applications.
Moreover, behavioral approaches can be studied through probabilistic reasoning, and
diverse solutions can be provided for complex problems [25].

Given that cybersecurity experts are strongly considering artificial intelligence as a
potential field and a prime attraction topic to improve conventional cybersecurity solutions,
traditional machine learning techniques, such as RF (random forest), DT (decision tree),
and SVM (support vector machine) have been widely used used in cyber security to classify
malware. However, almost all methods have several shortcomings. Technical experience
shows that these methods are limited and do not work efficiently for zero-day or unknown
malware. Thereafter, the research paradigm shifted from traditional machine learning
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methods to deep learning-based methods to better identify malware. The results are much
better improved compared to ML methods; moreover, it was observed that the average time
required to detect malware decreases with the intervention of deep learning-based methods
compared to traditional machine learning-based methods. The accuracy is improved as
well even with large amounts of data. Nevertheless, deep learning methods come with
certain limitations. Deep learning-based methods often face difficulties in identifying and
analyzing different variants of malware in real time. These methods are also not suitable
for dealing with malware evasion techniques and may not produce efficient zero-day
detection systems. Therefore, there is a need for reliable and efficient solutions to enhance
cybersecurity analytics, digital forensics investigation, and cyber defense capabilities by
using dynamic deep learning-based methods. This is especially important since modern
malware is continuously growing in sophistication and number, which could lead to chaos
in critical infrastructure. The main motivation of this work is to develop the ability to
detect, analyze, and identify both known and unknown malware in real time with several
variants of modern malware. This will help advance cybersecurity measures.

Four pertinent questions should be asked:

1. What types of threats are produced by malware?
2. What types of vulnerabilities are exploited by malware?
3. Which cyberattack vectors are generated by malware?
4. Which malware and operating modes are used to violate the security properties?

Overall, in this work, we:

• Provide a classification of modern malware;
• Identify the top cybersecurity micro-domains that are necessary to maintain the

cybersecurity posture of cyberspace;
• Perform an in-depth analysis of a specific dataset related to real malware traffic;
• Provide a taxonomy of potential DL techniques that may be used to enhance cyberse-

curity solution;
• Develop a new cybersecurity approach based on a dynamic deep learning model for

the autonomous detection and mitigation of modern (known and unknown) malware.

The paper is organized as follows: Section 2 describes the importance of moving from
classical malware detection and analysis to smart and autonomous detection/analysis
through the incorporation of advanced AI techniques. Moreover, we provide a classifi-
cation of modern malware based on famous samples and high-profile cases. Section 3
highlights the most common related work for malware detection and analysis. Section 4
presents the proposed work and our methodology to deal with modern malware detection
and mitigation. The experimental results are described in Section 5 followed by some
discussions. Finally, Section 6 presents our conclusion and some future works.

2. Background

To offer resilient and effective cybersecurity solutions to deal with modern malware
detection and analysis with faster response and real-time automation, it is important to
understand the fundamental approaches employed as well as the malware obfuscation
techniques adopted by cyberattackers. The micro-domains of cybersecurity mainly revolve
around intrusion detection/prevention, digital forensics, cyber threat intelligence, cyberse-
curity analytics, and malware detection/analysis. Figure 3 presents the top cybersecurity
micro-domains that have emerged, where various AI techniques can be used to flesh out
issues that arise in these fields of cybersecurity.
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Figure 3. Top cybersecurity micro-domains/applications.

Given that cyberattack surfaces are expanding and cyber threats are becoming more
complex, a new vision of cybersecurity must be established. For this purpose:

Cyber security analytics (CSA) is a proactive approach to cybersecurity that uses data
collection, aggregation, correlation, and analysis capabilities to perform critical security
functions that detect, analyze, and neutralize cyber threats and vulnerabilities before an
attack occurs. Furthermore, it could be used for the detection, prevention, and mitigation
of social engineering, APT (advanced persistent threats), modern and advanced malware,
DDoS cyberattacks, unpatched vulnerabilities, and weak credentials.

Cyber threat intelligence (CTI) is a discipline based on intelligence techniques; it
aims to collect and organize all information related to cyber threats in cyberspace in order
to draw a cartography of cyberattackers and highlight trends. In other words, CTI refers to
the process of information gathering on a potential threat, processing and analyzing data
to better understand threats. Cyber threat intelligence is often split into three categories:
strategic threat intelligence, tactical threat intelligence, and operational threat intelligence.
Moreover, cyber threat intelligence operates on a life cycle, which involves six stages:
direction, collection, processing, analysis, dissemination, and feedback.

Digital forensics (DF) is a branch of forensic science that focuses on the recovery and
investigation of material found in digital devices related to cybercrimes. The process focuses
on techniques for collecting and using traces (initially electronic) that can be recorded on
very different types of media. The methodology uses nine phases for digital forensics to be
acceptable to track cybercriminals: first response, search and seizure, collect the evidence,
secure the evidence, data acquisition, data analysis, evidence assessment, documentation
and reporting, and testifying as an expert witness.

Intrusion detection/prevention is a system that continuously monitors the network
to identify potential incidents. The system records related information in logs, resolves inci-
dents, and reports them to security administrators. Typically, intrusion detection/prevention
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should send alarms to administrators, drop the malicious packets, block bad traffic from
the source address, reset the connection, and self-configure to prevent future intrusions.
There are several types of intrusion detection/prevention that can be deployed for differ-
ent purposes, such as network intrusion prevention, host intrusion prevention, network
behavior analysis, and wireless intrusion prevention.

Malware detection/analysis is the process of identifying malicious software and un-
wanted object functioning and their impacts. This makes it possible to recover indicators of
compromise to detect infected machines and, hence, anticipate future infections, study their
impacts, identify exploited vulnerabilities, and identify the origin. The practice consists of
determining and analyzing in-depth suspicious files, codes, and records on endpoints.

2.1. Malware Classification

Malware (or malicious software), as one of the major cybersecurity threats today, is
a program or part of a program intended to disrupt, alter, or destroy all or part of the
software elements that are essential to the proper functioning of a computer system, device,
service, or network. Malware has been threatening us more in the past few years, with
millions of malware samples observed in recent years.

Malware was born in the 1970s (it was named Creeper); it could connect to a remote
system using a modem and display the following error message: “I’M THE CREEPER:
CATCH ME IF YOU CAN”. Malware has evolved to the point where it is now able to
modify the rotation speed of a nuclear centrifuge (e.g., such as what Stuxnet [26] malware
did to an Iranian nuclear power plant in 2010); it can steal sensitive information (as was
the case with Flamer [27] in 2012); or use satellite links to communicate with the attacker
(as was the case with Turla [28] in 2015). WannaCry [29], discovered in May 2017, is one
of the largest ransomware attacks in history, having infected over 230,000 Windows PCs
in 150 countries, many of which belong to government agencies and hospitals. WannaCry
spread using a Windows vulnerability named MS17-010 [30]. Although the attack was
halted in May 2017, WannaCry has not been completely eradicated. In March 2018, Boeing
was targeted, and further cyberattacks remain possible. In addition, other ransomware
strains that exploit the same Windows vulnerability have been developed, such as Petya [31]
(Petya.A, Petya.B, or PetrWrap) and NotPetya [32]. On 3 December 2018, Samsam [33], also
known as MSIL/Samas.A, targeted industries, some of which were critical infrastructure.
Cyberattackers used the JexBoss exploit kit to gain access to vulnerable JBoss applications,
remote desktop protocol (RDP) to gain persistent access to victim networks, and brute force
attacks. Thereafter, the authors of Samsam escalated privileges for administrator rights,
dropped malware on the server and ran a corrupted executable file, all without the victim’s
permission. This gave them the ability to perform malicious actions, such as opening an
email or visiting a compromised website or redirecting and infecting via RDP with minimal
detection. Recently, on 5 July 2021, Darkside [34], a ransomware-as-a-service (RaaS), ran a
dynamic link library (DLL) program used to delete volume shadow copies available on
the system. The malware collected, encrypted, and sent system information to the threat
actor’s command and control (C&C) centers, and generated a ransom note for the victim.

Therefore, malware has different functionalities, and it can be classified by family and
sample. However, it is important to classify malware according to its impact and goals due
to the diversification of malware samples. In this context, Figure 4 illustrates a classification
of modern malware types with examples that have occurred.
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Figure 4. Modern malware taxonomy.

A virus is a type of malware. It belongs to a viral attack type and is a malicious
program designed to reproduce itself by infecting other programs (and, thus, spreading
from device to device). Once infected, the virus will seek to damage, alter, or delete files or
data on electronic devices. It is transmittable, and it can have delayed actions. It spreads
mainly through the internet, USB drives, and email. There are four main families of viruses:
macro viruses, email viruses, polymorphic viruses, and Trojan viruses. Macro viruses are
mostly found in documents or embedded as malicious code in word-processing software.
They exploit the vulnerabilities of software applications. Email viruses use the macros
of an attached document (in word or PDF). When opening the document, the macros are
activated. Locally, they cause damage to the user’s system. They are located in RAM
and contaminate the files as they are executed. For example, they can take the form of a
Windows driver file (.vxd). They are then loaded as soon as the system starts (before the
antivirus is loaded). A polymorphic virus is designed to create copies of itself, each time
changing the layouts and values of the bytes that make it up (in order to avoid antivirus
detection). A Trojan horse is a type of software that presents itself in an honest, useful, or
pleasant light; once installed on electronic devices, it performs hidden and harmful actions.
Botnet is short for robot network. The term ‘robot’ or ‘bot’ is a generic term for an automated
program that performs tasks without user intervention. Botnets are the largest threats to
the internet today. A botnet is a network of compromised machines that can be remotely
commanded, controlled, and coordinated by an attacker to fulfill a malicious directive [35].
A computer worm is a malicious program that originates on a single device and searches
for other connected devices via a local network or internet connection. A keylogger is a
software program that, when installed on the user’s device, makes it possible to record
the keystrokes entered by the user. A keylogger can be installed by the administrator of a
company to control the activities of employees; it can also be installed by a hacker to obtain
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information about his victims. Spyware is a type of virus that installs itself in a system
for the purpose of collecting and transferring a victim’s sensitive information. Finally,
ransomware is extortion software designed to block electronic devices (or an entire system),
encrypt files, and then demand a ransom to recover the data. Ransomware can involve
several methods for infecting systems, such as external remote services, zero-day exploits,
phishing, botnets, and emails.

2.2. Traditional Malware Detection and Analysis

Malware analysis is a process of examining executable files, with the aim of extracting
as much precious information as possible. The purpose of the data is to draw the perimeter
of a cyberattack and to detect the different functionalities and behaviors of the malicious
program. The purpose lies in preventing similar cyberattacks on information systems.
There are three main axes of malware detection and analysis, as shown in Figure 5:

Malware Detection &
Analysis

Malware Detection

Malware Analysis

Signature

Anomaly

Hybrid

Static

Hybrid 

API Calls

Network

OS

File

Registry

Dynamic

Binary

API Calls
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Opcode

N-grams
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Figure 5. Malware detection and analysis.

2.2.1. Static Analysis

Static analysis is a method of analyzing malware without launching it. The goal is
to extract most of the metadata. Although static analysis can easily analyze and detect
known malware, it fails for complex and new malware. Indeed, malware developers use
obfuscation techniques to hide the true nature of their applications or use polymorphism
and metamorphism techniques to change the appearance of the code of different samples
of malware. Some of the advanced static analysis methods can analyze complex malware,
but these processes are quite cumbersome and require a lot of advanced knowledge of
operating systems and disassembly. For instance, PE Explorer is a tool that allows ex-
amining Windows .exe and .dll files. Androguard is a popular static analysis tool for
android applications. It has the ability to assess the similarity between two applications.
Androguard compares the codes of the two applications and calculates which methods are
identical, similar, and present in one but not in the other.

2.2.2. Dynamic Analysis

Dynamic analysis involves analyzing the behavior and effects of malware when it
is executed. We have to understand what the malware does when it is executed. The
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goal is to collect real-time data related to malware behavior and its impact on the system.
With this technique, we observe all the functionality of the malware and its effect on the
environment during its execution. Usually, the file is executed in a virtual environment.
Dynamic analysis is always preferred over static analysis because even if the structure of
malware changes, the behavior and characteristics will never change and always remain
the same, which helps dynamic analysis to detect malware easily. Wireshark [36] and TCP
dump [37] are excellent tools that capture packets traveling through a network and analyze
them. DroidBox is a sandbox tool for Android applications. During the execution of the
application, the tool records the network communications carried out by the application,
the accesses to files, the services launched, the classes loaded, the cryptographic operations
via the Android API, the messages, and the outgoing calls.

2.2.3. Hybrid Analysis

A hybrid analysis is a technique that is composed of two malware analysis techniques,
namely static and dynamic analysis.

2.2.4. Malware Detection Based on Signature

A signature is a piece of sequence injected into the application program by malware
authors, which uniquely identifies malicious software. This is a fast and effective approach
for known malware. However, the downside of this technique is its inefficiency against
unknown attacks and, hence, it cannot detect new unknown malicious software because
no signature is available for such attacks; worse still, malware developers can constantly
modify their codes or the way in which they are wrapped, so that they do not produce
identical signature to previous versions.

2.2.5. Malware Detection Based on Behavior

In this technique, program behavior is used to determine whether it is malicious
or benign. A behavior-based detector goes through three phases, i.e., (1) information
gathering, which involves collecting information about the malware. (2) Interpretation of
the collected information to extract the most relevant details, grouping them together to
create a signature (behavioral model). (3) The detection phase, which consists of finding a
correspondence between the signature of the malware in question and that representing
malicious behavior.

Most pioneering anti-virus vendors, such as Kaspersky, McAfee, Symantec, Avast, and
others have developed anti-virus solutions to protect devices and legitimate users from
malware. However, these solutions are designed by virtue of signature-based methods.
Furthermore, modern malware uses evasive techniques to escape checkpoints, such as
encryption, oligomorphism, polymorphism, metamorphism, stealth, and packaging, of
which, malware authors design and hide zero-day malicious code. Hence, there is a
need to design automated systems that are capable of detecting and classifying malware
autonomously in a real-time manner, where AI could be the best for this challenge and for
developing a next-generation antivirus.

In recent years, machine learning (ML) and deep learning (DL) have considerably
brought dazzling advances in several fields of research. More specifically, artificial intelli-
gence has experienced an extraordinary boom thanks to ML and DL.

ML is an attractive area of computer science that had been used successfully in search-
ing, image recognition, and decision-making [38]. Moreover, DL is based on powerful and
widely applicable models, allowing for the extraction of relevant information for complex
tasks. For this purpose, DL could be a relevant contribution to malware detection, classifica-
tion, analysis; Botnet identification, detection; cyber attacks mitigation; intrusion detection,
prevention; incident response; network traffic analysis; APT detection; cybercriminals iden-
tification; deep packet inspection, and cybersecurity analytics. Figure 6 depicts a taxonomy
on the potential application of ML models in several cybersecurity fields.
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3. Related Works

Cyberspace is vulnerable to a wide range of new-generation malware samples that
can severely impact human life, safety, and business continuity. Several recent research
works have been conducted to detect malware on Windows, Android, iOS, IoT, and APT
applications. For instance, Jerlin et al. [39] implemented the first malware detection system
based on machine learning techniques (naïve Bayesian algorithm). The authors studied
different types of information contained in a PE file, such as character strings, APIs, and
byte sequences.

The authors of [40] analyzed malware samples according to the source-and-sink
method pairs extracted by FlowDroid. Catak et al. [41] proposed a static LSTM-based
approach to detect five malware families, i.e., Trojan, rootkit, backdoor, virus, and worm.
The authors of [42] focused on developing a system based on DL that uses CPU, memory,
and battery usage to predict malware. Pajouh et al. [43] proposed a deep recurrent neural
network-based deep learning system for android malware detection.

Karbab et al. [44] proposed an android malware detection system that uses the bag-
of-words (BOW) model to extract various features of the application, such as hardware
components, application components, network addresses, restricted API calls, suspicious
API calls, requested permissions, used permissions, and filtered intents.

Huang et al. [45] developed a color-based CNN detection system for the Android
platform. The system converted the Android classes.dex file to an RGB (red, green, blue)
image. Zhu et al. [46] provided an Android malware framework called MSerNetDroid,
which is based on a multi-head squeeze-and-excitation residual network to extract features
from the manifest file permissions, API calls, and hardware features.

In 2022, Seraj et al. [47] put forward a fake android anti-malware-based MLP, static
permissions, and applications to address android malware detection. Sasidharan et al. [48]
proposed another contribution to android malware detection architecture that uses the pro-
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file hidden Markov model, encoded patterns, and log-likelihood score. Lee et al. [49]
utilized a Chameleon–Hunter algorithm based on iOS Chameleon apps, UI-based il-
licit activity threats, and suspicious PHI-UI to solve some existing threats related to iOS
mobile malware.

For windows malware detection, many researchers provided algorithms of classification-
based ML features, such as AATR and ETW [50], Footprints [51], and Cuckoo sandbox based
on SVM, Naïve Bayes, and RF [52].

For the detection of IoT malware using ML classifiers, recent research studies have
contributed through ML-based IDS using botnet life cycle stage, wrapper methods, and
channel-based features [53], an SDN-based framework using DDoS attack, SDNWISE
customized controllers, IP packet counter, IP payload, and Cooja Simulator [54].

For APT malware detection using ML, some research works have proposed classifi-
cation via XGB using ANOVA and variance feature selection [55], Bayesian Stackelberg
Game using IoV, optimal mixed strategy, and DOBSS [56].

For ransomware detection using ML, several research works have introduced methods
and models such as the ontology-driven framework (behavior-based using a knowledge-
based system), API functions and behaviors [57], MFMCNS using majority voting rule for
WannaCry and NotPetya [58], AMOEBA with memory-based using device-level storage
and hardware accelerators [59], file-sharing traffic analysis using crypto-ransomware, ML
and file activities [60], and DNAAact-Ran using digital DNA sequences [61]. Qiu et al. [62]
developed a new framework based on multi-view feature intelligence to learn the presen-
tation of a target capability from known malware families for recognizing unknown and
evolving malware with the same capabilities. Qiao et al. [63] proposed a new method
to detect adversarial ELF malware using model interpretation techniques. Xu et al. [64]
proposed a novel slow-aging solution named SDAC to address the model aging problem
in android malware detection using semantic distance-based API clustering. Fan et al. [65]
developed FalDroid, a novel approach that automatically classifies Android malware and
selects representative malware samples in accordance with ’fregraphs’.

Signature-based malware detection methods have been widely used. These methods
work quickly and effectively against well-known malware. However, when it comes to
unknown malware (zero-day), the results are not satisfactory; therefore, signature-based
methods are not suitable for unknown malware detection. Thus, the lack of performance
detection implies that signature-based methods are not suitable for modern malware
detection. Moreover, new-generation malware is coded in a complex style and can evade
security solutions, such as firewalls and anti-viruses that cannot deal with advanced evasion
techniques. Moreover, the unknown signatures of modern malware require that security
mechanisms should be proactive rather than reactive. Hence, the investigation into deep
learning methods remains essential.

4. Proposed Work

Every year, many companies and organizations fall victim to malware attacks. A
cyberattack-based malware can lead to devastating consequences, including financial loss,
theft of sensitive information, compromised supply chains, and more. Antivirus scanners
cannot meet protection needs, resulting in millions of hosts being attacked. Malware detec-
tion systems have been extensively researched and play an important role in cybersecurity.
The objective of our study is to propose a systematic approach to classify modern mal-
ware on a new comprehensive dataset named CICAndMal2017, provided by the Canadian
Institute for Cybersecurity (CIC) [66], using machine and deep learning algorithms. The
performances of the proposed detection approaches were evaluated by taking into account
the different evaluation measures.

4.1. Dataset

CICAndMal2017 is an advanced malware dataset that was used in our study. CICAnd-
Mal2017 [67] is provided by the Canadian Institute for Cybersecurity to train robust malware
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detection classifiers. It contains over 10.854 samples (4.354 malware and 6.500 benign) from
several sources. The dataset contains four categories of modern malware (adware, SMS
Malware, scareware, and ransomware) and a benign file, which in turn consists of three
folders (benign2015, benign2016, and benign2017). Each type of malware (category) is
composed of a set of malware families, each containing a set of data instances. The set of
classes also contains 85 characteristics (features) which are labeled and characterized on
the feed network traffic. Table 1 shows the details of the used dataset.

Table 1. Dataset content description.

Folders Number of Folders Number of Samples

Adware 10 104
Ransomware 10 101

Scareware 11 112
Rootkit 10 105

SMS Malware 11 109
Benign 3 1702

The dataset is not structured, so we have 6 files (benign and malware) composed of
several samples: 1702 for the benign folder and 426 for the malware folders, in addition,
the contents of the target variable are not the same in the different classes.

4.2. Data Analysis and Exploration

Data analysis and exploration are very important steps for our study, consisting of refor-
mulating the dataset and understanding the different variables to define a modeling strategy.

4.3. Data Preparation

As mentioned previously, the dataset was not structured. In other words, whenever
data were collected from different sources, they were collected in raw formats, which were
not suitable for analysis. Hereinafter, we explain the process of structuring the dataset. We
carried out our study on two classification methods (binary classification and multi-class
classification). For the binary classification as shown in Table 2, we changed all of the labels
of the different classes of malware folders into a single malware class and a single class for
benign traffic.

Table 2. Data preparation for binary classification.

Classes Initial Labialization

Adware Dwogin, Ewin, Feiwo, Gooligan, Kemoge, Koodous, Mobidash, Selfmite,
Shuanet, Youmi. Malware

Ransomware Charger, Jisut, Koler, Lockerpin, Pletor, PornDroid, RansomeBo,
Simplocker, SVpeng, Wannalocker. Malware

Scareware AdroidDefender, AdroidSpy, AVforAndroid, Avpass, FakeApp,
FakeAppAl, FakeAV, FakejobOffer, FakeTaoBao, Penetho, VirusShield. Malware

SMS Malware Beanbot, Biige, Fakeinst, FakeMark, FakeNotify, Jifake, Mazarbot,
Nandrobox, Plankton, SMSsniffer, Zson. Malware

Benign Benign2015, Benign2016, Bening 2017. Benign

For multi-class classification, it was the same process; we randomly chose most of the
files of our dataset. The benign class label was unchangeable; we formed a label for the
adware class, a label for the ransomware class, a label for the scareware class, a label for the
SMS malware class, and a label for the rootkit class.

4.4. Data Preprocessing

AI algorithms learn from the data given to them; therefore, if the data are of poor
quality, wrong, or incomplete, the resulting algorithm will lead to bad classification per-
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formances since it is supposed to reflect what it sees within the data. For this reason, it is
imperative that the data will be well-prepared before passing them through the machine.
The data should be cleaned, filtered, and normalized; this is called data preprocessing. Our
approach is based on deep learning techniques, in which the preprocessing step relies on
feature transformation, normalization, extraction, and encoding.

4.5. Feature Extraction

Regarding binary and multi-class classification, we used embedded methods to train
our raw data with the random forest algorithm to determine the relevance of our attributes.
This algorithm was chosen for its performance and accuracy.

As a result, we can conclude that variables such as Bwd URG Flags, Bwd PSH Flags,
Fwd URG Flags, RST Flag Count, Fwd Avg Bytes/Bulk, Fwd Avg packets/Bulk, ECE Flag
Count, Bwd Avg Bytes/Bulk, Fwd Avg packets/Bulk, Bwd Avg Bulk Rate, and Fwd Avg
Bulk Rate are not relevant to our study dataset. Table 3 presents the list of selected features
for our study.

Table 3. Selected attributes for models.

Features Type Features Type

Source Port Int Bwd Packets/s Float
Destination Port Float Min Packet Length Float

Protocol Float Max Packet Length Float
Total Length of Fwd Packets Float Packet Length Mean Float
Total Length of Bwd Packets Float Packet Length Std Float

Fwd Packet Length Max Float Packet Length Variance Float
Fwd Packet Length Min Float FIN Flag Count Float

Fwd Packet Length Mean Float SYN Flag Count Float
Fwd Packet Length Std Float PSH Flag Count Float

Bwd Packet Length Max Float ACK Flag Count Float
Bwd Packet Length Min Float URG Flag Count Float

Bwd Packet Length Mean Float Down/Up Ratio Float
Bwd Packet Length Std Float Average Packet Size Float

Flow Bytes/s Float Avg Fwd Segment Size Float
Flow Packets/s Float Avg Bwd Segment Size Float
Flow IAT Mean Float Fwd Header Length.1 Float

Flow IAT Std Float Subflow Fwd Packets Float
Flow IAT Max Float Subflow Fwd Bytes Float
Flow IAT Min Float Subflow Bwd Packets Float
Fwd IAT Total Float Subflow Bwd Bytes Float
Fwd IAT Mean Float Init_Win_bytes_forward Float

Fwd IAT Std Float Init_Win_bytes_backward Float
Fwd IAT Max Float act_data_pkt_fwd Float
Fwd IAT Min Float min_seg_size_forward Float
Bwd IAT Total Float Active Mean Float
Bwd IAT Mean Float Active Std Float

Bwd IAT Std Float Active Max Float
Bwd IAT Max Float Active Min Float
Bwd IAT Min Float Idle Mean Float

Fwd PSH Flags Float Idle Std Float
Fwd Header Length Int Idle Max Float
Bwd Header Length Int Idle Min Float

Fwd Packets/s Float Flow Duration Int
Total Fwd Packets Int Total Backward Packets Int

4.6. Imputation and Encoding

In the imputation process, we analyzed all data with NAN (not a number) or INF
(infinite values). We also removed columns that did not have numerical values because
malware can be created at any time by any machine against any victim machine. These
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columns are as follows: Source IP, Destination IP, Source Port, Destination Port, Timestamp,
Date, IP, Time, and Addresses. Additionally, we removed variables that have no relevance
to learning.

In the encoding step, we labeled our data as follows: for binary classification,
1 represents malware and 0 represents benign. For multi-class classification, 0 represents
benign, 1 represents adware, 2 represents ransomware, 3 represents scareware, 4 represents
SMS malware, and 5 represents rootkit.

4.7. Normalization

In this step, we placed all of the variables on the same scale, thus facilitating the
learning of the models. We also divided all of our data into training data (Trainset) and
testing data (Testset). As mentioned below, Table 4 and 5 gives details of the number of
trains and tests for each classification:

Table 4. Data repartition of the dataset (binary classification).

Classification Type Classes Trainset Testset

Binary Benign 55,671 16,625
Malware 886,461 302,638

Table 5. Data repartition of the dataset (multi-class classification).

Classification Type Classes Trainset Testset

Multiple Benign 49,767 14,880
Adware 5770 1341

Ransomware 62,471 28,220
Scareware 13,646 3930

SMS Malware 255,487 72,816
Rootkit 79,115 21,715

4.8. Data Visualization

The visualization of our target variables is given in Table 6:

Table 6. Label visualization for two classifications.

Binary and Multiple
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As shown in Table 6, the dataset is unbalanced, and if we train the model without fixing
this issue, the model will be completely biased and it impacts the feature correlation. To fix
this, we used the sampling through the resampling technique, called oversampling, which
is a process of generating synthetic data that attempts to randomly generate a sample of the
attributes from observation in the minority class. We used the SMOTE (synthetic minority
over-sampling technique) Python library to deal with the data imbalance in classification.

4.9. Model Architecture

We implemented two types of approaches for deep learning algorithms (CNN and
DNN), and two types of approaches for machine learning algorithms (random forest and
tree decision classifier) for both binary classification and multi-class classification. For all
techniques, several tests were made to determine the best parameters. All methods were
evaluated using a confusion matrix and diagrams that were necessary for the evaluation.

4.10. Malware Classification Based on Deep Learning Models

The CNN and DNN models that we implemented have some features in common, i.e.,
both models have an input layer, intermediate layers, and an output layer.

Each input layer of the two models takes the input of the size of the variables selected
in the feature selection step. The intermediate layers have an activation function, and in our
study, we used the ReLU function. The output layers have the same dimensions as the class
numbers, which are determined based on the type of classification. For binary classification,
we used the Sigmoid function as an activation function and the Softmax function for multi-
class classification. In our study, the Sigmoid function generates numbers between −1 and
1. During development, we created a procedure to classify numbers greater than 0.5 as
malware traffic and numbers less than 0.5 as benign traffic. The Softmax function gives a
probability (the sum of which is equal to 1) at the output of each neuron, and the output
neuron with the greatest probability enables us to decide that its associated class is the
predicted class.

The models were compiled with a loss function, optimizer, and evaluation metric. For
binary classification (malware/benign), we used binary cross-entropy as the loss function
and categorical cross-entropy for multi-class classification. Both models contain the Adam
optimizer with a learning rate of 0.01. We used the dropout technique to solve overfitting
problems. Finally, we used early stopping to halt the training process when the validation
loss is no longer improving.

4.11. Malware Classification Based on CNN

Usually, CNN is used for image detection. We used a 1D CNN model for malware
classification. The 1D CNN works in the same way as 2D CNN or 3D CNN. We chose
this model because of its high performance and learning rate. During our development
of the 1D CNN model, we made some parameter adjustments to obtain better results.
Figure 7 shows the architecture of our model on the 1D CNN for the two classifications.
We transformed the dataset (training and evaluation data) into NumPy vectors of three
variables (×1, ×2, ×3) with ×1 being the number of observations, ×2 being the number of
variables in our study, and ×3 initialized to 1. The model has the following layers: one-
dimensional convolution layers whose first layers of the model represent the characteristics
of the input data; and connecting layers, whose last layers represent the output.

4.12. Malware Classification Based on DNN

In recent years, DNNs (deep neural networks) have been considered some of the most
important computational networks. The integration of DNNs in cybersecurity solutions,
in general, and for the detection and analysis of malware, in particular, is intended as a
relevant and promising research axis. Furthermore, it allows for obtaining efficient repre-
sentation of the data. The DNN model is implemented with an input layer, intermediate
layers, and an output layer. Figure 8 presents the architecture of the proposed system based
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on the DNN model. At each layer, several settings are made to determine the number
of neurons.

Executables
Dataset

Features Extraction

Static Features Dynamic Features

Input Layer

Convolution
Layer 

Output Layer

Heuristic Detector

File basedRule based

Signatures

DL Engine

Predicted Data
Malware | Benign || Redware | Ransomware | Scareware | Rootkit | SMSMalware  

Accuracy Precision Recall F1 Score

Results

Risk
Assesment

Incident
Response

Mapping Layer 

Connection
Layer 

Figure 7. System architecture based on CNN for two classifications.
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Malware | Benign || Redware | Ransomware | Scareware | Rootkit | SMSMalware  
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Risk
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Figure 8. System architecture based on DNN for two classifications.

4.13. Malware Classification Based on ML

The machine learning algorithm in our study was carried out on the random forest
(RF) classifier and the decision tree (DT) classifier. The architecture is presented in Figure 9.

Random forest and decision tree are machine learning algorithms that allow us to
predict or classify. To do this, decision trees use the divide-and-conquer strategy. The
process of building a decision tree is accomplished by selecting an attribute that will be a
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divisor of the dataset. Thus, it allows building explicit rules from multiple data based on
the target variable in question.

Executables
Dataset

Features Extraction

Features Selection

RF Classifier DT Classifier ML Engine

Predicted Data
Malware | Benign || Redware | Ransomware | Scareware | Rootkit | SMSMalware  

Accuracy Precision Recall F1 Score

Results

Risk
Assesment

Incident
Response

Figure 9. System architecture based on RF/DT for two classifications.

5. Experimental Results and Discussion

Our study aims to detect and classify modern malware with a negligible error rate. We
implemented two deep learning algorithms (CNN and DNN) with heuristic detectors for
static features and two traditional machine learning algorithms (RF and DT). These models
were trained on two classification types (binary and multiple). We conducted several tests
on all of the data to find the right hyperparameters. During development, when we had
negligible test loss with some accuracy on precision, we tested these models on the test
subset. The experimental results are presented in the following Tables 7–11:

Table 7. DNN results for binary classification.

Loss/Accuracy and Total Accuracy
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Table 8. DNN results for multi-class classification.

Loss/Accuracy and Total Accuracy

Table 9. CNN results for binary classification.

Loss/Accuracy and Total Accuracy

Table 10. CNN results for multi-class classification.

Loss/Accuracy and Total Accuracy
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Table 11. RF and DT results for two classifications.

RF Binary and Multiple/DT Binary and Multiple

5.1. Evaluation Results

In this section, we present the different evaluation metrics of the models we used. The
results of precision, recall, F1 score, and the ratios of all metrics are presented in previous
tables for the different classification models.

5.2. Accuracy

The accuracy identifies the total number of observations correctly identified with
respect to the total number of observations. In our case, we denote the percentage of
malware identified as malware among all examples predicted as malware, calculated by:

Accuracy = TP + TN/TP + TN + FP + FN (1)

where the main aspects to consider when measuring the accuracy are:
- TP (true positive): malware that is correctly classified as malware;
- TN (true negative): normal that is correctly classified as benign;
- FP (false positive): normal that is incorrectly classified as malware;
- FN (false negative): malware that is incorrectly classified as benign.

5.3. Recall

Recall, also known as the true positive rate or sensitivity, represents the ability to
detect all positive cases. In our case, we denote the percentage of malware identified as
malware among all malware in the dataset. It is calculated by:

Recall = TP/TP + TN (2)

5.4. F1-Score

The F-score measures the harmonic mean of precision and recall, which serves as a
derived effectiveness measurement. It is calculated by:

F1 = 2 ∗ (Precision ∗ Recall)/(Precision + Recall) (3)

5.5. False Positive Rate

This is the benign traffic that is classified as malware traffic. The FPR is calculated by:

FPR = FP/FP + TN (4)
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5.6. Confusion Matrix

The confusion matrix is the prediction result of our study. Figure 10 presents a
confusion matrix for the DNN model with binary classification.

Our experimental results are compared to the following recent approaches in Table 12:

Table 12. Comparative study related to AI-based malware detection.

Source Class Model Accuracy Recall F1-Score

Proposed

Adware
Ransomware

Scareware
SMSMal
Rootkit

Dynamic
DL/Heuristic-

based

1.00
0.99
0.93
0.97
0.97

0.95
0.98
0.98
0.92
0.99

0.97
0.98
0.95
0.94
0.99

[68] Trojan OWL/RE/SPARQL 0.92 0.91 -

[69] Adware
SVM
RF
NB

0.96
0.99
0.94

- -

[70] Rootkits RF 0.98 - -

[71] SMS Spam SVM 0.98 - -

[72] AndroidMal BiLSTM 0.98 - -

[73] Ransomware ML 0.87 - -

[74] Scareware DT 0.79 - -

[75] Android Mal AdaBoost/SVM 0.96 - -

[76] Android Mal
LSTM

CNN-LSTM
EA

0.94
0.95
0.75

0.94
0.93
0.66

0.94
0.95
0.77

[41] Adware LSTM 0.95 - -

The experimental results, which are benchmarked by testing our proposed approach
with both binary and multi-class classification for the collected large malware datasets,
show high accuracy with a deep learning model compared to the machine learning model.
This indicates that advanced AI techniques, such as dynamic DL, can be an effective support
base in cybersecurity to build intelligent and autonomous solutions as well as efficient
mechanisms for modern malware detection and analysis.

Figure 10. Confusion matrix for binary classification for the DNN model.

From the above comparisons, it appears that our method clearly outperforms existing
approaches for malware detection and identification, predominantly for the classification
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of adware, ransomware, and scareware. The experimental results indicate that the dynamic
DL model outperforms other proposed RF-based and RF-based machine learning methods.
Furthermore, the combinations between behavior-based DNN and the heuristic-based
approach and between behavior-based CNN and the heuristic-based approach provided
better detection mechanisms than the use of ML and DL methods alone.

Moreover, the focus on dynamic features has a significant impact related to avoiding
the obfuscation of modern malware evasion techniques. In addition, the deep analysis of
threat and behavior indicators significantly increases the detection accuracy of malicious
code with highly accurate vulnerability analysis.

For this reason, the experimental outcomes demonstrate that the dynamic DL methods
combined with heuristic approaches are better in terms of detection rate, accuracy, and
features selection, thus, they can significantly improve autonomously modern malware
detection and mitigation.

Therefore, the proposed approach performed better than the existing malware de-
tection and classification approaches. Our study provides new opportunities that can
help lead to the more robust development of resilient systems against modern malware
sophistication.

Moreover, since zero risk does not exist in cybersecurity, it is imperative to have at
least an acceptable risk. To this end, by using fuzzy mathematics [77], we can improve risk
assessment for cybersecurity issues, which will be the subject of further investigation.

6. Conclusions

Malware detection–analysis is an emerging topic in cybersecurity. Every year, many
organizations and states are victims of malware attacks. A malware-based cyberattack can
lead to devastating consequences, including financial loss, exfiltration of sensitive data, and
cyber espionage. Malware scanners and conventional antiviral solutions cannot effectively
meet protection needs. For this purpose, valuable malware examination helps to predict
damage before it is produced and build innovative solutions to handle malware incidents.
In this work, we propose a systematic approach to classify modern malware on an android
dataset (CICAndMal2017) using dynamic deep learning-based methods combined with
heuristic approaches to classify and detect five modern malware families—adware, Rad-
ware, rootkit, SMS malware, and ransomware. The performances of the proposed detection
approaches were evaluated by taking into account the different evaluation measures. The
experimental results show that the scores of the combination between behavior-based DNN
and heuristic-based approach, and behavior-based CNN and heuristic approach have a
better performance than the use of ML and DL methods alone. This vision of symme-
try responds to the integration and intersection of two booming research areas: artificial
intelligence and cybersecurity to promote and strengthen the security posture.

For future work, we plan to apply other data samples, to collect a lot of data taking
into account all the characteristics and to use another type of learning (unsupervised or by
reinforcement). We also advocate in-depth malware analysis through a variety of multi-
sample approaches to effectively strengthen defense mechanisms and early response to
mitigate breaches regardless of the platforms deployed.
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